

ISBN: 978-93-47587-19-1

BIODIVERSITY AND ECOLOGICAL SUSTAINABILITY

EDITOR:

DR. ANILA GEORGE

DR. YASHODHARA VARALE

DR. SHUBHANGEE WASKE

MR. EKNATH PAWDE

Bhumi Publishing, India

First Edition: January 2026

Biodiversity and Ecological Sustainability

(ISBN: 978-93-47587-19-1)

DOI: <https://doi.org/10.5281/zenodo.18453757>

Editors

Dr. Anila George

Department of Environmental Science
St. John's College,
Anchal, Kollam, Kerala

Prof. (Dr.) Yashodhara Varale

Department of Environmental Studies,
Dr. Ambedkar College of Commerce and
Economics, Wadala, Mumbai

Dr. Shubhangee Waske

Department of Botany,
Trimurti Women's College of Science,
Shevgaon, Dist. Ahilyanagar, M.S.

Mr. Eknath Pawde

Department of Zoology,
Shri Datta Arts, Commerce and Science
College, Hadgaon, Dist. Nanded, M.S.

Bhumi Publishing

January 2026

Copyright © Editors

Title: Biodiversity and Ecological Sustainability

Editors: Dr. Anila George, Prof. (Dr.) Yashodhara Varale,

Dr. Shubhangee Waske, Mr. Eknath D. Pawde

First Edition: January 2026

ISBN: 978-93-47587-19-1

ISBN 978-93-475-8719-1

9 789347 587191

DOI: <https://doi.org/10.5281/zenodo.1845375>

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

Published by Bhumi Publishing,

a publishing unit of Bhumi Gramin Vikas Sanstha

Bhumi Publishing

Nigave Khalasa, Tal – Karveer, Dist – Kolhapur, Maharashtra, INDIA 416 207

E-mail: bhumipublishing@gmail.com

Disclaimer: The views expressed in the book are of the authors and not necessarily of the publisher and editors. Authors themselves are responsible for any kind of plagiarism found in their chapters and any related issues found with the book.

PREFACE

Biodiversity and Ecological Sustainability is conceived as a comprehensive academic volume that addresses the urgent need to understand, conserve, and sustainably manage the Earth's biological wealth. Biodiversity forms the foundation of ecosystem stability, human well-being, and economic development, yet it is increasingly threatened by climate change, habitat degradation, pollution, overexploitation of resources, and unsustainable development practices. This book aims to present an integrated perspective on biodiversity and ecological sustainability by bringing together research findings, reviews, and case studies from diverse ecological, biological, and environmental disciplines.

The chapters included in this volume explore species diversity, ecosystem functioning, conservation biology, landscape ecology, environmental monitoring, and sustainable resource management. Special emphasis has been placed on understanding ecological processes, biodiversity assessment methods, conservation strategies, and the role of policy, education, and community participation in achieving long-term sustainability. By combining theoretical concepts with field-based and applied studies, the book highlights practical approaches to conserving biodiversity while balancing developmental needs.

This volume reflects contributions from researchers, academicians, and practitioners working across different ecosystems and geographical regions, offering both global and regional perspectives. The multidisciplinary nature of the book encourages collaboration among biologists, ecologists, environmental scientists, planners, and policy makers. A rigorous peer-review and editorial process has been followed to ensure scientific quality, originality, and clarity in each chapter.

We hope that this book will serve as a valuable reference for undergraduate and postgraduate students, researchers, educators, and professionals engaged in biodiversity conservation and environmental sustainability. It is our sincere belief that the insights presented in this volume will foster environmental awareness, inspire future research, and contribute meaningfully to the global effort toward ecological balance and sustainable development. Ultimately, the volume seeks to encourage informed decision making, ethical stewardship of natural resources, and resilient ecosystems that can support present and future generations in an era of rapid environmental change across local, regional, and global conservation contexts worldwide.

- Editors

TABLE OF CONTENT

Sr. No.	Book Chapter and Author(s)	Page No.
1.	HUMAN-NATURE INTERACTIONS IN A CHANGING WORLD: BIODIVERSITY TRENDS, ECOSYSTEM SERVICES, AND POLICY INTERVENTIONS Chilukuri Venkat Reddy	1 – 13
2.	THE ROLE OF ETHNOBOTANY IN CONTEMPORARY HEALTHCARE SYSTEMS Meenu, Pooja Narang, Sameer Chandra and Desh Deepak	14 – 25
3.	DIVERSITY OF <i>CALAMUS LINN.</i> SPECIES IN WEST BENGAL WITH SPECIAL REFERENCE TO ETHNO-BOTANICAL USES, CONSERVATION AND FUTURE PROSPECTS Roni Saha and Rahul Deb Barman	26 – 41
4.	AI-DRIVEN DRUG DISCOVERY THROUGH COMPARATIVE ZOOLOGY: LEVERAGING ANIMAL MODELS, EVOLUTIONARY CONSERVATION, AND CROSS-SPECIES BIOLOGY Ranjana	42 – 49
5.	NATURE IN MINIATURE: MINI WORLD OF BONSAI Priyanka Dhalwani	50 – 54
6.	PILGRIMAGE TOURISM IN SACRED RIVER ECOSYSTEMS: A CRITICAL REVIEW OF WATER QUALITY DEGRADATION IN THE GANGA AND PAMBA RIVERS Anju Maria Joseph and M. Suresh Gandhi	55 – 63
7.	ECOLOGICAL PATTERNS AND CONSERVATION CHALLENGES IN THE WESTERN GHATS: INSIGHTS FROM FIFTEEN YEARS OF RESEARCH Mayuri L. Patil, Rahul S. Kamble and Sagar A. Vhanalakar	64 – 85
8.	DIVERSITY OF FISHES IN SIRPUR DAM, DISTRICT GONDIA, MAHARASHTRA, INDIA Pratap Jawaharlal Patle	86 – 90
9.	HARNESSING NATURE'S BLUEPRINT: BIODIVERSITY-BASED APPROACHES FOR ECOLOGICAL SUSTAINABILITY IN AQUATIC SYSTEMS Sanishth Sikotariya, Milan Masani and Upasana Vyas	91 – 99

10.	USING ENVIRONMENTAL DNA (EDNA) TO MONITOR FISH BIODIVERSITY FOR SUSTAINABLE FISHERIES	100 – 107
	Sanishth Sikotariya, Milan Masani and Upasana Vyas	
11.	SUITABLE PLANTS AND FISH SPECIES FOR AQUAPONICS AND BIOFLOC TECHNOLOGIES IN INDIA	108 – 117
	S. Tamil Selvi, A. Muthulakshmi, M. Nandhini and M. Sasirekhamani	
12.	INTEGRATIVE GENOMICS, TRANSCRIPTOMICS, PROTEOMICS, AND METABOLOMICS FOR CROP ENHANCEMENT	118 – 132
	Arvind Patel, Abhishek, Fakrudin B and Satish D	
13.	HARNESSING PROTEOMICS FOR CROP IMPROVEMENT	133 – 146
	Abhishek, Arvind Patel, Satish D and Fakrudin B	

**HUMAN-NATURE INTERACTIONS IN A CHANGING WORLD:
BIODIVERSITY TRENDS, ECOSYSTEM SERVICES,
AND POLICY INTERVENTIONS**

Chilukuri Venkat Reddy

Department of Economics,

Government Degree College Badangpet, Rangareddy District,
Osmania University, Telangana State, India.

Corresponding author E-mail: chilukurivenkatreddychandur@gmail.com

Abstract:

Biodiversity constitutes the foundational framework of ecological systems and underpins the sustainability of natural and human economies. This study examines the dynamic relationship between biodiversity, ecosystem services, and ecological sustainability through a multi-scalar analytical approach that integrates global trends, national assessments, and a regional case study of Telangana, India. Using a synthesis of quantitative biodiversity indices, secondary ecological data, and policy analysis, the research evaluates the impacts of anthropogenic drivers—including habitat loss, climate change, overexploitation, pollution, and invasive species—on ecosystem resilience and service provision. The findings reveal that biodiversity–ecosystem service relationships are highly non-linear, characterized by functional redundancy and ecological tipping points, beyond which ecosystem collapse becomes increasingly likely. The paper highlights the critical role of forests and species diversity in climate regulation, carbon sequestration, and livelihood security, while emphasizing the growing economic risks associated with biodiversity degradation. The Telangana case study illustrates how localized biodiversity governance, supported by Biodiversity Management Committees and policy instruments such as the State Biodiversity Strategy and Action Plan, can translate global conservation targets into actionable outcomes. The study concludes that integrating biodiversity into economic planning, ESG frameworks, and community-based governance is essential for achieving long-term ecological sustainability and a nature-positive development trajectory.

Keywords: Biodiversity, Ecological Sustainability, Ecosystem Services, Biodiversity Indices, Climate Change, Conservation Policy.

1. Introduction:

Biodiversity serves as the foundational structural framework of the global biosphere, representing the totality of the variety of life on Earth across genetic, species, and ecosystem scales. This biological variety is not a static inventory of nature but a dynamic life support system that underpins the stability of the environment and the continuity of human civilization. The concept of biodiversity encompasses the genetic differences within a single species—its gene pool—which reflects the variation among individuals and provides the raw material for evolutionary adaptation to changing environmental conditions. At the species level, it denotes the variety of different organisms present within a habitat, while at the ecosystem level, it highlights the assortment of environments such as wetlands, coral reefs, deserts, and forests, each characterized by unique interactions between living organisms and their physical surroundings (MoEFCC, 2014; Millennium Ecosystem Assessment, 2005).

Ecological sustainability is the capacity of these biological systems to remain productive and functional over long periods, meeting the needs of the present without compromising the ability of future generations to fulfill their own requirements. The relationship between biodiversity and sustainability is inherently recursive; biodiversity is essential for maintaining sustainable ecosystems, and the pursuit of sustainability is a prerequisite for halting biodiversity loss. Diverse ecosystems are generally more resilient to disturbances and can recover more rapidly from environmental shocks such as droughts, pests, or extreme weather events. This resilience is vital for the sustainability of human societies, which are fundamentally embedded within and dependent upon natural systems for resources and stability (MoEFCC, 2014; IPBES, 2019; NITI Aayog, 2022).

The functional benefits derived from nature are conceptualized as ecosystem services, categorized into four primary domains: provisioning, regulating, cultural, and supporting services. Provisioning services include the tangible materials extracted from nature, such as food, freshwater, timber, and medicinal resources. Regulating services represent the critical environmental processes moderated by ecosystems, including climate regulation through carbon sequestration, water purification by wetlands, and pollination by insects. Cultural services encompass the non-material benefits people obtain from ecosystems, such as aesthetic value, recreational opportunities, and spiritual significance. Finally, supporting services, such as soil formation and nutrient cycling,

underpin the production of all other ecosystem services (Millennium Ecosystem Assessment, 2005; MoEFCC, 2014).

Ecosystem Service Category	Examples of Tangible Benefits	Functional Significance
Provisioning	Food, Fiber, Fuel, Freshwater, Medicines	Direct material inputs for human survival and economic production.
Regulating	Climate control, Flood mitigation, Pollination, Water purification	Maintaining the stability of the physical environment and reducing disaster risks.
Cultural	Aesthetic value, Spiritual health, Tourism, Recreation	Contributing to human well-being, mental health, and cultural identity.
Supporting	Soil formation, Nutrient cycling, Primary production	Foundational processes required for the maintenance of life on Earth.

The current scientific consensus suggests that the world is in the midst of a biodiversity crisis, characterized by an unprecedented decline in species and habitats driven by human activity. Approximately one million species are currently threatened with extinction, and the global rate of extinction is estimated to be at least 10 to 100 times higher than the natural background rate observed over the last ten million years. This precipitous decline is primarily attributed to land-use change, habitat destruction, overexploitation of resources, pollution, and the accelerating impacts of climate change. As biodiversity declines, the integrity of ecosystem services is compromised, weakening the natural barriers against environmental hazards and threatening the safety and vitality of the planet (IPBES, 2019; IUCN, 2025; IPCC, 2023).

2. Need for Study

The imperative for conducting a rigorous analysis of biodiversity and ecological sustainability is underscored by the systemic mismanagement of natural assets in modern economic frameworks. For decades, the dominant economic models have treated nature as an externality—an infinite resource that exists outside the human economy. This perspective has led to an "ecological overshoot," where the human demand for biological resources exceeds the regenerative capacity of the Earth. The consequence of this oversight is a significant reduction in natural capital, which refers to the stock of renewable and non-

renewable resources that combine to yield a flow of benefits to people (Dasgupta, 2021; NITI Aayog, 2023).

Recent evidence demonstrates that "destroying nature means destroying the economy," as ecological degradation has cascading effects on financial stability, food security, and public health. It is estimated that a total collapse of ecosystem services could cost approximately 2.3% of global GDP annually by 2030. In many developing regions, the persistence of extreme poverty is intimately related to the rapid loss of biodiversity, creating "poverty traps" where rural communities depend disproportionately on natural capital embodied in forests, soils, and water. When these resources are degraded, the local population is left with fewer options for survival, leading to further overexploitation and a downward spiral of environmental and social decline (Dasgupta, 2021; MoEFCC, 2023).

Furthermore, there is a profound lack of research that quantifies the interactions between biodiversity and the economy in a way that allows for evidence-based policy formulation. Many current hypotheses about the root causes of biodiversity loss are contradictory; for instance, some suggest that poverty drives environmental degradation, while others argue that the exploitation of the environment by the wealthy is the primary driver. Resolving these contradictions requires a multidisciplinary approach that combines biophysical data with socioeconomic analysis (MoEFCC, 2023; Forest Survey of India, 2023).

The geographical concentration of biodiversity "hotspots" in developing nations makes them especially vulnerable. In India, for example, the unique tropical dry deciduous forests are critical for carbon sequestration and community livelihoods, yet they are increasingly threatened by mining, agricultural encroachment, and urbanization. There is an urgent need to evaluate regional and state-level biodiversity profiles, such as those in Telangana, to develop targeted conservation strategies that align with international agreements like the Kunming-Montreal Global Biodiversity Framework (KM-GBF). By understanding the specific drivers of species loss and the value of remaining ecosystems, policymakers can implement mechanisms such as Access and Benefit Sharing (ABS) and Biodiversity Finance Initiatives (BIOFIN) to foster a "nature-positive" development trajectory (MoEFCC, 2024; National Biodiversity Authority, 2022).

Driver of Biodiversity Loss	Mechanism of Impact	Consequence for Sustainability
Habitat Destruction	Conversion of forests and wetlands for agriculture and settlements.	Loss of ecosystem services, reduced carbon sequestration, species extinction.
Overexploitation	Commercial overharvesting, hunting, and overfishing.	Depletion of natural stocks, disruption of predator-prey dynamics.
Pollution	Addition of harmful substances to air, soil, and water faster than they can be diluted.	Declining health of organisms, compromised water quality, human health risks.
Climate Change	Modification of global climate patterns due to fossil fuel burning.	Mismatched phenology, shift in habitat ranges, increased extreme weather events.
Invasive Species	Introduction of non-native species that outcompete native biological diversity.	Destabilization of food webs, loss of native species, economic damage.

3. Objectives

- i. To examine the linkages between biodiversity, ecosystem services, and environmental sustainability.
- ii. To analyze key methods for measuring biodiversity, with emphasis on the Shannon-Wiener and Simpson indices.
- iii. To evaluate global and national trends in biodiversity loss and their major anthropogenic and socio-economic drivers.
- iv. To assess biodiversity conditions in Telangana, India, including threatened species and the effectiveness of the State Biodiversity Strategy and Action Plan (2023-2030).
- v. To analyze the relationship between species diversity and ecosystem productivity, with reference to resilience and ecological tipping points.
- vi. To develop policy-oriented recommendations for integrating biodiversity into ESG frameworks, national monitoring, and community-based management.

4. Methodology

The methodology for assessing biodiversity and ecological sustainability involves a combination of field-based sampling, quantitative statistical modeling, and meta-analytical

reviews of existing research. Robust data collection is essential for tracking changes in species abundance and community composition over time, which allows scientists to detect the impacts of environmental stressors (Forest Survey of India, 2023; MoEFCC, 2014).

Field Sampling Techniques: Transects and Quadrats

Ecological tools such as transects and quadrats are foundational for quantifying the relative abundance of organisms within a defined area. A transect line is a physical line—often a measuring tape or rope—marked at regular intervals and laid across a study site. This technique is particularly effective for sampling large, relatively uniform areas quickly or for documenting environmental gradients. A common application is the point-intercept method, where researchers record every organism found directly under specific marks on the transect line.

Quadrats are square or rectangular frames used to define a specific area for more detailed surveys. Quadrats can be placed randomly within a study area to ensure unbiased sampling (random sampling) or at fixed points along a transect line (systematic sampling) to capture spatial heterogeneity. Within a quadrat, researchers may use visual estimates to determine the percentage of ground covered by each species or perform detailed counts of individuals. While visual estimates are faster and can account for rare species, they are prone to higher degrees of observer error compared to direct counts.

Sampling Method	Application Context	Advantages	Limitations
Line Transect	Mapping gradients, large-scale surveys of dominant species.	High speed, covers large spatial extent.	Can miss small or rare species between sampling points.
Random Quadrat	Estimating overall population density and community richness.	Statistically unbiased, high accuracy for mobile invertebrates.	Time-consuming, requires high sample numbers for rare species.
Swath Survey	Monitoring large, conspicuous species (e.g., sea stars, trees).	Captures low-density populations effectively.	Requires clear visibility, intensive labor.
Point Contact	Estimating percent cover of sessile organisms (e.g., algae, coral).	Highly reproducible, efficient for dense communities.	Underrepresents rare or vertically layered species.

Mathematical Quantification: Diversity Indices

To synthesize raw sampling data into a measure of community health, researchers utilize diversity indices that incorporate two key components: species richness and species evenness. Richness is the simple count of the total number of species in a community, while evenness (equitability) reflects how similarly the individuals in a community are distributed among those species.

The Shannon-Wiener Index (H'), derived from information theory, is the most widely used metric for describing biodiversity. It calculates the uncertainty in predicting the identity of an individual picked at random from a sample; high uncertainty indicates high diversity. The formula for the Shannon Index is:

$$H' = -\sum_{i=1}^s p_i \ln p_i$$

Where s is the total number of species, p_i is the proportion of total individuals belonging to the i -th species (n_i/N), and \ln is the natural logarithm. The index typically ranges from 1.5 to 3.5 and rarely exceeds 4.5 in natural systems. A value of 0 indicates a community with only one species.

The Simpson Index (D) is a dominance index that gives more weight to the most common or dominant species. It is calculated as the probability that two randomly selected individuals will belong to the same species. The formula is:

$$D = \frac{N(N-1)}{\sum_{i=1}^s n_i(n_i-1)}$$

Where n_i is the number of individuals of species i and N is the total population. To make the value intuitive (where a higher number means higher diversity), researchers often use Simpson's Index of Diversity ($1-D$) or the Reciprocal Index ($1/D$).

Meta-Analysis and Thematic Diversity

Meta-analysis is used to quantitatively summarize results from multiple primary studies to identify knowledge gaps and answer broad ecological questions. The process involves the calculation of effect sizes—standardized unitless estimates that allow for the pooling of data across diverse experimental conditions. Execution quality in meta-analysis requires testing for publication bias, quantifying heterogeneity, and controlling for factors such as phylogenetic non-independence.

Recent innovations have seen the adaptation of ecological metrics for qualitative research. The Shannon-Based Thematic Diversity Index (SBTDI) allows researchers to "quantitize" emergent themes in qualitative datasets, treating them as if they were species within an ecosystem to measure the complexity and variety of discursive elements (Shannon, 1948; Simpson, 1949; Magurran, 2004).

5. Data Analysis

The analysis of global and regional biodiversity data reveals a consistent trend of ecological decline and identifies the critical thresholds beyond which ecosystem services may fail.

Global Extinction Risk and the IUCN Red List

The IUCN Red List of Threatened Species provides the most comprehensive assessment of global extinction risk, classifying species into nine categories based on their rate of decline, population size, and geographic range. As of late 2024 and early 2025, over 48,600 species—approximately 28% of all assessed species—are threatened with extinction.

Taxonomic Group	Percentage Threatened (2025)	Total Species Assessed (Extant)
Cycads	71%	347
Reef-building Corals	44%	892
Amphibians	41%	8,009
Selected Trees	38%	47,817
Sharks & Rays	38%	1,254
Conifers	34%	600+
Mammals	26%	6,025

Data indicates that extinctions from human-driven disturbances are more severe and longer-lasting than natural perturbations. The cumulative impacts of habitat alteration are particularly visible in primary forests, where even slight fragmentation can significantly reduce the resilience of native populations to secondary threats like fire or invasive species (IUCN, 2025; IPBES, 2019).

India's Forest and Biodiversity Status

India remains a global leader in net forest gain, ranking 3rd worldwide according to the FAO Global Forest Resources Assessment 2025. The India State of Forest Report (ISFR) 2023 indicates that the total forest and tree cover stands at 25.17% of the country's geographical area, with a cumulative gain of 4.83% since 2013. Despite these gains, high-quality primary forest remains under pressure.

In India's tropical dry deciduous forests—which are crucial for carbon sequestration—recent studies have recorded significant variations in species richness (32–52 species per range) and tree density (804–1332 trees/ha). The "niche complementarity" hypothesis suggests that higher tree diversity in these forests enhances resource use efficiency, thereby boosting biomass carbon accumulation. Current biomass carbon stocks in these

regions range from 40.76 to 58.47 MgC/ha, reflecting the critical role of these ecosystems in mitigating climate change (Forest Survey of India, 2023; MoEFCC, 2023).

Regional Profile: Telangana

Telangana accounts for 1.4 million hectares of natural forest, covering 12% of its land area. However, the state has lost approximately 43,000 hectares of tree cover between 2001 and 2024, representing a 7% decrease in the total forest area from the year 2000. The primary driver of this loss is hard-commodity expansion and infrastructure.

Telangana's biodiversity profiling highlights the vulnerability of regional species that may not be threatened globally but are at risk within state borders. The Telangana State Biodiversity Board has identified 92 faunal species and 56 floral species as threatened in the state. Notably, 11 species of fish are listed as threatened, largely due to overfishing and the introduction of major carps into local river systems (Telangana State Biodiversity Board, 2023; NBA, 2022).

Telangana Biodiversity Stat	Data Point	Context/Driver
Tree Cover Loss (2001-2024)	43,000 hectares	Equivalent to 17 Mt of CO2 emissions.
Primary Forest Loss	100 hectares	0.24% of total loss; high impact on rare species.
Peak Fire Season	Mid-Jan to April	392 high-confidence alerts in late 2025.
Threatened Fauna	92 species	Includes 12 critically endangered and 16 endangered.
Threatened Flora	56 species	Primarily due to habitat loss and mining.
Local Management	3,000+ BMCs	Over 210 People's Biodiversity Registers (PBRs).

6. Result And Discussion

The results of this analysis point to several critical insights regarding the dynamics of biodiversity and its role in ensuring ecological sustainability.

The Dynamics of Resilience and Functional Redundancy

A primary finding of this research is that biodiversity and ecosystem services do not share a simple linear relationship. Instead, the delivery of ecosystem services is an increasing but

highly concave function of species richness. This concavity is driven by functional redundancy—the idea that several different species can perform the same role within an ecosystem, such as water filtration or pollination. In the early stages of species loss, an ecosystem may show little decline in its service output because other substitutable species fill the gap. However, as the number of remaining species within a specific functional group decrease, each subsequent loss becomes increasingly catastrophic. Eventually, the system reaches a point where the remaining species become "keystone species," whose extinction triggers a collapse of the entire function and the services it provides (Tilman *et al.*, 2014; IPBES, 2019).

This implies that looking only at current economic output is a misleading metric for sustainability. An agricultural system might maintain high yields today while having lost 80% of its native pollinators; such a system is not "sustainable" because its resilience has been eroded, leaving it vulnerable to a complete collapse if the few remaining pollinator species are impacted by a new disease or climate shift.

Climate Change and the Vicious Feedback Loop

The relationship between biodiversity and climate change is identified as a reinforcing feedback loop that accelerates ecological degradation. Healthy ecosystems, particularly forests and wetlands, act as massive carbon sinks that regulate the global temperature. However, as biodiversity is lost and habitats are degraded, these ecosystems lose their carbon storage capacity and may transition into carbon emitters. This release of carbon exacerbates global warming, which in turn causes further biodiversity loss through increased heat stress, shifting habitat ranges, and more frequent natural disasters such as wildfires (IPCC, 2023; MoEFCC, 2023).

The data from Telangana shows that tree cover loss has already resulted in the release of 17 million tonnes of CO₂ equivalent, demonstrating how regional land-use changes contribute to the global climate crisis. Conversely, nature-based solutions—such as India's "Ek Ped Maa Ke Naam" campaign which planted 262.4 crore saplings by late 2025—represent critical interventions for breaking this cycle by restoring ecological integrity and enhancing carbon sequestration.

Socio-Economic Drivers and Business Dependencies

A critical finding is the pervasive "mismatch" between corporate economic activity and biological reality. Many businesses are deeply dependent on biodiversity—for instance, agriculture relies on soil health and pollination, while the wellness industry depends on

aesthetic and recreational cultural services—yet these dependencies are rarely accounted for in financial reports. The "State of the Sector Report 2025 – Business and Biodiversity in India" highlights that biodiversity loss has emerged as a critical business risk that threatens long-term value creation.

Integrating biodiversity into core business strategies, ESG (Environmental, Social, and Governance) frameworks, and CSR (Corporate Social Responsibility) investments is no longer a matter of philanthropy but an economic imperative. India's revised Access and Benefit Sharing (ABS) Rules of 2025 aim to address this by empowering local communities to receive monetary and non-monetary benefits from biodiversity-based industries, thereby creating an economic incentive for local conservation (NITI Aayog, 2023; National Biodiversity Authority, 2022).

Protected Areas and the 30x30 Target

The effectiveness of conservation strategies is closely tied to the coverage and management quality of protected areas. Under Target 3 of the Kunming-Montreal Global Biodiversity Framework, the global community has committed to protecting and conserving 30% of the Earth's lands and waters by 2030 (the "30x30" target). The Protected Planet Report 2024 reveals that while coverage is increasing, one-third of the areas most important for biodiversity still lack protection.

In Telangana, the existence of national parks like KBR and tiger reserves like Amrabad provides critical refuges for endangered species. However, the data analysis indicates that habitat fragmentation remains a severe threat outside these zones. The discovery of cryptic species like the Emulus Rock Gecko in "well-studied" regions like Telangana underscores that many unique biological assets are likely being lost before they are even documented.

Conclusion:

The findings of this research emphasize that biodiversity is the fundamental engine of ecological sustainability and the cornerstone of global economic resilience. The transition from treating nature as an externality to recognizing it as an embedded asset is the most significant challenge of the current decade.

The analysis reveals that while quantitative metrics like the Shannon-Wiener Index provide essential insights into ecosystem health, they must be coupled with a systems approach that recognizes the complex, non-linear interdependencies between species. The "concavity" of ecosystem functions suggests that current stability may mask a dangerous loss of resilience, necessitating urgent action before ecological tipping points are reached.

For a mega-diverse nation like India, the year 2025 represents a pivotal moment in biodiversity governance. The promulgation of the updated National Biodiversity Strategy and Action Plan (NBSAP) 2024-2030, the establishment of the National Red List Roadmap, and the implementation of innovative finance mechanisms like BIOFIN provide a comprehensive framework for halting and reversing biodiversity loss. At the state level, Telangana's pioneering SBSAP 2023-2030 demonstrates that regional initiatives, supported by local Biodiversity Management Committees and People's Biodiversity Registers, are essential for translating global targets into real-world change.

Ultimately, ensuring ecological sustainability requires a "whole-of-government" and "whole-of-society" approach. This involves restoring degraded landscapes, enforcing environmental laws, integrating biodiversity into sectoral planning—from agriculture to urban infrastructure—and ensuring that the benefits of biological resources are shared fairly and equitably with the communities that guard them. By aligning economic growth with ecological stewardship, humanity can move toward a future of "living in harmony with nature," securing the vital services on which all life depends.

References:

1. Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., ... Naeem, S. (2012). Biodiversity loss and its impact on humanity. *Nature*, 486(7401), 59–67. <https://doi.org/10.1038/nature11148>
2. Dasgupta, P. (2021). *The economics of biodiversity: The Dasgupta review*. London: HM Treasury.
3. Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Guèze, M., Agard, J., ... Zayas, C. N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. *Science*, 366(6471), eaax3100.
4. FAO. (2025). *Global forest resources assessment 2025*. Rome: Food and Agriculture Organization of the United Nations.
5. Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., ... Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. *Ecological Monographs*, 75(1), 3–35.
6. IPBES. (2019). *Global assessment report on biodiversity and ecosystem services*. Bonn: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
7. IPCC. (2023). *Climate change 2023: Synthesis report*. Geneva: Intergovernmental Panel on Climate Change.

8. IUCN. (2025). *The IUCN Red List of threatened species*. Gland, Switzerland: International Union for Conservation of Nature.
9. Millennium Ecosystem Assessment. (2005). *Ecosystems and human well-being: Synthesis*. Washington, DC: Island Press.
10. MoEFCC. (2023). *India state of forest report 2023*. Dehradun: Forest Survey of India.
11. Naeem, S., Duffy, J. E., & Zavaleta, E. (2012). The functions of biological diversity in an age of extinction. *Science*, 336(6087), 1401–1406.
12. Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. *Science*, 325(5939), 419–422.
13. Protected Planet. (2024). *Protected planet report 2024*. Cambridge: UNEP-WCMC and IUCN.
14. Telangana State Biodiversity Board. (2023). *Telangana State Biodiversity Strategy and Action Plan (2023–2030)*. Hyderabad: TSBB.
15. Tilman, D., Isbell, F., & Cowles, J. M. (2014). Biodiversity and ecosystem functioning. *Annual Review of Ecology, Evolution, and Systematics*, 45, 471–493.
<https://doi.org/10.1146/annurev-ecolsys-120213-091917>

THE ROLE OF ETHNOBOTANY IN CONTEMPORARY HEALTHCARE SYSTEMS

Meenu*, Pooja Narang, Sameer Chandra and Desh Deepak

Department of Botany,

School of Sciences, IFTM University, Moradabad -244102 (U.P.) India

*Corresponding author E-mail: meenu.singh@iftmuniversity.ac.in

Abstract:

This chapter examine the crucial and developing role of ethnobotany in modern healthcare system, highlighting its twin benefits as a framework for sustainable, culturally sensitive treatment and as a source of novel therapies. Originating from centuries of indigenous and knowledge, ethnobotanical techniques have long offered natural medicines that are currently being validated by modern research for their safety profiles, pharmacological potential, and bioactive chemicals. The first section of this chapter examine the historical interaction between traditional plant based knowledge and contemporary medicine, emphasizing significant findings that came from ethnobotanical research. The impact of ethnobotany on public health is then examined, including how it enhances access to care in underprivileged or distant areas, contribute to complementary therapies and preventative medicine and build patient trust through culturally appropriate healing methods. The conversation then outlines important issues and moral dilemmas, such as protecting traditional knowledge from extinction, ensuring fair intellectual property rights and benefit- sharing obtaining medicinal plants sustainably, and enforcing regulation to guarantee efficacy, safety, and quality. In addition to cautionary tales of knowledge exploitation and overharvesting of plant species, case studies from Asia, Africa, and Latin America show how ethnobotanical knowledge has been successfully incorporated into national health systems and pharmaceutical research. The chapter concludes by suggesting future directions, including: interdisciplinary partnerships between anthropologists, pharmacologists, ethnobotanists, healthcare professionals, legislators, and community knowledge holders; participatory research models; laws that uphold traditional rights and scientific standards; and conservation measures to preserve botanical diversity. All things considered, ethnobotany has a great deal of potential to improve healthcare systems if it is included in an inclusive, sustainable, and morally sound manner.

Keywords: Ethnobotany, Traditional Knowledge, Modern Medicine, Human Health

1. Introduction:

Fundamentally an interdisciplinary field, ethnobotany studies the dynamic interactions between people and plants in many cultures and societies. It includes a wide variety of fields, such as pharmacology, ecology, botany, anthropology, and indigenous studies. Studying traditional plant knowledge (TPK), or the collected information, customs, and beliefs around the usage of plants among indigenous and traditional groups, is one of the main focuses of ethnobotany (Ferrara *et al.*, 2023). A combination of the terms "ethno" (the study of people) and "botany" (the study of plants), ethnobotany is the study of the interaction between people and plants. It is a multidisciplinary study that is regarded as a subfield of ethnobiology and is described as the relationship between humans and plants. The relationship between human societies and plants extends beyond their use for food, clothing, and shelter; they also employ them for religious rituals, decoration, and medical purposes (Schultes, 1992). Traditional plant knowledge is ingrained in the cultural legacies of many communities worldwide and is transmitted orally, through ceremonies, and through hands-on experience. Identification of plants, their therapeutic qualities, culinary applications, farming methods, spiritual value, and ecological observations are only a few of the many topics it covers. This knowledge, which reflects the close relationship between humans and their natural environment, is frequently deeply entwined with regional customs, beliefs, and worldview. Traditional medical methods, many of which are based on ethnobotanical knowledge, are still widely used in modern healthcare systems, especially in underdeveloped countries. The World Health Organization (WHO) estimates that almost 80% of people worldwide get their main medical treatment from traditional plant-based medicines. (WHO, 2013). This reliance emphasizes how crucial it is to maintain and incorporate indigenous ethnobotanical knowledge into official healthcare systems, particularly in impoverished and rural areas where access to contemporary medications may be restricted. The disciplines that make up ethnobotany can be arranged in a branching hierarchy, with some focusing on more specialized applications and others on more general facets of the interactions between humans and plants.

Herbal and plant-based therapies with ethnobotanical roots are common in complementary and alternative medicine, which is gaining popularity in the context of integrative and holistic health movements, especially in wealthy nations. Patient demand for natural therapies, worries about the negative effects of pharmaceuticals, and a need for more individualized care are the main drivers of this comeback (Bodeker & Kronenberg,

2002). This highlights the importance of ethnobotany in medical education and public health policy, since contemporary healthcare professionals are increasingly expected to comprehend and honor indigenous health knowledge. This chapter examines the changing function of ethnobotany in modern healthcare systems, emphasizing its contributions to sustainable development, cultural preservation, pharmaceutical innovation, and healthcare accessibility. In order to create more inclusive, moral, and efficient healthcare paradigms in the twenty-first century, ethnobotany provides a crucial bridge connecting traditional knowledge with scientific research and contemporary medical practice.

2. Traditional Knowledge and Modern Medicine

Traditional medicines (TMs) are very important and employ natural products. For hundreds or even thousands of years, several medical practices have been practiced worldwide, including traditional Chinese medicine (TCM), Ayurveda, Kampo, traditional Korean medicine (TKM), and Unani. These practices use natural ingredients and have developed into well-organized, controlled medical systems. They may have flaws in their different forms, but they are nevertheless an important source of human knowledge. (Fabricant and Farnsworth, 2001; Alves and Rosa, 2007). However, bringing traditional medicine into the mainstream, integrating its expertise into contemporary healthcare, and making sure it satisfies contemporary safety and efficacy requirements is a difficult and on-going process. Conservationists are also becoming increasingly concerned that the expanding market for traditional medicine is endangering biodiversity by using more body parts from endangered animals, such tigers, rhinos, and elephants, or by overharvesting medicinal plants. Besides the preservation of natural resources, combining traditional and modern medicine presents several difficulties because of significant variations in their methods of practice, assessment, and management (see table 1).

Figure 1: Modern medicine vs. traditional medicines

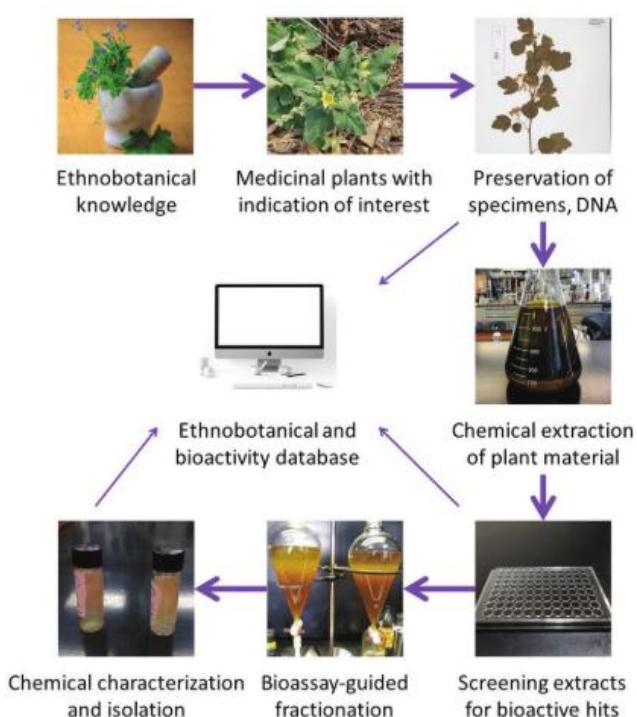
Table 1: The main distinctions between traditional and modern medicine

	Traditional medicine	Modern medicine
Protection of knowledge	Free of restrictions	Patent-protected and closed
Creation	Ad hoc when the patient is being consulted	Predetermined and unchangeable without retesting after clinical trial testing
Controlling	Almost none, however some nations are working to establish regulations and standards.	Extremely stringent, to the point where it currently costs billions of dollars to bring pharmaceuticals to market.
Examining	Since generations have passed down knowledge of the efficacy, there is no formal testing.	Extensive studies that take place in stages, initially evaluating safety and then effectiveness
Dosage	Unfixed: whereas the quantity of medication administered may be approximately the same, the active ingredient—which is what dose actually is—can differ greatly.	Fixed dosages that often don't change much with age, weight, or the severity of the illness
Preparation	Lengthy and the patient are questioned about more than just their symptoms.	Primary and secondary care consultations are typically quick and targeted, particularly as national health systems are under pressure.
Training	Both medical systems necessitate years of intensive study, but in traditional medicine, practitioners are frequently born into a family of healers and information is typically passed down one-on-one through families.	Health practitioners typically receive formal training in schools and universities.

Source: (Shetty and Priya, 2010)

Ethnobotany in Drug Discovery and Development

Since ethnobotanical knowledge incorporates the traditional applications of plants utilised for medical purposes by natives, it is a valuable tool for drug development. This ethnobotanical knowledge has led to a great deal of bioactivity, which serves as an excellent foundation for turning lead compounds into effective medications. Numerous life-saving medications are the result of the connection between indigenous wisdom and contemporary research. Through this crucial avenue, numerous innovative medicines are continuously being developed today. Ethnobotanical expertise is crucial to drug discovery for a number of reasons (Pirintsos *et al.*, 2022). When it comes to drug discovery, ethnobotany offers a wealth of information that can help identify bioactive substances, especially those with potential for therapeutic use. It is an interdisciplinary field that look for plant based remedies for contemporary health issues by combining pharmacology, chemistry, botany and anthropology. Before other methods became more "fashionable" in the latter part of the 20th century, the ethnobotanist's role in the hunt for novel medications remained crucial (Schultes 1962).


3. The Ethnobotanical Approach to Drug Discovery

Knowledge of traditional medicinal uses for plants is consulted to identify plants with potential therapeutic phytochemicals. These plants are then collected, their identities are varied, and a specimen of each plant is preserved in an herbarium. Bulk plant material is prepared for chemical extraction, and the extracts are employed in bioactivity screens. Bioactive extracts then go through the process of bioassay-guided fractionation, eventually leading to the isolation of single bioactive phytochemicals. Throughout this process, data is recorded in a database. The ethnobotanical approach to drug discovery. Knowledge of traditional medicinal uses for plants is consulted to identify plants with potential therapeutic phytochemicals. These plants are then collected, their identities are verified, and a specimen of each plant is preserved in an herbarium. Bulk plant material is prepared for chemical extraction, and the extracts are employed in bioactivity screens. Bioactive extracts then go through the process of bioassay-guided fractionation, eventually leading to the isolation of single bioactive phytochemicals. Throughout this process, data is recorded in a database

4. The Ethnobotanical Approach to Drug Discovery

Knowledge of traditional medicinal uses for plants is consulted to identify plants with potential therapeutic phytochemicals. These plants are then collected, their identities are verified, and a specimen of each plant is preserved in an herbarium. Bulk plant material is

prepared for chemical extraction, and the extracts are employed in bioactivity screens. Bioactive extracts then go through the process of bioassay-guided fractionation, eventually leading to the isolation of single bioactive phytochemicals. Throughout this process, data is recorded in a database. The ethnobotanical approach to drug discovery. Knowledge of traditional medicinal uses for plants is consulted to identify plants with potential therapeutic phytochemicals. These plants are then collected, their identities are varied, and a specimen of each plant is preserved in an herbarium. Bulk plant material is prepared for chemical extraction, and the extracts are employed in bioactivity screens. Bioactive extracts then go through the process of bioassay-guided fractionation, eventually leading to the isolation of single bioactive phytochemicals. Throughout this process, data is recorded in a database. Knowledge of traditional medical uses for plant to consulted to identify plant with potential therapeutic phytochemicals. Due to a number of perceived and actual obstacles, phytochemicals have not been fully employed in drug discovery initiatives in previous decades. Along with modern technology and recent findings that have demonstrated the enormous potential of some plants as sources of anti-infectives, these problems and their remedies are also covered. The use of plants and phytochemicals in drug discovery has grown in popularity in recent years. It is evident that phytochemicals will inevitably reappear in the search for anti-infective drug and this has enormous potential for the creation level of novel treatment to combat antibiotic resistance.

Figure 2: Ethnobotanical approach to drug discovery (Source: Gurib-Fakim, 2018)

5. Integration of Ethnobotanical Practices into Healthcare

Through integrating traditional knowledge of medicinal plants and their applications into modern medical procedures, ethnobotanical techniques can be included into healthcare. Ethnobotany, the study of human-plant interactions, provides important information about natural products that indigenous cultures have been using for ages to treat a variety of illnesses. As demand for natural and alternative medicine rises, contemporary healthcare institutions are starting to acknowledge the potential advantages of these old techniques. "Healthcare practices that bridge indigenous medicine and western medicine, where both are considered as complementary," are the components of intercultural healthcare (Mignone *et al.*, 2007). The World Health Organisation defines health as more than just the "absence of disease or infirmity"; it is "a state of complete physical, mental, and social well-being." This definition is in line with traditional medicine's inclusiveness, which encompasses health and well-being in a wider social, cultural, and spiritual context in addition to the physical body. The three A's—affordability, availability, and accessibility—reflect the significance of traditional medicine in the global healthcare system. This is particularly true in rural locations with little access to biomedical healthcare, but it is also true in immigrant groups in major cities, even if biomedicine is more readily available in these areas. (Pieroni and Vandebroek, 2007). The incorporation of ethnobotanical methods into healthcare offers new opportunities for illness prevention, medication discovery, and health promotion, marking a significant advancement in medical practice. Healthcare systems may improve treatment options, protect biodiversity, and honour indigenous cultural knowledge by fusing contemporary scientific research with traditional wisdom. For ethnobotanical integration to reach its full potential, however, issues including sustainability, scientific validation, and ethical concerns must be resolved.

6. Ethical and Legal Issues in Ethnobotany

The ethical issues associated with research involving human participants and such protocols include describing the nature of the proposed research intervention, the types of research subjects to be used, signed informed consent forms, the details of the prior risk assessment, and the benefits to be obtained from the business. An ethnobotanical researcher's understanding of the importance of plant resources to a local community, region, country, or culture depends heavily on this type of study approach (Hyder *et al.*, 2014). One of the primary legal concerns in ethnobotany is the possession and conservation of traditional knowledge pertaining to plants. Generations of knowledge

about the cultural, gastronomic, and medicinal uses of plants have been accumulated by many indigenous communities. But without legal safeguards, this knowledge is usually open to appropriation by outside parties, such as businesses, researchers, and pharmaceutical companies, who might use it without consent or payment.

7. Public Health and Community-Based Healthcare

In many rural and indigenous communities, traditional medicine systems form the cornerstone of healthcare and knowledge of ethnobotany is necessary to comprehend them. In these areas, typical ailments including wounds, fever, stomach issues, and infections are treated using local herbs.

7.1. Public Health Relevance: Researchers and public health experts may find it easier to promote the use of certain plants in local healthcare systems if they are aware of which ones are used medicinally. They might be able to lower the cost and improve access to care by fusing modern medicine with traditional wisdom. For example, several African societies employ Moringa (*Moringa oleifera*) for its antioxidant properties. Its ability to improve general health and lessen malnutrition has also been investigated.

7.2. Community-based healthcare: The usage of medicinal plants is one of the many local cultural practices that influence community-based healthcare. In rural and indigenous cultures worldwide, these plants have long been an essential part of the health systems. In many rural and underprivileged communities, traditional plant-based treatments are the primary line of treatment for ailments. Ethnobotany helps people understand these practices. This information has been handed down through the years and provides important insights into the ways that plants can be used to prevent sickness, maintain health, and treat illnesses. Traditional plant-based remedies continue to be a vital component of public health in the face of growing urbanization and the globalization of healthcare systems, especially in areas with limited access to contemporary medical care. Indigenous societies all across the world have long used both cultivated and wild medicinal herbs to cure a range of illnesses. The identification, preparation, dose, and spiritual context of plant use are all included in this ethnomedical knowledge that has been passed down orally and through cultural rituals. (Malik *et al.*, 2015; Nisar *et al.*, 2014). The importance of species in support of human health extends from direct sources for medications to providing models for research. However, how we manage biodiversity—including ourselves—may have an impact on people's health (Neely & Manika, 2009).

7.3. Ethical and cultural limitations

Cultural misappropriation: Indigenous knowledge could be exploited without giving due recognition, payment, or benefits back to the communities.

Intellectual property issues: The ownership of traditional resources and knowledge might give rise to disputes.

Gender and cultural biases: Data that is skewed or lacking may result from researchers ignoring the information that women or other groups not usually surveyed possess.

7.4. Data and research limitations

Inaccurate or vague data: Information may contain details that are too nebulous to be helpful, be prejudiced or partial, or rely on anecdotal stories (e.g., utilizing popular names instead of scientific ones).

Simplistic information: The intricacies of plant usage in actual cultural contexts might not be fully captured by research.

Challenges in modern drug discovery: Sometimes ethnobotanical research fails to extract and define active substances using contemporary scientific procedures, which impedes the development of new medicines.

7.5. Methodological and practical challenges

The necessity of integrating disciplines: To further its relevance and possible uses, ethnobotany must work more closely with adjacent disciplines like conservation biology and environmental education.

Limited research and educational opportunities: More research funding and educational opportunities are required to guarantee the field's growth and competitiveness.

Potential for conflicting interpretations: Different cultures may refer to the same plants or colors differently, which could lead to miscommunications and mistakes in data gathering and translation.

7.6. Practical and ecological limitations

Overharvesting: Overharvesting of plants due to commercial use or study might endanger local species and ecosystems.

Safety and quality control: Traditional knowledge-based herbal medicines are not necessarily safe and can have negative side effects; in many locations, they are presented without undergoing required safety testing.

Bias in sampling: The researchers themselves may have biased procedures when choosing interview subjects or sample sizes.

7.7. Theoretical and structural limitations

Lack of theoretical framework: The discipline's lack of a cohesive theoretical foundation impedes its advancement and acknowledgement as an established field.

Ambiguous definitions: There are several definitions of ethnobotany, which makes it challenging for the field to define itself.

8. Challenges and Limitations

Although ethno-botany has great potential to improve modern healthcare systems (by finding new treatments, providing care that is culturally appropriate, and using resources sustainably), there are several obstacles to overcome. These include knowledge transfer, sustainability, and integration into health systems, research capacity, ethical governance, and scientific and regulatory concerns. Multidisciplinary cooperation (botany, pharmacology, anthropology, health policy), funding for infrastructure and research, robust governance and community involvement, and a realistic grasp of what ethnobotany can and cannot provide in contemporary healthcare settings are all necessary to overcome these constraints. The belief that herbal medicines or medications are always safe was the basic basis for the growing interest in plants and their ethnobotanical bioperspecting. This is actually a mistaken assumption. It has been demonstrated that herbs can cause a variety of unfavourable or negative reactions, some of which can result in fatalities, life-threatening illnesses, and major injuries. Herbal remedies and associated goods are released onto the market in numerous nations without any required safety or toxicological testing (Bandaranayake, W.M., 2006). One of the main obstacles to integrating contemporary and alternative health systems is the invasion of unprotected indigenous resources, including traditional knowledge, which has been dubbed "biopiracy." Sometimes, scientists have applied for patents on substances that have been in use for millennia. The recent identification of a promising anticancer drug derived from *Guiera senegalensis*, a plant abundant in the Sahel and widely used by the Dogon people of Mali, provides a vivid example of this conflict of interest (Rinaldi and Shetty, 2015).

Conclusion:

Ethnobotany is still essential to current healthcare systems because it connects traditional knowledge with cutting-edge scientific methods. This cumulative knowledge offers a useful basis for drug discovery, integrative medicine, and culturally sensitive healthcare, since

cultures all over the world have long relied on medicinal plants for illness prevention and treatment. Today, the combination of scientific research and ethnobotanical knowledge has reinforced primary healthcare in areas with limited resources, encouraged more holistic approaches to wellbeing, and produced novel medications. In the end, ethnobotany emphasises the value of cultural legacy, ecological stewardship, and the close relationship between humans and the natural world in addition to improving contemporary healthcare.

References:

1. Alves, R. R., & Rosa, I. M. (2007). Biodiversity, traditional medicine and public health: Where do they meet? *Journal of Ethnobiology and Ethnomedicine*, 3, Article 14.
2. Balick, M. J., & Cox, P. A. (2020). *Plants, people, and culture: The science of ethnobotany*. Garland Science.
3. Bandaranayake, W. M. (2006). Quality control, screening, toxicity and regulations of herbal drugs. In I. Ahmad, F. Aqil, & M. Owais (Eds.), *Modern phytomedicine: Turning medicinal plants into drugs* (pp. 25–57). John Wiley & Sons.
4. Bodeker, G., & Kronenberg, F. (2002). A public health agenda for traditional, complementary, and alternative medicine. *American Journal of Public Health*, 92(10), 1582–1591. <https://doi.org/10.2105/AJPH.92.10.1582>
5. Chebii, W. K., Muthee, J. K., & Kiemo, K. (2020). The governance of traditional medicine and herbal remedies in selected local markets of Western Kenya. *Journal of Ethnobiology and Ethnomedicine*, 16, Article 39. <https://doi.org/10.1186/s13002-020-00389-x>
6. Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. *Environmental Health Perspectives*, 109(Suppl. 1), 69–75.
7. Ferrara, V., & Ingemark, D. (2023). The entangled phenology of the olive tree: A compiled ecological calendar of *Olea europaea* L. over the last three millennia with Sicily as a case study. *GeoHealth*, 7(3), e2022GH000619.
8. Gurib-Fakim, A. (2018). Basic neglected research against AMR: What if plants provided a solution? In *AMR Control 2018: Overcoming global antimicrobial resistance* (p. 120). Global Health Dynamics.
9. Hyder, A. A., et al. (2014). Ethical review of health systems research in low- and middle-income countries: A conceptual exploration. *American Journal of Bioethics*, 14, 28–37. <https://doi.org/10.1080/15265161.2013.868950>

10. Malik, S., Ahmad, S., & Sadiq, A. (2015). A comparative ethnobotanical study of Cholistan (an arid area) and Pothwar (a semi-arid area) of Pakistan for traditional medicines. *Journal of Ethnobiology and Ethnomedicine*, 11(1), Article 18. <https://doi.org/10.1186/s13002-015-0018-2>
11. McNeely, J. A., & Manika, S. A. (2009). *Conservation of a new era* (pp. 92–97). IUCN.
12. Mignone, J., Bartlett, J., O'Neil, J., & Orchard, T. (2007). Best practices in intercultural health: Five case studies in Latin America. *Journal of Ethnobiology and Ethnomedicine*, 3, Article 31.
13. Nisar, M. F., Jaleel, F., & Haider, S. M. (2014). Exploration of ethno-medicinal plants and their ritual uses in Bahawalnagar, Pakistan. *Middle East Journal of Scientific Research*, 21, 1466–1471. <https://doi.org/10.5829/idosi.mejsr.2014.21.09.84238>
14. Pieroni, A., & Vandebroek, I. (2007). *Traveling cultures and plants: The ethnobiology and ethnopharmacy of human migrations*. Berghahn Books.
15. Pirintsos, S., Panagiotopoulos, A., Bariotakis, M., Daskalakis, V., Lionis, C., et al. (2022). From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples. *Molecules*, 27(13), 4060.
16. Rinaldi, A., & Shetty, P. (2015). Traditional medicine for modern times: Facts and figures. *Science and Development Network*. <http://www.scidev.net/global/medicine/feature/traditional-medicine-modern-times-facts-figures.html>
17. Schultes, R. E. (1962). The role of the ethnobotanist in the search for new medicinal plants. *Lloydia*, 25, 257–266.
18. Schultes, R. E. (1992). Ethnobotany and technology in the Northwest Amazon: A partnership. In M. Plotkin & L. Famolare (Eds.), *Sustainable harvest and marketing of rain forest products* (pp. 45–76). Island Press.
19. Shetty, P. (2010). Integrating modern and traditional medicine: Facts and figures. *SciDev.Net-Health*.
20. World Health Organization. (2013). *WHO traditional medicine strategy: 2014–2023*. World Health Organization.

DIVERSITY OF *CALAMUS* LINN. SPECIES IN WEST BENGAL WITH SPECIAL REFERENCE TO ETHNO-BOTANICAL USES, CONSERVATION AND FUTURE PROSPECTS

Roni Saha¹ and Rahul Deb Barman^{*2}

¹Department of Botany and Forestry,

Vidyasagar University, Midnapore, West Bengal, India

²AJC Bose Indian Botanic Garden, Howrah, West Bengal, India

***Corresponding author E-mail: rahuldebbarmanpurulia@gmail.com**

Abstract:

The most diverse group of tropical palms that produce rattan is represented by the genus *Calamus* L. (Arecaceae: Calamoideae), which is also a major source of non-timber forest products with substantial ecological, commercial, and ethnobotanical importance. With a focus on their taxonomy, distribution, traditional applications, and conservation relevance, the current study offers a thorough description of the variety of *Calamus* species found in West Bengal, India. 17 species of *Calamus* are identified. To aid in precise species identification, a revised dichotomous key based on vegetative and reproductive traits is included. The research emphasizes the numerous ethnobotanicals uses of rattans in food, building, handicrafts, furniture manufacturing, and traditional medicine, highlighting their significance in maintaining rural livelihoods. Because the majority of species are restricted to unaltered forest and riverine environments, they are susceptible to overexploitation and habitat loss. In order to secure the long-term survival of *Calamus* species in West Bengal, the findings highlight the critical need for habitat protection, sustainable harvesting methods, and conservation-oriented management measures.

Keywords: Rattan Diversity, Ethnobotany, Industrial Uses

1. Introduction:

Calamus is the largest genus under family Arecaceae. In India, the family Arecaceae represented by 219 species belongs to 71 genera under 5 subfamilies. Species under these genera are called palms. Palms are one of the most economically and ecologically significant plant groupings in the tropics, offering a variety of non-timber forest products (NTFPs) that are essential to rural livelihoods as well as food, fiber, medicines, and shelter (Hazari *et al.*, 2023; Belcher and Schreckenberg, 2007). The flexible, long-lasting canes of rattans (genera *Calamus*) are utilized in construction materials, furniture, and handicrafts,

giving them a special position in this broad family. The plant stem contains high amount of fiber, which are mainly consists of cellulose. Cellulose fibers embedded in a lignin matrix are found in natural fibers (Saha *et al.*, 2025). India is home to a diverse range of palms, particularly in the Andaman-Nicobar Islands, Eastern Himalayas, and Western Ghats. Nevertheless, habitat loss, overharvesting, and forest degradation are posing a growing danger to native populations. Therefore, it has become imperative that these species be documented, protected, and managed sustainably. Rattans are becoming less and less common every day as a result of their use in the furniture industry (Mondal *et al.*, 2018). In this context, the present study aims to assess the diversity of rattan species present in West Bengal, examine their ethno-botanical and economic uses.

2. Materials and Methods

In order to capture the entire range of non-timber forest products, field visits were regularly made to the forest, adjacent gardens, and other garden areas. Species were listed during the routine field visit. A small number of significant specimens were gathered for additional identification. The identified plant names checked in The Plants of the World Online (POWO, 2025) and International Plant Name Index (IPNI, 2025) for accepted names.

3. Key to Species: (*Calamus* Linn.)

1a. Leaves with cirrus.....	2
1b. Leaves ecirrate.....	6
2a. Leaf sheaths unarmed, smooth outside	3
2b. Leaf sheaths armed with short to long spines or spicules.....	3
3a. Leaflets remotely sub-equidistant on rachis	4
3b. Leaflets sub-opposite or alternate	4
4a. Leaf sheaths infrequently armed with flattened spines on lower part, upper part more or less smooth; spines subulate	<i>C. inermis</i>
4b. Leaf sheaths closely packed, seriate to subseriate; spines subulate	5
5a. Stems robust; leaf sheaths bright green	<i>C. latifolius</i>
5b. Stems slender; leaf sheaths bright green with brown blotches	<i>C. floribundus</i>
6a. Stems erect or suberect; flagellum absent	7
6b. Stems climbing; flagellum present	8
7a. Inflorescence compact, non-pendulous; fruits small, globose to ovoid	<i>C. erectus</i>
7b. Inflorescence loose or non-compact, pendulous	<i>C. acanthospathus</i>
7c. Inflorescence interfoliar, moderately branched; fruits ovoid with pale yellow scales	<i>C. pseudoerectus</i>

8a. Flagellum very long (to 6–7 m), heavily armed with stout spines *C.flagellum*
8b. Flagellum shorter, sparsely to moderately armed 9
9a. Male and female rachillae scorpioid *C. leptospadix*
9b. Male and female rachillae not scorpioid 10
10a. Leaf sheaths densely armed with broad-based spines in rows, often joined at base
..... *C. tenuis*
10b. Leaf sheaths armed with scattered, needle-like or subulate spines 11
11a. Primary bract after opening forming a laminar appendage *C. guruba*
11b. Primary bract not forming a laminar appendage 12
12a. Leaf sheaths with broad-based black spines; fruits distinctly tiger-striped
..... *C. longisetus*
12b. Leaf sheaths with subulate spines; fruits scaled, not striped 13
13a. Leaf sheaths densely armed with stout blackish-brown spines; fruits globose,
darkscaled; seeds deeply ruminant *C. melanochaetes*
13b. Leaf sheaths armed with yellowish to light brown spines; spines not black
14a. Uppermost leaflets digitately grouped *C. gracilis*
14b. Uppermost leaflets not digitately grouped or fascicled 15
15a. Terminal leaflets conspicuously connate at base 16
15b. Terminal leaflets slightly connate at base *C. kingianus*
16a. Leaflets lanceolate, distinctly grouped, irregular, in clusters of 2–3 *C. viminalis*
16b. Leaflets not as above; stems very robust, arborescent; inflorescence long, pendulous;
fruits large, pale-scaled *C. arborescens*
16c. Stems slender to moderately robust; inflorescence shorter; fruits medium-sized,
yellowish-brown scaled *C. mahanandensis*

4. Results and Discussion

Calamus are the largest genera in Palms. The species under *calamus* are called rattan or cane or NTFPs producing palms. These are under subfamily Calamoideae under tribe Calameae of Arecaceae. The study records 17 species of canes that are found different districts of West Bengal. Mostly plants are found in undisturbed forest areas, beside late or water streams and associated with Bamboo species. All these species are listed below with local names, uses and short description.

I. *Calamus acanthospathus* Griff.

Common name: Phekri Bet, Spiny Rattan

Habitat: Jalpaiguri and Darjeeling districts of West Bengal. South and Southeast Asia, especially southern China, Bangladesh, Myanmar, Bhutan, Nepal, and India (Assam, Arunachal Pradesh, Meghalaya, Sikkim, and West Bengal). At elevations between 300 and 1,500 meters, the species is found growing in tropical and subtropical evergreen or semi-evergreen forests, frequently near riverbanks or forest edges.

Description: Stems are solitary, 11 m long, with a leaf sheath that is 2.2 cm in diameter, and have linear, triangular spines that are 0.5–1.5 cm long. Green, 3.2 cm long knee; Spines are 2.5 mm long; the ocrea is 6–7 mm long and spiky. Leaf: 1.5 m long, ecirriate; petiole: single or paired spines about 1.8 cm; leaflets: regular, 10–15 per side, alternating, lanceolate to ensiform, 36 cm long, acuminate, terminally free; veins: 7; vestigial cirri around 2.5 mm. Grapnel spines are around 6 mm long, while flagella are 3.5 m long. **Fl. & Fr.:** March to June & August to December

Uses: The stems, or canes, are valued for their use in handicrafts, basketry, matting, and furniture construction because they are robust, durable, and flexible. In the area, they are also utilized for binding, weaving, and making walking sticks, farming tools, and flagella to catch small animals. The delicate apices and young shoots are sometimes cooked and eaten like vegetables, while other times the fruits are chewed for their somewhat sweet-acid composition (Quattrocchi, 2017).

II. *Calamus arborescens* Griff.

Common name: Sweet Flag

Habitat: Darjeeling District of West Bengal. Southeast Asia, which includes portions of India (Andaman & Nicobar Islands, Assam, West Bengal), Thailand, Myanmar, Indonesia, and Malaysia. The species thrives at low to medium elevations (0–800 m) in tropical evergreen and semi-evergreen forests, frequently near riverbanks, forest borders, and steep terrain.

Description: Rattans are non-climbing colonies. Stems are upright, 3–6 m long, 4–7 cm in diameter, and annulate toward the base. Knee not present. The leaflets are lanceolate, equally spaced, 45–55 on each side of the rachis, 60–84 cm long, acuminate, sparsely bristly at apices, notably bristly on upper and lower nerves, and white underside. The rachis is covered with thick, black, subulate spines, seriate to pectinate, and 1.6 cm long. The inflorescence is pendulous, non-flagelliform, compressed, 1.6–2 m long, and heavily armed with black comb-like spines; the peduncles are smooth, green, and compressed; the bracts are 20–32 cm long and have thick spines underneath; the male rachillae are scorpioid. Male flowers are distichous, with a copular, three-lobed, leathery calyx, acute, valvate petals with

filaments longer than the corolla, linear, extended anthers, and an angular pistillode with three abortive carpels. There are no female flowers visible. Fruits are brown, oblong, ellipsoid, and measuring 2–2.2 × 0.5–0.7 cm. **Fl. & Fr.:** November to December & April to May.

Uses: Strong, flexible, and long-lasting, the stems (canes) are used for a variety of purposes, including furniture, basketry, mats, walking sticks, and handicrafts. Local communities harvest the stems for binding, weaving, and making ropes, and they can also be used as sticks, poles, or roof support in thatched huts. The dried stems can also be used as hatchet handles, knife handles, ropes, and baskets. Fruits can be eaten fresh for their somewhat sweet-sour pulp, while young shoots and sensitive apices can be cooked and eaten like vegetables. Fruit and root preparations are used in traditional medicine to alleviate fever, joint discomfort, and digestive issues (Quattrocchi, 2017).

III. *Calamus erectus* Roxb.

Common name: Kadam Bet

Habitat: Jalpaiguri, Cooch Behar, Kalimpong, Alipurduar and Darjeeling districts of West Bengal. India, Nepal, Bhutan, Bangladesh, Myanmar, Thailand, Lao PDR, China, and Vietnam are all part of South and Southeast Asia. It is found at elevations of 200–1,200 meters along forest margins, slopes, and riverbanks in tropical and subtropical evergreen and semi-evergreen forests.

Description: Clustered, self-supporting habit and does not show climbing behavior. Stems are upright, reaching approximately 3.7 m in height. Petioles bear slender, linear spines about 4.3 cm long, arranged in distinct whorls. Internodes measure around 6.5 cm in length and 4.2–6.5 cm in diameter, and are green in color. Leaves are pinnately compound, ecirrate, and attain a length of nearly 3.9 m; the ocrea is armed with spines. Each side of the rachis carries 40–58 leaflets, which are lanceolate, 49.5–70.5 cm long and about 3.5 cm wide, tapering to a pointed apex. Three prominent veins are visible, and the terminal leaflets are fused at their bases. The inflorescence is approximately 2 m long and lacks flagella. Up to ten partial inflorescences are present, each measuring 25–28 cm in length. Stamineate rachillae are 6.5–10 cm long, whereas pistillate rachillae are longer, measuring 15–17 cm, and bear flowers arranged in dyads. Fruits are ellipsoid, brown at maturity, 3–4 cm in length, with the surface covered by scales arranged in 12 vertical series, each scale distinctly grooved. **Fl. & Fr.:** July to August & Fruits develop from July to November, with ripening occurring between October and December

Uses: Rattan canes are strong, flexible, and durable, used widely for furniture, baskets, mats, ropes, and cottage industries, while short, stiff canes serve in huts, posts, and handicrafts. Tender shoots, apices, fruits, and sometimes seeds are edible, and various plant parts are used in traditional medicine for digestive issues, fever, joint pain, skin and muscular problems, with studies showing antidiabetic activity in rats (Quattrocchi, 2017).

Figure 1: Palms of West Bengal. **A.** *Calamus melanochaetes* (Blume) Miquel. inflorescence; **B.** habit of *Calamus leptospadix* Griff.; **C.** spine arrangement of *Calamus gracilis* Roxb.; **D.** Leaf arrangement of *Calamus viminalis* Willd.; **E.** fruit of *Calamus flagellum* Griff. ; **F.** habit of *Calamus acanthospathus* Griff.; **G.** habit of *Calamus longisetus* Griff.; **H.** habit of *Calamus erectus* Roxb.; **I.** flower of *Calamus arborescens* Griff.

IV. *Calamus flagellum* Griff. ex Walp.

Common name: Rabi Bet

Habitat: Kalimpong, Alipurduar and Darjeeling districts of West Bengal. It grows in tropical evergreen and semi-evergreen forests at elevations of 100 to 900 meters, frequently along riverbanks, forest borders, and hilly terrain, in South and Southeast Asia, which includes India (northeastern states), Bhutan, Myanmar, Thailand, and Malaysia.

Description: Clustered, ascending stems that are about 3 cm in diameter and 11.5 m long. Brown or gray indumentums on the leaf sheath; linear spines about 5.5–6 cm; flagella around 5.5 m in length. Ocrea spiny, 3-4 cm long; knee, 6.5 cm long; Leaf ecirriate, 3–3.5 m long; regular leaflets, 25–35 on each side, in contrast to alternating, linear, serrated, acuminate, 60–75 cm long and around 3 cm broad; veins, three; terminal leaflets connate. Partial inflorescence 5–6 in number, 45–70 cm long; rachillae 15–50 cm long; pistillate rachillae with dyad flowers; inflorescences are about 10 m long, flagella 2.5–3.5 m long. Fruits are ellipsoid, 2–2.8 cm long, with greenish yellow scales arranged in 12 vertical rows. **Fl. & Fr.:** November to March & Fruits develop from February to March.

Uses: Rattan canes are strong, flexible, and durable, widely used for weaving, furniture, mats, baskets, walking sticks, fences, and supporting cottage industries. Soft canes are used for handicrafts, ropes, mats, and baskets. Palm hearts, tender shoots, apices, and sometimes fruit pulp are eaten and are nutritionally rich. In traditional medicine, fruit pulp and roots treat digestive issues, fever, and joint pain, while young shoots help with coughs, colds, diarrhea, stomach ailments, and deworming. Edible fruits may substitute betel nuts, leaves are occasionally used for thatching, and plant parts have cultural and spiritual significance (Quattrocchi, 2017).

V. *Calamus floribundus* Griff.

Common name: Jali bet

Habitat: India, mainly North-East part, Common; mainly grows in waterlogged open areas.

Description: Darjeeling district of West Bengal. Clustered, ascending stems that are about 5 m long have a leaf sheath that is about 1.5–2.5 cm in diameter, black brown, linear spines that are 2–3.5 cm long, and flagella that are about 2.5 m long. green, spiny knee about 3 cm length; bristly or spiny ocrea about 6.5 mm long. Leaf: pinnate, ecirriate, about 2 m long; leaflets: 15–17 on each side, 25–45 cm long and 3–5 cm broad, alternating to opposing, solitary or in groups, obovate to lanceolate, serrated, acute, veins 3, terminally connate. Partial inflorescences are 15–25 cm long, rachillae are 2.5–5 cm long, flagella are 0.5–1 m

long, and staminate inflorescences are 1.5–2.5 m long. Flagella are 1.5–2.5 m long, pistillate inflorescences are 2–3.5 m long, partial inflorescences are 20 cm long, and alternating rachillae are 7–9 cm long with dyad. **Fl. & Fr.:** December to April & May to June.

Uses: This rattan provides strong canes for furniture, handicrafts, and agricultural uses, while stems and roots are traditionally used medicinally.

VI. *Calamus gracilis* Roxb.

Common name: Chulibet, mapoori bet, mapuri bet, udham bet

Habitat: Jalpaiguri, Kalimpong, Alipurduar and Darjeeling districts of West Bengal. North East India, Bangladesh, Laos., grows near streams, evergreen forest, lowland or montane rain forests.

Description: Clustered, ascending stems that are 7–10 m long, with a leaf sheath that is 2–2.3 cm in diameter, brown indumentums, triangular, upward-pointing spines that are about 2 mm long, and 2.2–3 m long flagella. Ocrea is about 5 mm length and unarmed; knee is about 2 cm long and wrinkled and spiky. The petiole is 0.8–1.2 cm long and the leaf is ecorriate, measuring 30–52 cm. Leaflets are clustered, opposite, 16–18 on each side, about 26 cm long and 3 cm broad, lanceolate to ensiform, serrated, acuminate, tip bent and pointing downward, terminally paired, and have three veins. The staminate inflorescence is about 90 cm long, the flagella are about 6–9 cm long, the rachillae alternate, and the blooms are globose. Partial inflorescence is 13–17 cm long, rachillae are 3–5 cm tall, and pistillate inflorescence is around 1 m long. Fruits are ellipsoid, about 2.5 cm long, orange-red, and have 20 vertical rows of scales. **Fl. & Fr.:** January to March & April to May.

Uses: High-quality, extremely flexible cane that can be split finely for use in handicrafts, furniture construction, ballast baskets, and rattaning chair backs and seats. edible shoot. Pooja leaves are utilized in rituals, ceremonies, and worship. Botanical gardens, arboreta, ornamental, and grown for local purpose.

VII. *Calamus guruba* Buch-Ham.

Common name: gurul beti

Habitat: Kalimpong, and Darjeeling districts of West Bengal. SE Asia. Grows in open areas, high rainfall regions on high acidic soils, lowland or montane rain forests, evergreen to semi-evergreen forest.

Description: Clustered, ascending stems that are 5–10 m long, with a leaf sheath that is 2–5 cm in diameter, triangular spines that are about 1.8 cm long, and flagella that are 1.5–2.5 m long. Leaflets are regular, 40–50 on each side, elliptic to lanceolate, serrated, acuminate,

15–40 cm long, 1.5–2.5 cm broad, and terminally free. The leaf is pinnate, ecirriate, and about 1.5 m long. Ocrea, 10–18 cm long; knee green, 3–4 cm long. Staminate partial inflorescences are 15–25 cm long and have rachillae that are 1–2 cm long; pistilate partial inflorescences are 15–20 cm long and have rachillae that are 10–15 cm long with dyad flowers; flagella are about 2.5 m long; and the inflorescence is about 4.5 m long. Fruits are brown, globose, about 1.5 cm long, and have 18 vertical rows of scales. **Fl. & Fr.:** November to February & January to February.

Uses: Soft and rigid, cane core is divided into four sections for weaving and tying materials used in handicrafts, rough baskets, ballast baskets, ropes, the furniture industry.

VIII. *Calamus inermis* T.Anderson

Common name: Spineless Cane

Habitat: Jalpaiguri, Kalimpong, and Darjeeling districts of West Bengal. Asia; Himalaya.

Description: Clustered, ascending, 10–15 m long, with a leaf sheath of 8 cm in diameter, brown indumentums, and downward-pointing spines that are 2–3 cm long. Leaf pinnate, 3–5 m long, cirri 2–4 m long; petiole 6.5–7.5 cm long with 5–6 mm long spines; many leaflets, 55–67 cm long in groups of 2–4, alternate to opposite, unequidistant, lanceolate, serrated, edge bristly, acuminate, with three veins. Knee: 6–8 cm length; ocrea: 4 mm long, sharp, and hardly noticeable. Partial inflorescences are 32–58 cm long; alternating rachillae are 4–7 cm long; the staminate inflorescence is about 2.5 m long and ends with a non-flagellate organ that is about 3–5 cm long. Partial inflorescences are around 45 cm long; pistillate inflorescences are about 1.5 m long; and rachillae are zigzag, 10–12 cm long, dyad alternating. Fruits have scales, a tubular perianth, and are about 2.8 cm long. Fruits are about 3 cm long, perianth tubular and scales in 18 vertical rows. **Fl. & Fr.:** October to July.

Uses: For making chair frames and used for police sticks. (Mondal and Chowdhury, 2019)

IX. *Calamus kingianus* Becc.

Common name: Suli Bet

Habitat: Darjeeling district of West Bengal. Andaman Islands, India, Bangladesh, Malaysia, Myanmar, Philippines; Laos; Mainly observed in evergreen forest.

Description: Clustered, ascending stems around 10–11 m long; sheath about 1.5 cm in diameter; horizontal, linear spines about 5–7 mm long; white-silvery indumentums. Spines are 6–6.5 mm long, while flagella are 1 m long. Leaf ecirriate, about 60 cm long; petiole 11–12 cm long; leaflets 5–6 on each side, either alone or in clusters; lanceolate, ensiform, acuminate, about 30 cm long, 2–3 cm broad, veins 3, and free at the end. Ocrea

inconspicuous, about 1-2 mm length, glabrous or spiny; knee around 1 cm long, spiny. Flagellate pistillate inflorescences, about 1.1 m long; two to three partial inflorescences, each with a solitary rachilla, 6 to 15 cm long. **Fl. & Fr.:** November to December & February to March.

Uses: Handicrafts. Ornamental, cultivated for local use, arboreta, botanical gardens.

X. *Calamus latifolius* Roxb.

Common name: Broad-leaved Rattan

Habitat: Kalimpong, Alipurduar and Darjeeling districts of West Bengal. South and Southeast Asia, , usually grows in tropical and subtropical evergreen and semi-evergreen forests at elevations of 100 to 800 meters, frequently along riverbanks, forest edges, and hilly slopes.

Description: A clustered, moderately robust climbing rattan with 3 cm-diameter stems and leaf sheaths. Leaves are 2–3 m long, with a prominent knee and dark brown, 3 cm spines; rachis is terete with few small spicules. Leaflets are few, papery, broadly lanceolate or elliptic-lanceolate, slightly concavo-convex, with 5–7 nerves. Male inflorescences are simply decompound, with rachillae 3–4 cm long bearing 8–12 flowers; male flowers are 5 mm long with striated, three-lobed calyx. Female inflorescences are 60–100 cm long, with 4–6 rachillae per branch, each 5–6 cm long, bearing 8–10 flowers; female flowers are 5 mm, calyx larger than corolla. Fruits are globose, dull brown to black, up to 1.5 cm diameter, with flattened scales; seeds are blackish, globose, and coarsely pitted. **Fl. & Fr.:** March to June & fruit development from July to November. Fruits ripen between October and December.

Uses: Moderately strong rattan canes are used for furniture, baskets, mats, walking sticks, and ropes. Young shoots and fruit pulp are edible, and various plant parts treat joint pain, fever, digestive issues, and other ailments. The plant also provides habitat for wildlife and is used in rituals and botanical collections (Quattrocchi, 2017).

XI. *Calamus leptospadix* Griff.

Common name: Dhangri bet, Rani bet

Habitat: Kalimpong, Alipurduar and Darjeeling districts of West Bengal. Found in wet evergreen and semi-evergreen forests at elevations between 300 and 1,500 meters above sea level, they are often found in north-eastern India (Assam, Sikkim, Meghalaya, Arunachal Pradesh), Nepal, Bhutan, Myanmar, and portions of Southeast Asia.

Description: Clustered, ascending stems that are about 9 m long, with a leaf sheath that is about 1.5 cm in diameter, linear spines that are about 1 to 1.5 cm long, brown to grey indumentums, and 2 m long flagella. Leaf ecirriate, about 1.3 m long; petiole, about 2.5 cm long, 30–40 cm long, with a few linear spines. Regular, 33–56 leaflets on each side that alternate with the opposite, 8–22 cm long, about 1 cm broad, linear, serrated, acuminate, with three veins and free terminal leaflets. Knee: 2 cm long, smooth or spiny; ocrea: 1.5 cm long, bristly, separated into two halves. A tubular bracteole covers the rachillae up to the midsection of this 2-4 m long, flagellate inflorescence. Staminate partial inflorescences are 12–36 cm long, with alternating, scorpid, 2-3 cm long rachillae; pistillate partial inflorescences are 3–4 in number, 11–15 cm long, with straight, 2-3 cm long rachillae with dyad flowers. Perianth explains the globose fruit. **Fl. & Fr.:** March to May & June to August

Uses: The cane is used to make bangchung, light spherical baskets traditionally used for carrying food. Thin, fragile canes are used for baskets, ropes, mats, fences, furniture, and binding (Quattrocchi, 2017). Young bitter shoots are eaten as vegetables, fruits are edible, and the plant is also grown for ornamental, local use, and in arboreta and botanical gardens.

XII. *Calamus longisetus* Griff.

Common name: Jungli bet

Habitat: Kalimpong, and Darjeeling districts of West Bengal. Assam, Arunachal Pradesh, Meghalaya, Nagaland, and portions of Bangladesh, Myanmar, Malaysia, and Thailand. It grows well at elevations between 200 and 1,000 meters above sea level in moist, shady forest understoreys, frequently along streams, hill slopes.

Description: A strong, clustered rattan with stems reaching up to 38 m in length, internodes 15–40 cm long, 4.5–5.5 cm in diameter without sheaths, and 8–10.5 cm with sheaths. Leaves are ecirrate, with dull green sheaths densely armed with yellow-based spines up to 7.2 cm long and 0.8 cm wide; grey indumentum is present between spines. The knee is present but mostly hidden; ocrea is inconspicuous. Petioles measure 65–110 cm, and the flagellum is strong, up to 10.5 m long, armed with blackish-yellow spines. Rachis extends up to 3.5 m; each side bears 55–62 leaflets arranged in groups of 5–8, giving a plumose appearance. Leaflets are up to 65 × 3 cm, sharply spinulose along margins and midvein, with black bristles up to 2.1 cm on the underside. Inflorescences are flagellate, up to 15 m long, with up to 12.5 distant partial inflorescences. Male and female inflorescences are similar, branching to three and two orders, respectively. Male rachillae are 12 × 0.4 cm,

female rachillae 50×0.5 cm, with the longest nearly 1.5 m. Fruits are top-shaped, 3.5×2.5 cm, with a 0.6 cm triangular beak, covered in ~ 12 vertical rows of dull mid-brown scales with darker horizontal banding and laciniate edges. Endosperm measures 3.5×1.8 cm and is uniform. **Fl. & Fr.:** April to July & August and November

Uses: The thin, flexible canes' smooth texture and resilience after processing make them ideal for basketry, chair weaving, carpets, and handicrafts.

XIII. *Calamus mahanandensis* S.Mondal, S.K.Basu & M.Chowdhury

Common name: Mahananda cane

Habitat: Darjeeling and Jalpaiguri districts of West Bengal, India; West Bengal. Occurring in Sub-tropical forest in the hills of Eastern Himalaya (alt 300–600 m); Riverine Forest (Mahananda river) on hilly terrain.

Description: A clustering rattan with ascending stems 2–4 m long and 5–7 cm in diameter (with sheath), bearing internodes 11–21 cm long. Leaf sheaths are tubular, greenish-brown to rusty, 20–25 cm long, densely covered with ferruginous, tomentose spines 1–3 cm long; the knee is prominent and mostly glabrous. The ocrea is distinct, tightly sheathing, 3–5 cm long, and spiny. Flagella are well developed, 2–3 m long, and claw-armed. Leaves have petioles 20–25 cm long and a rachis 1.5–1.8 m long, armed with sparse black spines 2.5–3.5 cm long. Each side of the rachis bears about 61 linear to ensiform pinnae, $15-30 \times 1-1.5$ cm, with middle pinnae $24.5-30.5 \times 0.5-0.8$ cm and apical pinnae $11-13 \times 2-2.5$ cm; terminal leaflets are basally united. Inflorescences are flagelliform, up to 2 m long. Staminate inflorescences are 1–2 m long, branched to three orders, with cylindrical basal bracts $25-29 \times 2-2.5$ cm and numerous rachillae; staminate flowers are small, 2–4 mm long. Pistillate inflorescences are 20–26 cm long, branched to two orders, with tubular bracts 2.5–6.5 cm long; rachillae bear 10–20 pistillate flowers, each 4–5 mm long. Fruits are globose, green, beaked, $0.8-1 \times 1-1.3$ cm, covered with triangular scales arranged in 20–21 vertical rows. Seeds measure $0.7-0.8 \times 0.7-0.9$ cm, with a white sarcotesta, ruminate endosperm on one side, and a deep germ pore. **Fl. & Fr.:** December to April & March to May.

Uses: Making furniture, baskets and handicrafts.

XIV. *Calamus melanochaetes* (Blume) Miquel.

Common name: Gola Bet

Habitat: Kalimpong, and Darjeeling districts of West Bengal. Thailand, Malaysia, Indonesia, Java, Sumatra. occurs in lowland forest, disturbed forest, moist to wet forest, often forming large colonies.

Description: Clustered, ascending stems that are about 18 m long, with a leaf sheath that is 2–6 cm in diameter, gray indumentums, flat, linear spines that are 1.5–2.5 cm long, and no flagella. The ocrea is small, sharp, and about 5 mm long; the knee is around 9 cm long and spiny. Leaflets are regular, linear, acuminate, 25–40 cm long, 2–5 cm broad, and have three veins. The leaf is pinnate, 1–2 m long, and the cirri are about 1 m long. Inflorescences are about 55 cm long; prophylls are about 45 cm long, boat-shaped, and adaxially spiky; five or six partial inflorescences are about 10–15 cm long, covered by corresponding bracts that resemble prophylls but are glabrous; pistillate rachillae with paired flowers alternate with staminate flowers. Fruit dark, globose, with 18 vertical rows of scales and a diameter of around 1.8 cm. **Fl. & Fr.:** March to December.

Uses: In furniture (cane), Rabha community believes as lactogenic (apical stem), masticator (fruit). Cabbage (umbut) edible raw or cooked. Ripe fruits edible. Leaves used for thatching huts; split cane used for weaving baskets, handbags.

XV. *Calamus pseudoerectus* Sujit Mondal, S.K.Basu & M.Chowdhury

Common name: Otla bet.

Habitat: Darjeeling District, West Bengal. Hill slopes of riverine forests at lower hills.

Description: A clustering rattan growing up to 15 m long, with solid stems. Internodes measure 5–10.5 cm in length and 11–14.5 cm in diameter; stems are 10.5–12.5 cm wide without sheaths and 20–23 cm with sheaths. Leaves are ecirrate, 1.2–3.7 m long, lacking flagella. Petioles are 1–1.8 m long, and the rachis measures 1.5–2.1 m. Each side of the rachis bears 40–45 narrow leaflets; mid-leaflets measure 70–75.5 × 4.5–5.5 cm, while apical leaflets are 40.2–42.6 × 1.2–1.9 cm, with fine spines 3.5–7.2 mm long along major veins. Inflorescences are looped and non-flagelliform, 2.5–3 m long, with rachillae spaced 25.5–34.5 cm apart. Pistillate flowers are round, 0.8–1.2 × 0.9–1.5 cm, while sterile staminate flowers measure about 0.9 × 0.5 cm. Fruits are very small, ellipsoid, about 0.5–1.1 × 0.2–0.6 mm, reddish-brown, and scaly, containing a single oblong brown seed measuring approximately 0.6 × 0.5 cm. **Fl. & Fr.:** April to June & August to November.

Uses: Leaves are used as thatch; local peoples use fruits for diabetes (Mondal *et al.*, 2019).

XVI. *Calamus tenuis* Roxb.

Common name: Bandhari bet

Habitat: Jalpaiguri, Kalimpong, Alipurduar and Darjeeling districts of West Bengal. South and SE Asia, in lower hill valleys and seasonal swamps, degraded forest, in densely populated lowland floodplains, swampy areas.

Description: Clustered, ascending, 10–20 m long stems with green leaf sheaths and 1–2.5 cm long spines; indumentums whitish; flagella 1–1.5 meters in length. Ocrea is 5–7 mm length and unarmed; knee is 2.5–3.5 cm long and spiky. Pinnate, ecirriate leaf, 1–1.5 m long; regular, linear-lanceolate, serrated, acuminate leaflets, 30–40 in number, 20–35 cm long, 2–2.5 cm broad, equidistant veins 3. Inflorescence staminate 2.5–3.5 m long, flagellate; rachillae alternating, 3–7 cm long; 6–10 partial inflorescences, 10–25 cm long. Pistil late inflorescences are 2.5 m long; partial inflorescences are 10–15 cm long; alternating rachillae are 2–4 cm long with paired flowers. Fruit is oblong to spherical, about 1.5 cm long, has tubular perianths, and has 15 vertical rows of scales. **Fl. & Fr.:** July to September and December to March, respectively.

Uses: In Ayurveda, mainly astringent, tonic, spasmolytic, antidote, anti-inflammatory, antidiarrheal, and used for convulsions, piles, chronic fevers, snake bites, and strangury. roots a cure for fever, biliary, and diarrhea (Quattrocchi, 2017).

XVII. *Calamus viminalis* Willd.

Common name: Boro bet

Habitat: Midnapore, Jhargram and Darjeeling districts of West Bengal. This species of rattan is widely spread in Northeast India (Assam, Arunachal Pradesh, Meghalaya, Mizoram, and Tripura), Bangladesh, China, Indonesia, Myanmar, Thailand, Malaysia and from lowlands to 1,200 meters above sea level, it grows naturally in wet evergreen and semi-evergreen woods, along riverbanks, valleys, and forest clearings.

Description: Large rattan that climbs and forms thick clusters. Leaflets are clearly arranged in fascicles, with spinulose below; the petiole and rachis have sporadic little hooked spines. The leaves are 1.5–2 meters long. Extremely long spadix with lengthy spathes covering it. Globose fruits. Clustered, ascending, or frequently forming thickets, with a diameter of 4 cm to 35 m. Green leaf sheaths covered in a thick layer of grayish or brownish hairs; scattered greenish or brownish, triangular, flattened spines up to 4.5 cm; ocreas; knees; flagella up to 5 m; rachis up to 1.3 m with 32–55 lanceolate pinnae per side, which are gray-green, clearly clustered, and spread in various planes, with the apical ones typically smaller than the others; Adaxial and abaxial major veins are conspicuously bristly; cirri are absent; middle pinnae are 15–35 cm in length and 1–1.5 cm broad at the midpoint.

Flagellate inflorescences up to three meters in length; tubular inflorescence bracts. Fruits are globose, white or yellowish, and up to 1 cm in diameter. They are occasionally carried in pairs. **Fl. & Fr.:** March to June & August and November

Uses: The thin, smooth canes are widely used for binding in house construction, fences, agricultural tools, and for basketry, mats, furniture, and handicrafts due to their light weight and flexibility. Young shoots are eaten as vegetables. (Quattrocchi, 2017).

5. Conclusion

West Bengal hosts 17 rattan (*Calamus*) species classified as Non-Timber Forest Products (NTFPs). Of these, 12 have medicinal value, all provide strong natural fiber, and 14 are used as food (young shoots, vegetables, or fruit pulp), with six species listed as Least Concern by the IUCN. These species support local livelihoods by supplying food and raw materials while reducing pressure from deforestation. Their diverse uses highlight the need for integrated conservation policies aligned with the National Forest Policy (1988) and Forest Rights Act (2006).

Sustaining *Calamus* diversity requires strengthened in situ and ex situ conservation, habitat restoration, and community participation. Future prospects depend on scientific research, genetic and ecological studies, sustainable harvesting, value-added processing, and exploring new applications such as biodegradable and eco-friendly materials.

References:

1. Barman, R. D., Saha, T., Swamy, J., & Singh, D. (2023). Ex situ conservation of palms with special reference to endemic and IUCN Red List species in Acharya Jagadish Chandra Bose Indian Botanic Garden, Howrah, India. *Journal of Experimental Agriculture International*, 45(12), 223–234.
2. Belcher, B., & Schreckenberg, K. (2007). Commercialisation of non-timber forest products: A reality check. *Development Policy Review*, 25(3), 355–377. <https://doi.org/10.1111/j.1467-7679.2007.00383.x>
3. Hazari, S., Kalita, M., & Lahiri, B. (2023). The value of non-timber forest products (NTFPs) in promoting India's rural livelihoods. *Indonesian Journal of Forestry Research*, 10(2), 221–237.
4. International Plant Names Index. (2025). *IPNI*. The Royal Botanic Gardens, Kew; Harvard University Herbaria & Libraries; Australian National Botanic Gardens. <http://www.ipni.org> (Accessed June 25, 2025)

5. Mondal, S., & Chowdhury, M. (2018). Rattans diversity of West Bengal. *Advances in Plant Sciences*, 31(II), 159–165.
6. Plants of the World Online. (2025). *POWO*. Facilitated by the Royal Botanic Gardens, Kew. <http://www.plantsoftheworldonline.org> (Accessed June 25, 2025)
7. Quattrocchi, U. (2017). *CRC world dictionary of palms: Common names, scientific names, eponyms, synonyms, and etymology* (2-volume set). CRC Press.
8. Saha, R., Barman, R. D., & Mondal, A. K. (2025). Characterization of new natural cellulosic fiber from *Calamus andamanicus* Kurz with special reference to its conservation. *Vegetos*. <https://doi.org/10.1007/s42535-025-01492-8>
9. Mondal, S., Basu, S. K., & Chowdhury, M. (2021). *Calamus arborescens* (Arecaceae): An addition to the flora of India from West Bengal. *Journal of Threatened Taxa*, 31(2), 82–84.
10. Mondal, S., Basu, S. K., & Chowdhury, M. (2020). A new species of *Calamus* (Arecaceae) from Eastern Himalaya, India. *Turczaninowia*, 23(3), 92–98.
11. Mondal, S., Basu, S. K., & Chowdhury, M. (2019). *Calamus pseudoerectus* (Arecaceae), a new species from the Eastern Himalaya, India. *Journal of Threatened Taxa*, 11(5), 13605–13610.

AI-DRIVEN DRUG DISCOVERY THROUGH COMPARATIVE ZOOLOGY: LEVERAGING ANIMAL MODELS, EVOLUTIONARY CONSERVATION, AND CROSS-SPECIES BIOLOGY

Ranjana

Department of Zoology,

Patna Science College, Patna University, Patna, Bihar, 800005, India.

Corresponding author E-mail: ranjana.prakash81@gmail.com, ranjanazoolpsc@pup.ac.in

Abstract:

Drug discovery is undergoing a paradigm shift driven by artificial intelligence (AI) and machine learning (ML), enabling the rapid identification of therapeutic targets, optimization of lead compounds, and prediction of toxicity profiles. While much of AI-driven drug discovery has focused on human-centric datasets and rodent-based models, comparative zoology offers an underutilized yet biologically rich framework for advancing pharmacological innovation. This chapter explores how AI and ML approaches can leverage evolutionary conservation, cross-species molecular homology, and diverse animal models to enhance drug discovery pipelines. From comparative genomics and proteomics to behavioral phenotyping and toxicological prediction, zoological data provide invaluable insights into conserved pathways, adaptive traits, and species-specific pharmacodynamics. By integrating AI-driven analytics with zoological principles, drug discovery can become more predictive, ethical, and translationally robust. This chapter discusses methodological frameworks, case studies, ethical implications aligned with the 3Rs principle, and future directions positioning zoology as a computational and translational discipline in AI-enabled biomedical research.

Introduction:

Drug discovery has historically relied on a linear, reductionist pipeline involving target identification, compound screening, preclinical testing in animals, and subsequent clinical trials in humans. Despite decades of refinement, this pipeline remains time-consuming, expensive, and prone to failure, with attrition rates exceeding 90% during clinical development (Wouters *et al.*, 2020). Artificial intelligence and machine learning have emerged as transformative tools capable of addressing these inefficiencies by enabling

data-driven prediction, hypothesis generation, and optimization across multiple stages of drug discovery.

Zoology, as the scientific study of animals, has traditionally contributed to drug discovery through experimental animal models used for pharmacokinetic, toxicological, and efficacy studies. However, contemporary zoology extends far beyond laboratory rodents, encompassing evolutionary biology, comparative physiology, behavioural ecology, genomics, and biodiversity science. From a zoologist's perspective, animals represent not merely test subjects, but evolutionary experiments shaped by millions of years of natural selection. These evolutionary trajectories have produced conserved molecular pathways, unique biochemical adaptations, and naturally occurring pharmacological compounds that can be harnessed using AI-driven methods.

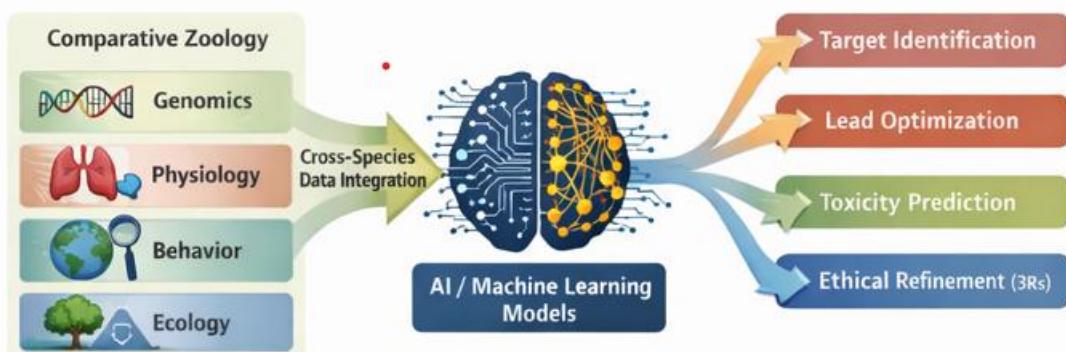
This chapter argues that AI-driven drug discovery can be significantly enhanced by adopting a comparative zoological framework. By integrating cross-species biological data with machine learning models, researchers can identify conserved drug targets, predict interspecies variability in drug response, reduce reliance on animal experimentation, and discover novel therapeutic compounds inspired by animal biology. The convergence of zoology and AI thus represents a critical frontier in next-generation drug discovery.

Evolutionary Conservation as a Foundation for Drug Discovery

Evolutionary Biology and Drug Targets

Evolutionary conservation underpins the translational relevance of animal models in biomedical research. Many genes, proteins, and signalling pathways involved in human disease are conserved across vertebrates and even invertebrates, reflecting shared ancestry and fundamental biological functions. Comparative genomics has demonstrated that approximately 70% of human protein-coding genes have at least one ortholog in zebrafish, while mice share nearly 85% of disease-related genes with humans (Howe *et al.*, 2013).

From a drug discovery standpoint, conserved targets offer a biologically validated entry point for therapeutic intervention. AI algorithms trained on multi-species genomic and proteomic datasets can identify evolutionarily conserved binding sites, predict functional residues, and assess target "druggability" across taxa. Such approaches reduce false positives that arise from human-only datasets and improve the robustness of target selection (Cheng *et al.*, 2021).


Pathway	Human Gene	Model Species	Relevance
MAPK signaling	MAPK1	Zebrafish	Cancer, cell proliferation
Insulin signaling	INSR	Drosophila	Metabolic disorders
Neurotransmission	GABRA1	Mouse	Neurological diseases
Ion channels	SCN genes	Zebrafish	Cardiotoxicity screening

Evolutionarily conserved genes and pathways form the backbone of translational pharmacology. AI-driven comparative genomics identifies conserved targets across species, reducing failure rates.

Comparative Genomics and Machine Learning

Machine learning methods such as random forests, support vector machines, and deep neural networks have been applied to comparative genomic data to predict gene function, disease association, and evolutionary constraint. In drug discovery, these models can integrate sequence conservation scores, structural homology, and phylogenetic profiles to prioritize therapeutic targets with high translational potential (Libbrecht & Noble, 2015). For zoologists, this represents a shift from descriptive comparative biology to predictive evolutionary modelling. AI-driven comparative genomics allows the systematic evaluation of how evolutionary pressures shape pharmacological targets, informing both efficacy and safety assessments. Importantly, evolutionary divergence can also highlight species-specific vulnerabilities, guiding the selection of appropriate animal models for preclinical studies.

Figure 1. AI-Driven Drug Discovery Through Comparative Zoology

Animal Models in AI-Driven Drug Discovery

Beyond Rodents: Embracing Zoological Diversity

Rodent models dominate preclinical drug discovery, yet they often fail to accurately predict human outcomes due to physiological and metabolic differences. Zoology offers a diverse

array of alternative models—fish, amphibians, insects, molluscs, and non-human primates—each with unique advantages for specific disease contexts.

Zebrafish, for example, are increasingly used in phenotypic drug screening due to their genetic tractability, transparent embryos, and conserved vertebrate biology. AI-driven image analysis and deep learning have enabled high-throughput behavioural and morphological phenotyping in zebrafish, facilitating rapid screening of neuroactive and cardiotoxic compounds (MacRae & Peterson, 2015).

Invertebrate models such as *Drosophila melanogaster* and *Caenorhabditis elegans* provide powerful systems for studying conserved signalling pathways involved in neurodegeneration, metabolism, and cancer. Machine learning models can integrate phenotypic and genetic data from these organisms to identify drug candidates that modulate conserved disease pathways (Pandey & Nichols, 2011).

Model Organism	Phenotype	AI Method	Application
Zebrafish	Locomotion, heart rate	CNN	Neurotoxicity
<i>Drosophila</i>	Sleep, circadian rhythm	Random Forest	CNS drugs
<i>C. elegans</i>	Movement patterns	SVM	Neurodegeneration
Rodents	Social behavior	DeepPose	Psychiatric drugs

Zebrafish, insects, rodents, and non-human primates provide complementary biological insights. AI-powered phenotyping enables high-throughput and objective behavioral and physiological analysis.

AI-Based Phenotypic Screening

Phenotypic screening, which assesses observable biological responses to compounds, is experiencing a renaissance due to advances in AI-driven image and behavioural analysis. Deep learning models can analyze complex animal behaviours, developmental patterns, and physiological responses with greater sensitivity and objectivity than traditional methods (Gomez-Marin *et al.*, 2014).

From a zoological perspective, behaviour represents an integrative phenotype reflecting neural, hormonal, and metabolic processes. AI-enabled behavioural phenomics allows researchers to capture subtle drug-induced changes across species, offering insights into mechanism of action and potential side effects. Such approaches align with the zoologist's holistic understanding of organismal biology.

Comparative Pharmacology and Toxicity Prediction

Predicting ADME and Toxicity Across Species

Differences in absorption, distribution, metabolism, and excretion (ADME) remain a major challenge in translating animal data to humans. AI models trained on cross-species pharmacokinetic datasets can predict interspecies scaling relationships and identify metabolic pathways responsible for drug clearance and toxicity (Kola & Landis, 2004).

Comparative zoology contributes critical context for interpreting these predictions. Species-specific differences in liver enzymes, transporter proteins, and physiological traits are products of evolutionary adaptation. Machine learning models that incorporate phylogenetic relationships alongside biochemical data have shown improved accuracy in predicting human drug metabolism (Ekins *et al.*, 2019).

Machine learning models trained on cross-species pharmacokinetic data predict ADME and toxicity profiles, supporting virtual animal trials and the 3Rs principle.

Figure 2. Comparative Utility of Animal Models in Drug Discovery

AI-Guided Bioprospecting

Animal Source	Compound Type	Therapeutic Area
Snake venom	ACE inhibitors	Hypertension
Cone snails	Neuropeptides	Chronic pain
Spider venom	Ion-channel blockers	Epilepsy
Frog skin	Antimicrobial peptides	Infectious disease

Animal venoms and extreme-environment adaptations serve as templates for novel therapeutics. AI accelerates peptide screening and optimization.

Virtual Animal Trials and the 3Rs

The ethical framework of the 3Rs—Replacement, Reduction, and Refinement—has long guided animal research. AI-driven predictive models offer a powerful means of advancing

these principles by reducing reliance on live animal testing. Virtual animal trials, which simulate drug responses using computational models trained on historical zoological data, can prioritize compounds before in vivo testing (Segner *et al.*, 2018).

For zoologists, this represents an ethical evolution of their discipline. Rather than opposing AI, zoology becomes a critical data provider enabling more humane and scientifically rigorous drug discovery.

AI-Guided Bioprospecting and Animal-Derived Therapeutics

Venoms, Toxins, and Bioactive Compounds

Animal venoms and toxins have long inspired drug development, yielding therapeutics for hypertension, pain, and clotting disorders. Advances in AI have revolutionized venom-based drug discovery by enabling rapid screening of peptide libraries, structure–activity prediction, and toxicity assessment (King, 2011).


Machine learning models can analyze venom peptide sequences across species to identify conserved motifs and predict therapeutic potential. From a zoological standpoint, venoms represent evolutionary innovations optimized for molecular specificity, making them ideal templates for drug design.

Evolutionary Innovation as a Drug Discovery Resource

Animals inhabiting extreme environments—such as deep-sea organisms, polar species, and desert reptiles—exhibit unique biochemical adaptations. AI-driven analysis of omics data from these species can uncover novel enzymes, metabolites, and stress-response pathways with therapeutic relevance (Casey *et al.*, 2016).

Comparative zoology thus expands the chemical and biological space accessible to drug discovery, moving beyond synthetic libraries toward nature-inspired therapeutics.

Figure 3. AI-Based Cross-Species Pharmacokinetic Prediction

Integrating Zoological Big Data with AI Frameworks

Multimodal Data Integration

Zoological research generates vast and diverse datasets, including genomic sequences, physiological measurements, behavioural recordings, and ecological metadata. AI excels at

integrating such multimodal data, uncovering patterns that transcend individual data types (Esteva *et al.*, 2019).

For drug discovery, this integration enables systems-level understanding of drug effects across species and biological scales. Zoologists, with their expertise in organismal complexity, are uniquely positioned to curate and interpret these datasets for AI-driven applications.

Challenges and Limitations

Despite its promise, integrating zoological data into AI-driven drug discovery presents challenges, including data heterogeneity, limited annotation for non-model species, and biases toward well-studied organisms. Addressing these limitations requires collaborative efforts between zoologists, computational scientists, and pharmacologists.

Figure 4. Multimodal Zoological Data Integration Using AI

Conclusion:

AI-driven drug discovery is redefining the boundaries of biomedical research, and comparative zoology offers a critical evolutionary and organismal context for this transformation. By leveraging evolutionary conservation, cross-species biology, and diverse animal models, AI-enabled approaches can enhance target identification, improve translational accuracy, and promote ethical research practices.

For zoologists, this convergence represents an opportunity to reposition their discipline at the forefront of computational and translational science. As AI continues to evolve, zoology's holistic understanding of animal life will remain indispensable for designing drugs that are not only effective but biologically informed.

References:

1. Casey, T. M., Arthur Woods, H., & Stevenson, R. D. (2016). Adaptation to temperature extremes: Physiological and biochemical perspectives. *Annual Review of Physiology*, 78, 321–346. <https://doi.org/10.1146/annurev-physiol-021115-105302>
2. Cheng, F., Kovács, I. A., & Barabási, A. L. (2021). Network-based prediction of drug combinations. *Nature Communications*, 12, 123. <https://doi.org/10.1038/s41467-020-20470-0>

3. Ekins, S., Puhl, A. C., Zorn, K. M., Lane, T. R., Russo, D. P., Klein, J. J., ... Clark, A. M. (2019). Exploiting machine learning for end-to-end drug discovery and development. *Nature Materials*, 18(5), 435–441. <https://doi.org/10.1038/s41563-019-0338-z>
4. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... Dean, J. (2019). A guide to deep learning in healthcare. *Nature Medicine*, 25(1), 24–29. <https://doi.org/10.1038/s41591-018-0316-z>
5. Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M., & Mainen, Z. F. (2014). Big behavioral data: Psychology, ethology and the foundations of neuroscience. *Nature Neuroscience*, 17(11), 1455–1462. <https://doi.org/10.1038/nn.3812>
6. Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., ... Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. *Nature*, 496(7446), 498–503. <https://doi.org/10.1038/nature12111>
7. King, G. F. (2011). Venoms as a platform for human drugs: Translating toxins into therapeutics. *Expert Opinion on Biological Therapy*, 11(11), 1469–1484. <https://doi.org/10.1517/14712598.2011.621940>
8. Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? *Nature Reviews Drug Discovery*, 3(8), 711–715. <https://doi.org/10.1038/nrd1470>
9. Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. *Nature Reviews Genetics*, 16(6), 321–332. <https://doi.org/10.1038/nrg3920>
10. MacRae, C. A., & Peterson, R. T. (2015). Zebrafish as tools for drug discovery. *Nature Reviews Drug Discovery*, 14(10), 721–731. <https://doi.org/10.1038/nrd4627>
11. Pandey, U. B., & Nichols, C. D. (2011). Human disease models in *Drosophila melanogaster* and the role of the fly in therapeutic drug discovery. *Pharmacological Reviews*, 63(2), 411–436. <https://doi.org/10.1124/pr.110.003293>
12. Segner, H., Scholz, S., Craig, P., de Knecht, J., Kloas, W., & Triebeskorn, R. (2018). Developing a new paradigm for the risk assessment of chemicals in the aquatic environment: The contribution of zebrafish as a model organism. *Environmental Science & Technology*, 52(11), 6138–6146. <https://doi.org/10.1021/acs.est.8b01193>
13. Wouters, O. J., McKee, M., & Luyten, J. (2020). Estimated research and development investment needed to bring a new medicine to market, 2009–2018. *JAMA*, 323(9), 844–853. <https://doi.org/10.1001/jama.2020.1166>

NATURE IN MINIATURE: MINI WORLD OF BONSAI

Priyanka Dhalwani

Department of Botany,

Maa Kankeshwari Devi Government College, Indore, M.P.

Corresponding author E-mail: priyankadhalwani1978@gmail.com

1. Introduction

Bonsai is a unique and highly refined horticultural practice that represents the harmonious integration of art, science, patience, and philosophy. The term bonsai originates from two Japanese words: bon, meaning a shallow container or tray, and sai, meaning planting or cultivation. Together, the term signifies the art of cultivating trees in containers in such a manner that they resemble mature, naturally occurring trees in miniature form.

Unlike ordinary potted plants, bonsai trees are cultivated not merely for flowers or fruits, but for their overall form, balance, structure, and expressive character. Each bonsai tree tells a story of age, survival, and adaptation, reflecting natural forces such as wind, gravity, drought, and competition. Bonsai is therefore not a technique of plant dwarfing, but a disciplined method of growth control based on sound scientific principles.

Bonsai cultivation is a long-term process that may span several years or even decades. It demands patience, observation, and continuous care. This chapter has been written as a comprehensive textbook and reference resource suitable for undergraduate and postgraduate students of botany, horticulture, environmental studies, landscape architecture, and forestry, as well as for researchers, educators, and serious gardening enthusiasts. The chapter integrates theoretical concepts with practical techniques, ensuring academic relevance and practical applicability.

2. Historical Development of Bonsai

The origins of bonsai can be traced back more than one thousand years to ancient China, where the art was known as Penjing. In Penjing, miniature trees and landscapes were created using rocks, soil, and plants to represent natural scenery in symbolic form. These artistic representations were deeply influenced by Taoist philosophy, which emphasized harmony between humans and nature.

Buddhist monks introduced Penjing to Japan around the sixth century. Over time, the Japanese refined the practice, simplifying forms and emphasizing individual trees rather than entire landscapes. This refined practice evolved into what is now known as bonsai.

During the Edo period in Japan, bonsai gained popularity among scholars, artists, and aristocrats, leading to the standardization of styles, tools, and training methods.

In the twentieth century, bonsai spread beyond Asia to Europe, the Americas, and other parts of the world. Today, bonsai is practiced globally and adapted to diverse climatic conditions and cultural contexts. Despite regional variations, the fundamental principles of bonsai cultivation remain universal.

3. Philosophy and Aesthetic Principles of Bonsai

Bonsai is deeply rooted in Zen philosophy, which emphasizes simplicity, balance, mindfulness, and harmony with nature. The grower does not impose an artificial form on the plant but instead observes the tree's natural growth habit and gently guides it to express its inherent beauty.

Key aesthetic principles of bonsai include proportion, asymmetry, tapering of the trunk, branch placement, movement, balance, and the effective use of negative space. A well-designed bonsai tree appears stable yet dynamic, old yet vigorous, and simple yet profound. These principles guide the grower in shaping a tree that appears natural and mature despite its miniature size.

4. Scientific Basis of Bonsai Cultivation

From a scientific perspective, bonsai cultivation is based on the manipulation of plant growth without altering the plant's genetic constitution. Bonsai trees are genetically identical to full-sized trees of the same species. Their reduced size is achieved through controlled cultural practices such as root restriction, shoot pruning, wiring, and regulated nutrient and water supply.

Important scientific concepts involved in bonsai cultivation include plant physiology, photosynthesis, transpiration, mineral nutrition, and hormonal regulation. Growth regulators such as auxins, cytokinins, and gibberellins play a crucial role in apical dominance, branching patterns, and root-shoot balance. Understanding these physiological processes enables the grower to maintain plant health while controlling size and form.

5. Selection of Plant Species for Bonsai

The selection of suitable plant species is a critical factor in successful bonsai cultivation. Ideal bonsai plants should have small leaves, short internodes, flexible branches, and the ability to produce new shoots after pruning.

5.1 Commonly Used Bonsai Species

Commonly cultivated bonsai species include *Ficus religiosa*, *Ficus microcarpa*, *Juniperus* species, *Pinus* species, *Acer* species, *Bougainvillea*, and *Crassula ovata*. These species

respond well to pruning and training and are capable of developing aesthetically pleasing forms.

5.2 Indigenous and Regional Species

The use of indigenous plant species is strongly recommended, particularly for beginners. Local species adapt better to regional climatic conditions and require less intensive care. In tropical and subtropical regions, neem (*Azadirachta indica*), banyan (*Ficus benghalensis*), peepal (*Ficus religiosa*), tamarind (*Tamarindus indica*), jamun (*Syzygium cumini*), and guava (*Psidium guajava*) are well suited for bonsai training.

6. Classification of Bonsai Styles

Bonsai styles are classified based on trunk orientation, branch arrangement, and overall visual impression. Major styles include Formal Upright (Chokkan), Informal Upright (Moyogi), Slanting (Shakan), Cascade (Kengai), Semi-cascade (Han-kengai), Forest or Group Planting (Yose-ue), and Windswept (Fukinagashi). Each style represents a specific natural growth condition and helps the grower plan the design of the tree.

7. Tools and Materials Required

Bonsai cultivation requires specialized tools to ensure precision and minimize damage to the plant. Essential tools include bonsai pots with drainage holes, a well-draining soil mix, pruning scissors, concave cutters, aluminum or copper wires, root rakes, chopsticks, spray bottles, and organic fertilizers. Proper tools improve efficiency and enhance plant health.

8. Soil Composition and Pot Selection

8.1 Bonsai Soil Requirements

Bonsai soil must provide excellent drainage, adequate aeration, and sufficient nutrient retention. A commonly used soil mixture includes garden loam, coarse sand, and organic compost in appropriate proportions. Soil composition may be adjusted according to species requirements and climatic conditions.

8.2 Bonsai Containers

Bonsai containers are shallow and aesthetically designed. The size, shape, color, and texture of the pot should complement the tree's style and character. Proper drainage holes are essential to prevent waterlogging and root rot.

9. Methods of Bonsai Propagation

Bonsai plants can be propagated through seeds, cuttings, air layering, or nursery stock. Seed propagation allows complete control over form but requires patience. Vegetative propagation methods reduce development time and preserve parent plant characteristics. Nursery stock bonsai is the most practical method for beginners.

10. Planting and Repotting Techniques

Repotting is an essential practice in bonsai cultivation and is usually performed every two to three years. During repotting, old soil is removed, roots are pruned, and fresh soil is added. This process maintains root health, prevents overcrowding, and supports balanced growth.

11. Pruning Techniques

Pruning is fundamental to bonsai training and maintenance. Structural pruning establishes the basic framework of the tree, while maintenance pruning refines branch structure and foliage density. Root pruning maintains an appropriate root-shoot balance and prevents excessive root growth.

12. Wiring and Training

Wiring is used to shape branches and trunks by gently bending them into desired positions. Aluminum wire is commonly used for beginners due to its flexibility. Wiring must be monitored carefully and removed once the branch has set to prevent damage to the bark.

13. Watering and Nutrient Management

Due to limited soil volume, bonsai trees require careful water management. Watering should be done when the soil surface begins to dry, avoiding both overwatering and underwatering. Organic fertilizers are preferred for bonsai cultivation as they release nutrients slowly and improve soil structure.

14. Light, Temperature, and Humidity

Environmental factors play a crucial role in bonsai health. Most bonsai trees require adequate sunlight, while some species prefer partial shade. Temperature and humidity requirements vary according to species. Tropical bonsai require warm conditions, whereas temperate species require seasonal temperature variation.

15. Pest and Disease Management

Common pests affecting bonsai include aphids, spider mites, mealybugs, and scale insects. Fungal and bacterial diseases may occur under conditions of excessive moisture and poor air circulation. Integrated pest management using cultural, mechanical, and organic methods is recommended.

16. Seasonal Care of Bonsai

Bonsai care varies with seasons. Spring is ideal for repotting and training. Summer care focuses on watering and protection from heat stress. Autumn strengthens growth and prepares the plant for dormancy. Winter care depends on species type and dormancy requirements.

17. Educational and Environmental Significance

Bonsai has significant educational value in teaching plant morphology, physiology, ecology, and environmental ethics. It encourages observation, patience, and respect for living organisms. Bonsai cultivation also promotes environmental awareness and sustainable gardening practices.

18. Therapeutic and Psychological Benefits

Bonsai cultivation has been shown to reduce stress, improve concentration, and promote mindfulness. It is increasingly used in horticultural therapy programs for mental well-being and emotional balance.

19. Ethical Considerations and Long-Term Maintenance

Ethical bonsai practice emphasizes plant health, gradual training, and respect for natural growth patterns. Bonsai is not a process of exploitation but a long-term partnership between the grower and the plant. Responsible care ensures the longevity and vitality of the tree.

Conclusion:

Bonsai cultivation represents a disciplined blend of art, science, and philosophy. Through proper techniques, scientific understanding, and ethical care, a bonsai tree becomes a living symbol of harmony between humans and nature. This chapter provides a comprehensive and academically sound foundation for students, researchers, and practitioners, making it suitable for inclusion in horticulture, botany, environmental studies, and landscaping textbooks and reference books.

References:

1. Adams, C. R., Bamford, K. M., & Early, M. P. (2012). *Principles of horticulture*. Butterworth-Heinemann.
2. Naka, J. Y. (1989). *Bonsai techniques I & II*. Bonsai Institute of California.
3. Hartmann, H. T., Kester, D. E., Davies, F. T., & Geneve, R. L. (2011). *Plant propagation: Principles and practices*. Prentice Hall.
4. Long, R. (2004). *The bonsai workshop*. Sterling Publishing.
5. Sharma, V. K. (2015). *Fundamentals of horticulture*. ICAR Publications.

**PILGRIMAGE TOURISM IN SACRED RIVER ECOSYSTEMS:
A CRITICAL REVIEW OF WATER QUALITY DEGRADATION
IN THE GANGA AND PAMBA RIVERS**

Anju Maria Joseph and M. Suresh Gandhi

Department of Geology,

University of Madras, Guindy Campus, Chennai-600025, India

Corresponding author E-mail: anjumariakk@gmail.com, msureshgandhi@gmail.com

Abstract:

Pilgrimage tourism is a significant cultural and religious practice in India, yet it exerts pronounced ecological pressures on sacred river ecosystems. This review critically examines water quality degradation in the Ganga and Pamba Rivers, highlighting microbial, chemical, and emerging contaminant trends associated with mass religious activities. In the Ganga, major events such as the Maha Kumbh Mela trigger acute spikes in fecal coliforms and E. coli, with counts reaching up to 23,000 MPN/100 mL, far above the safe bathing standard of 2,500 MPN/100 mL alongside elevated BOD and COD levels, particularly at sites such as Sangam, Shastri Bridge, and Shringverpur Ghat. Similarly, the Pamba River experiences intense microbial and chemical stress during the Sabarimala pilgrimage, with coliform counts ranging from 40,000-46,000 MPN/100 mL, BOD levels of 4.4-6.0 mg/L, and COD up to 51.9 mg/L. Seasonal influx of pilgrims also contributes to microplastic pollution, habitat disturbance, and eutrophication, adversely impacting aquatic biodiversity and ecological resilience. Comparative analysis indicates that, despite geographical and temporal differences, both rivers exhibit convergent patterns of ecological stress linked to pilgrimage tourism. The cumulative impacts underscore pilgrimage tourism as a recurring anthropogenic driver of water quality deterioration, microbial proliferation, and ecosystem disruption. This review highlights the urgent need for integrated management strategies, improved sanitation, and continuous monitoring to balance cultural practices with the preservation of riverine ecological integrity and biodiversity.

Keywords: Pilgrimage Tourism, Sacred Rivers, Ganga River, Pamba River, Water Quality Degradation, Microbial Contamination, Biodiversity, Riverine Ecology

Introduction:

Rivers have historically served as cradles of civilization, providing water, food, transportation, and spiritual sustenance to human societies. In many parts of the world,

particularly in South Asia, rivers are not only ecological entities but also sacred landscapes deeply embedded in religious belief systems and cultural practices. The Ganga and Pamba Rivers represent two such sacred river ecosystems in India, revered for their spiritual significance and central role in pilgrimage tourism. Pilgrimage tourism, defined as travel motivated primarily by religious or spiritual purposes, constitutes one of the oldest and most widespread forms of tourism globally and exerts profound influences on natural ecosystems, especially riverine environments (Timothy & Olsen, 2006). Sacred river ecosystems support complex biological communities and perform essential ecological functions, including nutrient cycling, habitat provision, and maintenance of water quality. However, increasing anthropogenic pressures associated with pilgrimage tourism—such as ritual bathing, mass gatherings, disposal of ritual offerings, untreated sewage discharge, and solid waste accumulation—have significantly altered the physical, chemical, and biological characteristics of these rivers (Vorosmarty *et al.*, 2010). During peak pilgrimage seasons, the influx of millions of devotees often exceeds the environmental carrying capacity of river systems, intensifying pollution loads and accelerating ecological degradation. Water quality degradation in sacred rivers has emerged as a critical environmental concern, particularly in densely populated and pilgrimage-intensive regions. Studies on the Ganga River have documented elevated levels of organic pollution, microbial contamination, nutrients, and heavy metals linked to religious activities and urban discharge, posing risks to both ecosystem health and human well-being (Dwivedi *et al.*, 2018; Mishra, 2010). Similarly, the Pamba River, which supports the renowned Sabarimala pilgrimage, experiences severe seasonal deterioration in water quality due to mass bathing, improper sanitation, and waste disposal practices during pilgrimage periods (Babu *et al.*, 2016). These disturbances negatively affect aquatic biodiversity, disrupt ecological processes, and compromise the sustainability of sacred river ecosystems.

Despite extensive research on individual rivers, existing literature often treats pilgrimage tourism, river ecology, and water quality degradation in isolation. Comparative and integrative reviews focusing on multiple sacred rivers across different geographical and socio-cultural contexts remain limited. A critical synthesis of available studies is essential to identify common patterns, knowledge gaps, and region-specific challenges related to pilgrimage-induced environmental stress. Such reviews can also contribute to evidence-based policy formulation and sustainable pilgrimage management strategies. In this context, the present study aims to critically review and synthesize existing literature on pilgrimage tourism-induced water quality degradation in sacred river ecosystems, with a

comparative focus on the Ganga and Pamba Rivers. By examining patterns of pollution, sources of degradation, and ecological implications reported across studies, this review seeks to enhance understanding of how pilgrimage tourism influences river health and to highlight the need for integrated conservation and sustainable management approaches for sacred rivers.

Study Area

The present study examines the Ganga and Pamba Rivers, two major sacred river systems in India that, despite their geographical separation, share strong religious significance and are subjected to intense pilgrimage tourism pressures. The Ganga River in North India and the Pamba River in South India function as culturally revered riverine ecosystems experiencing substantial anthropogenic stress due to large-scale ritual practices and seasonal pilgrimage activities.

The Ganga River:

The Ganga River is one of the most sacred and extensively studied river systems in India, originating from the Gangotri Glacier at Gaumukh in the Uttarakhand Himalayas at an elevation of approximately 3,100 m above mean sea level. The river flows for nearly 2,525 km, traversing the states of Uttarakhand, Uttar Pradesh, Bihar, Jharkhand, and West Bengal before ultimately draining into the Bay of Bengal through the Ganga-Brahmaputra delta (Central Water Commission, 2014). In Hindu tradition, the Ganga is revered as a living goddess, and ritual bathing in its waters is believed to cleanse sins and facilitate spiritual liberation. Pilgrimage tourism occurs throughout the year, reaching peak intensity during major religious events such as the Kumbh Mela, Ardh Kumbh Mela, Ganga Dussehra, and Kartik Purnima. Major pilgrimage centers including Haridwar, Prayagraj, Varanasi, and Rishikesh witness massive congregations of pilgrims engaging in ritual bathing, cremation practices, idol immersion, and the offering of flowers and organic materials (Singh, 2016).

The Pamba River:

The Pamba River in Kerala is also known as "Dakshina Ganga" (Ganges of the South) or Dakshina Bhageerathi, reflecting its immense religious significance, particularly in relation to the holy Sabarimala Temple. Pilgrims consider ritual bathing in the Pamba as spiritually equivalent to bathing in the Ganges. It originates from the Pulachimalai hills of the Western Ghats in Pathanamthitta district and flows through Pathanamthitta and Alappuzha districts before emptying into the Vembanad Lake, eventually reaching the Arabian Sea through the backwaters. It has a total length of approximately 176 kilometers, making it the third-longest river in the state, forming a crucial component of Kerala's riverine

ecosystem (Babu *et al.*, 2016). The Pamba River serves as the principal sacred bathing site for millions of pilgrims visiting the Sabarimala Temple annually. Pilgrimage tourism is highly seasonal and concentrated during specific religious periods. The Mandala Kaalam (Mandala Pooja) is a 41-day period beginning in mid-November, characterized by intense religious observance, mass pilgrim inflow, ritual bathing, and temporary settlements along the riverbanks. This is followed by Makaravilakku, celebrated in mid-January, marking the culmination of the pilgrimage season, with darshan typically concluding by January 20th.

Materials and Methods:

This review systematically synthesizes published literature, governmental reports, and environmental monitoring datasets to assess the impacts of pilgrimage tourism on water quality in the Ganga and Pamba Rivers. Data sources were identified through comprehensive searches of peer-reviewed journals, official government reports, environmental agency databases, and credible news outlets. Key inclusion criteria were studies reporting physicochemical parameters (BOD, COD, DO, turbidity, pH, nutrients), microbial contamination (*E. coli*, total coliforms), and emerging pollutants (microplastics) in river stretches affected by pilgrimage activities. For the Ganga River, monitoring data from CPCB, Central Water Commission, and environmental studies conducted during Maha Kumbh and other major religious events. For the Pamba River, field assessments, Kerala State Pollution Control Board reports, and scientific publications covering Sabarimala pilgrimage seasons were analyzed. Comparative analysis was conducted to evaluate temporal trends, seasonal fluctuations, and site-specific variations in water quality parameters, microbial load, and ecological indicators. Emphasis was placed on identifying peak pilgrimage impacts, spatial hotspots of contamination, and ecological consequences for aquatic biodiversity. The methodology integrates quantitative data (numerical values of microbial and chemical parameters) and qualitative evidence (observations of ecological impacts and habitat degradation) to provide a holistic understanding of the anthropogenic pressures exerted by pilgrimage tourism on sacred river ecosystems.

Results and Discussion:

Water Quality Changes in the Ganga River during Pilgrimage Events

Analyses of water quality in the Ganga River during major pilgrimage events, particularly the Maha Kumbh Mela, reveal recurrent microbial and organic pollution exceeding both ecological and public health thresholds. Long-term monitoring demonstrates that ritual bathing and mass pilgrim influx drive substantial increases in fecal coliforms, *E. coli*, and organic pollution indicators such as BOD and COD (Dwivedi *et al.*, 2018; Varma *et al.*,

2022). During the 2025 Maha Kumbh Mela, the Central Pollution Control Board (CPCB) recorded pronounced site-specific variability in key locations including Shringverpur Ghat, Sangam, and Lord Curzon Bridge. At Sangam, fecal coliform counts peaked at 23,000 MPN/100 mL, vastly surpassing the permissible 2,500 MPN/100 mL for organized bathing, indicating acute microbial contamination due to mass bathing and inadequate waste management. At Shastri Bridge, counts reached 11,000 MPN/100 mL before the confluence and 7,900 MPN/100 mL at Sangam post-Basant Panchami, demonstrating episodic surges directly linked to ritual bathing days. Historical data from 2019 show fecal coliform levels ranging from <1.8 to 23,000 MPN/100 mL during the festival, highlighting recurrent contamination spikes (CWC report, 2025).

BOD measurements at Prayagraj Sangam during peak pilgrim density frequently exceeded the standard 3 mg/L, such as during Paush Purnima, correlating with elevated microbial decomposition and reduced DO, which can stress aquatic fauna and reduce ecological resilience. Despite aggregate CPCB median values during Kumbh 2025 meeting bathing criteria (median fecal coliform ~1,400 MPN/100 mL; BOD ~2.56 mg/L), episodic peaks underscore temporary exceedance of ecological thresholds. Long-term monitoring also indicates persistent baseline contamination. For example, fecal coliforms upstream of Sangam in November 2024 were measured at 3,300 MPN/100 mL, slightly above permissible limits, suggesting continuous anthropogenic pressure exacerbated during mass pilgrimage events (CWC report, 2025). Overall, numerical data across multiple sites and years confirm that pilgrimage tourism significantly amplifies microbial and organic pollution, presenting recurrent challenges for river health and ecological integrity.

Microbial and Chemical Contamination in the Pamba River during Pilgrimage Events

Extensive evidence from monitoring and scientific studies indicates that the Pamba River in Kerala undergoes severe degradation in water quality during the Sabarimala pilgrimage season (mid-November to mid-January), characterised by marked increases in microbiological contamination and chemical pollutants directly linked to pilgrimage-related activities. According to comprehensive field assessments, total coliform counts in Pamba have been recorded between approximately 40,000 and 46,000 most probable number (MPN) per 100 mL, a figure dramatically above acceptable levels where coliform bacteria should be *undetectable in 100 mL* for safe drinking water (Roy & Kizhakkethottam 2024). These extreme coliform levels reflect cumulative inputs from untreated domestic sewage (averaging 7–10 million litres per day) entering the river from

Pamba town and Sabarimala, ritual bathing, and inadequate sanitation infrastructure during pilgrimage influxes, amplifying bacterial proliferation and organic load (Pillai 2024). Historical field data further reveal temporal trends in microbial contamination across pilgrimage seasons over the years. During the 2017–2018 pilgrimage season, total coliform bacteria counts recorded at sampling points such as Kochupampa, Kakkiyar, Triveni, and Njunganar ranged from 6,000 MPN/100 mL up to 20,000 MPN/100 mL, with values increasing as the season progressed (November–January), demonstrating a dynamic escalation of contamination with rising pilgrim numbers. Another groundwater and surface water assessment reported *E. coli* counts at the Pamba River reaching approximately 75,000 MPN/100 mL in January of a later pilgrimage season, compared to a previous year's level of around 8,000 MPN/100 mL, signifying a nearly tenfold year-on-year increase in bacterial contamination attributable to pilgrimage pressures and sewage influx (Rajeev & Manjary 2020). These values substantially exceed the World Health Organization's guideline of 5,000 MPN/100 mL for safe recreational water and highlight the acute risk posed by pilgrimage tourism to water quality and public health. Beyond microbial contaminants, physico-chemical parameters also deteriorate markedly during pilgrimage seasons. For example, monitoring work in the mid-reaches of the Pamba River indicates BOD levels ranging between 4.4–6.0 mg/L, consistently above the ideal aquatic health limit of 3 mg/L, indicating elevated organic pollution loads concurrent with pilgrimage-related waste discharge. Chemical oxygen demand (COD) values in the river span 17.9–51.9 mg/L across different stations, reflecting accumulation of organic and inorganic pollutants in pilgrim-intensive stretches, significantly above the acceptable standard of 10 mg/L for healthy water bodies (Nayar *et al.*, 2020). These elevated BOD and COD measures, coupled with low dissolved oxygen levels often falling below 5 mg/L, reveal how pilgrimage seasons amplify eutrophication potential and stress aquatic ecosystems. Emerging contaminants such as microplastics further complicate the pollution profile of the Pamba River. Studies conducted during pilgrimage seasons show that microplastics in the river water range from 116 particles/m³ and 66 items/kg in sediment samples, with fibers constituting around 77.3% of detected microplastics, underscoring the scale of pollution associated with waste generated by pilgrims and related activities (Vasudevan *et al.*, 2025). These microplastics can act as vectors for microbial attachment and chemical pollutants, posing additional ecological risks.

Broader Environmental and Ecological Impacts Linked to Pilgrimage Tourism

Beyond conventional water quality parameters, pilgrimage tourism exerts profound pressures on the biodiversity and ecological integrity of sacred river ecosystems. In both the Ganga and Pamba Rivers, intensive human activities during peak pilgrimage seasons introduce excessive organic matter, nutrients, and microbial contaminants, which alter natural biogeochemical cycles and contribute to eutrophication in localized stretches of the river (Varma *et al.*, 2022). Elevated BOD, COD, and coliform levels not only compromise water suitability for human use but also affect the aquatic ecological balance, reducing dissolved oxygen and stressing sensitive species, including fish, macroinvertebrates, and benthic communities (Verma *et al.*, 2025).

Microbial assessments reveal that mass bathing and ritual immersions facilitate the proliferation of pathogenic bacterial populations, such as *E. coli* and total coliforms, which can disperse across the river continuum and infiltrate adjacent aquatic habitats and drinking water sources (Nair *et al.*, 2019). Such microbial fluxes underscore the connectivity between anthropogenic activities and riverine microbial ecology, with implications for both ecosystem function and human health. Moreover, pilgrimage-driven litter, idol immersion, and microplastic deposition further disrupt habitat structures, altering sediment composition and reducing habitat suitability for benthic organisms (Vasudevan *et al.*, 2025). This combination of chemical, microbial, and physical stressors creates a cumulative ecological impact, potentially leading to long-term declines in aquatic biodiversity and altering ecosystem resilience. Collectively, these findings emphasize that the environmental footprint of pilgrimage tourism extends well beyond immediate water quality deterioration. The interactions among nutrient enrichment, microbial proliferation, and habitat modification illustrate a complex web of impacts on riverine ecology, highlighting the urgent need for integrated management approaches that safeguard both cultural practices and the biodiversity and ecological health of sacred rivers.

Conclusion:

The systematic evaluation of water quality in the Ganga and Pamba Rivers underscores the profound influence of pilgrimage tourism on sacred river ecosystems, revealing both convergent and site-specific patterns of ecological stress. Despite the rivers' contrasting geographical, climatic, and hydrological contexts, both demonstrate a recurring response to intense anthropogenic pressures during peak pilgrimage periods. In the Ganga River, mass bathing events such as the Kumbh Mela precipitate marked increases in fecal coliforms, *E. coli*, BOD, COD, and suspended solids, with episodic peaks exceeding regulatory thresholds-

for instance, fecal coliform counts at Sangam reached 23,000 MPN/100 mL during the 2025 Maha Kumbh, far surpassing the safe limit of 2,500 MPN/100 mL. Similarly, the Pamba River experiences acute microbial and chemical stress during the Sabarimala pilgrimage, with coliform counts ranging from 40,000-46,000 MPN/100 mL, BOD levels between 4.4-6.0 mg/L, and COD reaching 51.9 mg/L. Both rivers also exhibit episodic spikes in microbial and organic load correlating directly with pilgrimage intensity, ritual bathing, idol immersion, and inadequate sanitation, highlighting the cumulative impact of seasonal human activity on riverine health.

Comparative analysis demonstrates that pilgrimage tourism acts as a universal anthropogenic stressor, disrupting biogeochemical cycles, threatening aquatic biodiversity, and altering riverine habitats in culturally and ecologically significant river systems. While the Ganga shows intense, periodic stress aligned with episodic festivals, the Pamba reflects sustained seasonal pressure during months-long pilgrimage periods. This convergence underscores the need for integrated management strategies that harmonize cultural practices with ecological conservation, including improved waste management infrastructure, regulated ritual practices, and continuous water quality monitoring. Overall, this review highlights that sacredness alone does not safeguard rivers from anthropogenic impacts. Effective conservation of these culturally revered ecosystems requires scientifically informed policy interventions and community participation, ensuring that religious and cultural heritage is preserved without compromising the ecological integrity of rivers that sustain millions of lives and diverse aquatic biodiversity.

References:

1. Babu, K. N., Sankaranarayanan, A., & Pradeepkumar, A. P. (2016). Water quality assessment of Pamba River during pilgrimage season. *Environmental Monitoring and Assessment, 188*(6), 1–12.
2. Central Water Commission, Government of India, Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation. (2025). *Water quality report: Kumbh Mela 2025*. Government of India.
3. Central Water Commission. (2014). *Ganga basin management plan*. Ministry of Water Resources, Government of India.
4. Dwivedi, S., Mishra, S., & Tripathi, R. D. (2018). Ganga water pollution: A potential health threat to inhabitants of Ganga basin. *Environment International, 117*, 327–338.
5. Mishra, A. (2010). A river about to die: Yamuna. *Journal of Water Resource and Protection, 2*(5), 489–500.

6. Nair, S. M., Joseph, S., & George, R. (2019). Seasonal variation in water quality of Pamba River, Kerala. *Journal of Environmental Biology*, 40(3), 495–503.
7. Nayar, K. R., Koya, S. F., Mohandas, K., Nair, S. S., Chitra, G. A., Abraham, M., & Lordson, J. (2020). Public health implications of Sabarimala mass gathering in India: a multi-dimensional analysis. *Travel Medicine and Infectious Disease*, 37, 101783.
8. Pillai, R. R. (2024). Estimation of Surface Water Hydrochemical Pollution Due to Pilgrimage Tourism in Regions of Pamba River Basin. *Geo. Eye*, 13(2), 1-5.
9. Rajeev, R., & Manjary, S., (2020). A Comparative Analysis of Microbiological Parameters of Pampa River and Achankovil River with Reference to Sabarimala Pilgrim Season. *Journal of Aquatic Biology & Fisheries*, 109.
10. Roy, A., & Kizhakkethottam, J. J. (2024). Real time water quality monitoring of River Pamba (India) using Internet of Things. In *E3S Web of Conferences* 13(47), 93.
11. Singh, R. P. B. (2016). Sacred geography and pilgrimage tourism along the Ganga River. *Tourism Geographies*, 18(3), 321–344.
12. Timothy, D. J., & Olsen, D. H. (Eds.). (2006). *Tourism, religion and spiritual journeys* 4(1), 156-171.
13. Varma, K., Tripathi, P., Upadhyaya, S., Srivastava, A., Ravi, N. K., Singhal, A., & Jha, P. K. (2022). Assessment of mass bathing event (Kumbh-2019) impact on the river water quality by using multivariate analysis and water quality index (WQI) techniques at Sangam (Prayagraj), India. *Groundwater for Sustainable Development*, 17, 100750.
14. Vasudevan, V., Devy, R. A., & Shajahan, S. (2025). Distribution and Characterizations of Microplastics from the Pamba River with special reference to the Pilgrimage season at Sabarimala, Pathanamthitta district, Kerala, South India. *Int. Res. J. Environmental Sci.* 14(2), 22-28.
15. Verma, S., Verma, S., Ramakant, R., Pandey, V., & Verma, A. (2025). Comprehensive Assessment of Physico-Chemical and Biological Parameters in Water Quality Monitoring: A Review of Contaminants, Indicators, and Health Impacts. *International Journal of Horticulture, Agriculture and Food science*, 9(2), 611019.
16. Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., et al. (2010). Global threats to human water security and river biodiversity. *Nature*, 467(7315), 555–561.

ECOLOGICAL PATTERNS AND CONSERVATION CHALLENGES IN THE WESTERN GHATS: INSIGHTS FROM FIFTEEN YEARS OF RESEARCH

Mayuri L. Patil¹, Rahul S. Kamble*¹, and Sagar A. Vhanalakar^{*2}

¹Department of Zoology,

Vivekanand College, Kolhapur (An Empowered Autonomous Institution)

Dist. – Kolhapur 416 003 (M.S.) INDIA

²Department of Zoology,

Karmaveer Hire Arts, Science, Commerce and Education College,

Gargoti, Tal – Bhudargad, Dist. – Kolhapur 416 209 (M.S.) INDIA

*Corresponding author E-mail: rahulkamble3470@gmail.com, sagarayan36@gmail.com

Abstract:

This review synthesizes ecological research conducted over the last fifteen years across the Western Ghats, a globally significant biodiversity hotspot, to assess patterns of ecological change in forests, freshwater systems, and soils. The synthesis reveals consistent evidence of increasing habitat fragmentation driven by land-use change, infrastructure expansion, and agricultural intensification. Forest studies document shifts in plant species composition, regeneration dynamics, and phenological timing, closely associated with altered rainfall patterns and rising temperatures. These vegetation changes have cascading effects on ecosystem structure and function.

Faunal responses are highly taxon specific. Amphibians, insects, and forest-dependent vertebrates exhibit pronounced sensitivity to microclimatic alterations, habitat loss, and landscape isolation, while some generalist species show adaptive or neutral responses. Freshwater ecosystems, including rivers, streams, and wetlands, display substantial hydrological modification, reflected in altered flow regimes, disrupted sediment transport, and seasonal drying. Corresponding biological changes include shifts in fish, plankton, and macroinvertebrate assemblages, alongside increasing pressures from dams, water abstraction, pollution, and catchment degradation.

Soil-focused investigations indicate declines in soil organic carbon, modifications in microbial community composition, and altered nutrient cycling processes. These belowground changes directly influence vegetation recovery, productivity, and long-term ecosystem resilience. Collectively, the reviewed evidence demonstrates that ecological

change in the Western Ghats is driven by multiple interacting stressors and operates across interconnected ecosystems rather than in isolation.

The review identifies critical knowledge gaps, particularly in high-elevation plateaus, headwater catchments, and invertebrate diversity, as well as a shortage of coordinated long-term monitoring programs. Addressing these gaps through integrated landscape and river basin management, combined with climate adaptation and conservation planning, is essential for sustaining biodiversity, ecosystem services, and human well-being in the Western Ghats under ongoing environmental change. Strengthening interdisciplinary research, policy integration, and community participation will enhance adaptive capacity, support evidence-based decision making, and promote resilient socio-ecological systems across this mountain landscape.

Keywords: Biodiversity; Climate Change; Conservation; Long-Term Monitoring; Western Ghats.

1. Introduction

The Western Ghats is a continuous mountain chain running parallel to the western coast of India for approximately 1,600 km, extending from Gujarat in the north through Maharashtra, Goa, and Karnataka to Kerala and Tamil Nadu in the south (Gadgil & Guha, 2013; Presley & Willig, 2023). This ancient geological formation is older than the Himalayan system and has played a fundamental role in shaping the climate, hydrology, and ecological processes of peninsular India (Gadgil & Guha, 2013). Acting as a major orographic barrier, the Western Ghats intercepts moisture-laden southwest monsoon winds, regulating rainfall patterns across both the western coastal plains and the interior Deccan Plateau. As a result, the region strongly influences river systems, groundwater recharge, and long-term landscape evolution.

The Western Ghats encompasses an exceptional diversity of ecosystems, including tropical evergreen and semi-evergreen forests, moist and dry deciduous forests, montane shola-grassland complexes, lateritic plateaus, wetlands, rivers, reservoirs, and estuarine systems (Myers *et al.*, 2000). This remarkable ecological heterogeneity contributes to its biogeographic uniqueness and supports a wide array of ecological functions and services. The varied habitats, shaped by complex topography and climatic gradients, provide niches for a large number of species and promote high levels of speciation and endemism.

Globally, the Western Ghats is recognized as one of the world's 36 biodiversity hotspots due to its extraordinary species richness, high endemism, and extensive historical habitat

loss (Myers *et al.*, 2000). The region supports more than 7,400 species of flowering plants, nearly 1,800 vertebrate species, and thousands of invertebrate taxa. Endemism exceeds 50% in several groups, particularly among amphibians and freshwater fishes, reflecting long-term evolutionary isolation and habitat specialization (Dayal *et al.*, 2014; Ponniah & Gopalakrishnan, 2000). This biodiversity is closely tied to the region's complex geological history, climatic stability, and ecological heterogeneity (Gimaret-Carpentier *et al.*, 2003). Climatic variability and steep altitudinal gradients, ranging from sea level to elevations above 2,600 m, exert strong control over ecosystem structure and function in the Western Ghats (Rajendran *et al.*, 2012). Orographic rainfall generated by the southwest monsoon produces sharp spatial gradients in precipitation, temperature, and humidity, resulting in diverse microclimates and habitat mosaics (Gunnell, 1997). These gradients regulate species distributions, productivity, phenology, and ecosystem resilience, while also rendering the region highly sensitive to climate change and anthropogenic pressures (Seidl *et al.*, 2017; Deb *et al.*, 2018).

Long-term ecological research (LTER) is essential for understanding ecosystem dynamics, as many ecological processes operate over decadal scales and cannot be captured through short-term studies (Kuebbing *et al.*, 2018). Long-term datasets allow researchers to distinguish natural variability from directional ecological change, particularly in the context of climate change, land-use modification, and biological invasions (Dornelas, M., *et al.* (2014); Lindenmayer *et al.*, 2012). In biodiverse regions such as the Western Ghats, long-term monitoring is crucial for detecting subtle but cumulative impacts on species populations and ecosystem functioning (Das *et al.*, 2006).

Multi-taxa and multi-ecosystem approaches enhance the robustness of ecological inference by integrating responses across plants, animals, microbes, and abiotic components (Pardini *et al.*, 2017; Dornelas *et al.*, 2014). Studies encompassing terrestrial, freshwater, and riparian ecosystems provide insights into cross-ecosystem linkages and feedback mechanisms, particularly in monsoon-driven landscapes (Dudgeon *et al.*, 2006; Wiens, 2002). Such integrative research is particularly relevant in the Western Ghats, where forest, riverine, and agricultural systems are tightly interconnected.

The accumulation of approximately fifteen years of ecological research provides a valuable temporal window to assess trends in biodiversity, ecosystem health, and conservation effectiveness (Deb *et al.* (2018). This duration is sufficient to capture climate anomalies, land-use transitions, species range shifts, and changes in community composition, offering

critical insights for adaptive management and policy formulation (Lindenmayer & Likens, 2010).

Despite the substantial body of ecological research conducted in the Western Ghats, existing knowledge remains highly fragmented across taxonomic groups, ecosystems, spatial scales, and disciplinary perspectives (Molur *et al.*, 2011). Many studies are localized or taxon specific, focusing on particular species, habitats, or processes, which limits their broader applicability. This fragmentation constrains the ability to detect overarching ecological patterns, understand cumulative and interacting impacts, and formulate region-wide conservation and management priorities (Das *et al.*, 2006). As a result, policy interventions and conservation strategies often rely on incomplete or narrowly focused evidence, potentially overlooking cross-ecosystem linkages and long-term dynamics.

A comprehensive and integrative review is therefore essential to synthesize dispersed research outputs and develop a coherent understanding of ecological change across the Western Ghats. Such synthesis is particularly important in a landscape characterized by strong environmental gradients, high endemism, and increasing anthropogenic pressures. Integrating findings across taxa and ecosystems can reveal shared drivers of change, emergent vulnerabilities, and feedbacks that are not evident from isolated studies (Molur *et al.*, 2011). Moreover, synthesis can help identify consistent indicators of ecosystem degradation or resilience that are relevant for conservation planning and monitoring.

This review focuses on synthesizing reported ecological patterns, key drivers of change, and conservation challenges across the Western Ghats, with particular emphasis on biodiversity trends, ecosystem processes, and human-induced pressures (Seidl *et al.*, 2017; Gimaret-Carpentier *et al.*, 2003). By examining studies spanning multiple taxa—including plants, vertebrates, invertebrates, and freshwater organisms—and diverse ecosystems such as forests, grasslands, rivers, wetlands, and soils, the review aims to identify both common responses and context-specific dynamics. This approach facilitates comparison across ecological domains and supports a more holistic understanding of regional change.

The temporal scope of this review is limited to the last fifteen years, a period characterized by rapid land-use transformation, increasing climate variability, infrastructure expansion, and evolving conservation and governance frameworks in the Western Ghats (Forkuo & Frimpong, 2012; Kale *et al.*, 2016). Focusing on this recent period allows for assessment of contemporary ecological trajectories and management responses under current socio-environmental conditions. By consolidating recent evidence, the review seeks to inform

adaptive conservation strategies, highlight critical knowledge gaps, and support science-based decision making aimed at sustaining biodiversity and ecosystem services in this globally significant mountain system.

1.1 Objectives of the Review

The specific objectives of this review are

- i. to summarize major ecological patterns observed in the Western Ghats over the past fifteen years, including trends in biodiversity, ecosystem structure, and functioning;
- ii. to identify key drivers of ecological change, such as climate variability, land-use transformation, and resource exploitation;
- iii. to assess prevailing conservation challenges, including habitat fragmentation, species decline, and governance constraints; and
- iv. to highlight critical research gaps and derive management implications that can inform future conservation planning and long-term ecological monitoring in the Western Ghats (Das *et al.*, 2006; Deb *et al.* (2018).

2. Literature Review

2.1 Vegetation and Forest Dynamics

Remote sensing and field-based studies over the last fifteen years indicate a persistent decline in contiguous forest cover in the Western Ghats, accompanied by increasing fragmentation and edge effects (Forkuo & Frimpong, 2012). Although protected areas have maintained relatively stable forest cover, surrounding landscapes have undergone rapid conversion to agriculture, plantations, and infrastructure corridors (Kale *et. al.*, 2016). Fragmentation has resulted in reduced patch connectivity and altered microclimatic conditions, which in turn influence regeneration dynamics and forest structure (Seidl, R *et al.* (2017)).

Changes in species composition and phenology have been widely documented, particularly in evergreen and semi-evergreen forests (Gimaret-Carpentier *et al.*, 2003). Long-term plot studies report shifts from late-successional, shade-tolerant species to light-demanding generalists, suggesting increasing disturbance pressure (Ramachandra *et al.*, 2020). Phenological observations further indicate advancing flowering and fruiting times in several tree species, which have been linked to altered rainfall regimes and temperature increases (Bhat *et al.*, 2000).

Considerable attention has been given to endemic and threatened plant species, many of which show restricted distributions and narrow ecological tolerances. Population-level studies of endemic trees such as *Syzygium*, *Dipterocarpus*, and *Hopea* species reveal low recruitment rates and high sensitivity to habitat degradation. Conservation assessments emphasize that habitat loss and climate stressors together amplify extinction risks for endemic flora in the Western Ghats (Molur *et al.*, 2011).

In addition to structural and compositional changes, forest ecosystems of the Western Ghats are experiencing subtle but ecologically significant alterations in functional processes and landscape-level interactions. Increased fragmentation has disrupted natural disturbance regimes, animal-mediated seed dispersal, and pollination networks, leading to uneven regeneration patterns across forest patches. Smaller and isolated forest fragments often exhibit simplified vertical structure, reduced canopy continuity, and dominance of opportunistic species, which collectively diminish habitat quality for forest specialists. Edge-dominated conditions intensify exposure to wind, temperature fluctuations, and invasive species, further accelerating degradation. Changes in forest structure also influence carbon storage potential, evapotranspiration, and local hydrological cycles, thereby linking vegetation dynamics with broader ecosystem services. In human-dominated matrices, forest remnants are increasingly subjected to fire, grazing, fuelwood extraction, and non-timber forest product harvesting, which compound ecological stress and limit recovery potential. Community-managed and multi-use forests show highly variable ecological outcomes depending on management intensity, tenure security, and local livelihoods. These patterns highlight that forest change in the Western Ghats is not solely a consequence of outright deforestation, but also of gradual ecological erosion within remaining forest cover. The cumulative effects of fragmentation, altered species interactions, and functional decline underscore the need to move beyond area-based conservation metrics and focus on forest quality, connectivity, and resilience. Strengthening ecological corridors, restoring degraded patches, and integrating conservation objectives into surrounding production landscapes are critical to maintaining long-term forest integrity. Understanding these fine-scale yet pervasive changes is essential for predicting future forest trajectories and for designing adaptive management strategies that can sustain biodiversity, ecosystem functioning, and human well-being in the Western Ghats under ongoing environmental change (Presley & Willig, 2023; Rajan *et al.*, 2023; Joshi *et al.*, 2024).

2.2 Faunal Diversity and Distribution Patterns

Faunal research in the Western Ghats has expanded substantially since 2010, covering mammals, birds, amphibians, reptiles, and insects (Molur *et al.*, 2011; Robinson *et al.*, 2018). Mammalian studies report contraction of ranges for large-bodied species such as elephants and carnivores due to habitat fragmentation and human-wildlife conflict (Ceballos & Ehrlich 2006). Avian communities exhibit strong habitat associations, with forest specialists declining outside protected areas and generalist species increasing in modified landscapes.

Amphibians and reptiles, which show high endemism in the Western Ghats, display pronounced sensitivity to altitudinal and seasonal gradients (Dahanukar & Padhye, 2005). Several studies report upslope shifts in amphibian distributions and reduced breeding success during years with irregular monsoon patterns (Green 2017; Zhang *et al.*, 2020). Insects, particularly butterflies and odonates, have been used as indicators of habitat quality, with declines recorded in fragmented forest patches (Landmann *et al.*, 2023).

Altitudinal distribution patterns reveal distinct faunal assemblages across elevation bands, with mid-elevation forests supporting the highest species richness for many taxa (Deb *et al.* (2018)). Seasonal variation in rainfall further drives temporal changes in species abundance and activity patterns, especially among amphibians and insects (Gururaja *et al.*, 2014). Indicator and keystone species, such as hornbills, bats, and large frugivores, have been highlighted for their role in seed dispersal and forest regeneration (Teegalapalli & Datta 2016; Srinivasan *et al.*, 2015).

2.3 Aquatic and Wetland Ecosystems

Riverine and reservoir ecosystems of the Western Ghats are shaped by monsoonal hydrology and steep altitudinal gradients, creating high habitat heterogeneity (Dahanukar *et al.*, 2011). Studies on river ecology indicate that flow seasonality regulates primary productivity, macroinvertebrate assemblages, and fish breeding cycles (Boon *et al.*, 2010; Wiens 2002). Reservoirs and wetlands, although artificial or semi-natural, support diverse plankton and fish communities and contribute to regional aquatic biodiversity (Ghosh *et al.*, 2017).

Fish diversity patterns show strong endemism in headwater streams, with downstream homogenization due to invasive species and altered flow regimes (Dahanukar *et al.*, 2013; Katwate *et al.*, 2020). Plankton studies reveal seasonal peaks during post-monsoon periods, linked to nutrient influx and water-column stability. These patterns underline the

importance of hydrological variability in structuring aquatic communities. The impact of dams and flow regulation has been widely documented, with evidence of disrupted sediment transport, reduced flood pulses, and altered thermal regimes (Bunn & Arthington, 2002). In the Western Ghats, dam construction has led to declines in migratory fish species and modification of downstream floodplain habitats (Sarkar *et al.*, 2021). Ecological flow studies emphasize the need for basin-scale management to sustain aquatic biodiversity and ecosystem services (Acreman *et al.*, 2014).

2.4 Soil and Nutrient Cycling Studies

Long-term soil studies in the Western Ghats indicate measurable changes in physicochemical properties, including declines in organic carbon and shifts in pH in intensively used landscapes (Jangir *et al.*, 2024). Forest soils generally maintain higher moisture content and nutrient availability compared to plantation and agricultural soils, reflecting differences in litter input and root dynamics.

Nutrient cycling research highlights strong seasonal variation in nitrogen and phosphorus availability driven by monsoonal rainfall and microbial activity (Tripathi *et al.*, 2016). Microbial community studies show that land-use change alters bacterial and fungal diversity, with potential consequences for decomposition and nutrient turnover. Mycorrhizal associations have been shown to enhance nutrient uptake in endemic tree species, linking belowground processes to forest resilience. The linkage between soil health and vegetation structure is well established, with degraded soils supporting simplified plant communities and reduced regeneration potential (Ramachandra *et al.*, 2020). These findings underscore the importance of integrating soil indicators into forest monitoring and restoration planning (Deb *et al.* (2018)).

2.5 Climate Change and Ecological Responses

Temperature and rainfall trend analyses demonstrate a warming trend and increased rainfall variability across the Western Ghats over the last two decades (Rajendran *et al.*, 2012; Yim *et al.*, 2014). Extreme rainfall events have become more frequent, leading to landslides and habitat disturbance, particularly in montane regions (Mishra *et al.*, 2020). Such climatic variability has direct implications for species survival and ecosystem stability.

Shifts in species ranges and breeding seasons have been observed in multiple taxa, including birds, amphibians, and insects (Zhang *et al.*, 2020; Landmann *et al.*, 2023). Tree line advancement and changes in forest composition at higher elevations have also been

reported, suggesting climate-driven redistribution of vegetation zones (Deb *et al.* (2018)). Changes in productivity and community structure are evident in both terrestrial and aquatic ecosystems, with altered phenology affecting trophic interactions and food availability (Forrest, J. R. (2016)). Community-level responses indicate increased dominance of generalist species under warming and disturbance scenarios, leading to biotic homogenization (Dornelas *et al.*, 2014; Cody, M. L. (2020)).

2.6 Conservation Strategies Adopted

One of the foundational conservation strategies in the Western Ghats has been the establishment and expansion of formal protected areas and ecological safeguards aimed at preserving critical habitats and biodiversity (Gadgil *et al.*, 2011; Karanth & DeFries, 2010). Central government initiatives such as the National Afforestation Programme, Integrated Development of Wildlife Habitat, and Project Tiger have supported afforestation, habitat management, and species protection across Western Ghats states, helping strengthen forest resilience and species survival outside heavily disturbed landscapes (Jha *et al.*, 2016; Ministry of Environment, Forest and Climate Change [MoEFCC], 2020). Additionally, the designation of Ecologically Sensitive Areas (ESAs) under national policy frameworks has sought to regulate harmful development activities in identified high-value conservation zones, aiming to reduce infrastructure pressures on core biodiversity areas while promoting sustainable land uses in adjacent buffer zones (Gadgil *et al.*, 2011; Prakash *et al.*, 2021). These spatial planning and protective measures enhance legal backing for biodiversity preservation, reinforce conservation priorities at regional and state scales, and contribute to maintaining ecological connectivity between remnant forest patches and conservation reserves.

Beyond statutory protection, landscape-level and community-based strategies have become increasingly important in Western Ghats conservation, emphasizing partnership with local stakeholders and sustainable livelihoods (Bawa *et al.*, 2012; Daniels *et al.*, 2016). Landscape approaches integrate multi-stakeholder collaboration among government agencies, research institutions, non-governmental organizations, and indigenous communities to balance ecological restoration and socio-economic well-being, thereby reducing pressure on natural ecosystems (Kumar *et al.*, 2019; Nagendra *et al.*, 2018). Many initiatives focus on restoration of degraded lands using native tree planting, enrichment of species diversity in fragmented forests, and community stewardship of sacred groves and wildlife corridors—efforts that improve ecological integrity while leveraging traditional ecological knowledge (Chandran & Hughes, 2018; Ormsby & Bhagwat, 2010). Furthermore,

science-based monitoring and participatory governance approaches have increased community engagement in conservation planning, integrating sustainable agriculture, eco-tourism, and forest restoration with improved local ownership of biodiversity outcomes (Nagendra *et al.*, 2018; Daniels *et al.*, 2016).

Conservation strategies in the Western Ghats are also evolving to incorporate climate adaptation and ecosystem services perspectives to address emerging threats from climate variability and land-use change (Deb *et al.*, 2018; Seidl *et al.*, 2017). Recent research underscores the need for adaptive management measures, such as controlling invasive species, enhancing fire management, and implementing multi-layered afforestation with climate-resilient native species to bolster long-term ecosystem health (Joshi *et al.*, 2024; Rajan *et al.*, 2023). Community participation has been complemented by targeted projects such as butterfly conservation landscapes, river restoration initiatives, and native fish restocking programs that focus on species-specific conservation outcomes while raising public awareness and involvement (Kunte *et al.*, 2014; Raghavan *et al.*, 2016). Combined with landscape-level planning and ESA implementation, these integrated strategies aim to sustain not only biodiversity and ecological processes but also the ecosystem services on which millions of people depend, thus advancing a holistic and resilient conservation agenda for the Western Ghats.

2.7 Human-Induced Disturbances

Land-use change remains the dominant driver of ecological degradation in the Western Ghats, with expansion of agriculture, mining, and transport infrastructure fragmenting habitats (Forkuo & Frimpong, 2012; Kale *et al.*, 2016). Mining activities, particularly in lateritic plateaus and forested hills, have caused soil erosion, water pollution, and loss of endemic flora. Agricultural expansion and plantation systems (tea, coffee, rubber, and eucalyptus) modify native vegetation structure and reduce habitat suitability for forest-dependent species (Seidl, R *et al.* (2017)). Although some shade-grown plantations retain moderate biodiversity, monoculture systems support significantly fewer native species (Cody, M. L. (2020)).

Tourism and urbanization exert additional pressure through infrastructure development, waste generation, and disturbance to wildlife (Molur *et al.*, 2011; Gimaret-Carpentier *et al.*, 2003). Hill stations and pilgrimage centers have experienced rapid urban growth, intensifying water demand and land conversion. These cumulative pressures threaten the ecological integrity of the Western Ghats and complicate conservation governance (Das *et al.*, 2006).

2.8 Conservation Challenges

Despite extensive conservation efforts, the Western Ghats continues to face significant challenges arising from habitat loss, fragmentation, and increasing human pressures. Expansion of agriculture, plantations, mining, roads, dams, and urban infrastructure has led to widespread conversion of natural habitats, particularly outside protected areas (Gadgil *et al.*, 2011; Jha *et al.*, 2016). While protected areas retain relatively better forest cover, surrounding landscapes experience degradation that weakens ecological connectivity and intensifies edge effects. These changes undermine the effectiveness of conservation networks and reduce the long-term viability of wildlife populations, especially wide-ranging and habitat-specialist species (Karanth & DeFries, 2010).

Another major challenge lies in balancing biodiversity conservation with local livelihoods and development needs. Millions of people depend on the Western Ghats for agriculture, forest resources, water, and employment, leading to conflicts between conservation objectives and socio-economic demands (Bawa *et al.*, 2012; Daniels *et al.*, 2016). Community-based initiatives show promise, yet uneven governance, limited institutional capacity, and variable stakeholder participation often constrain their success (Nagendra *et al.*, 2018). In some regions, unsustainable extraction, grazing, fire use, and tourism pressure continue to degrade ecosystems, while lack of coordination among agencies hampers landscape-level conservation planning (Ormsby & Bhagwat, 2010).

Climate change adds an additional layer of complexity to conservation in the Western Ghats. Rising temperatures, altered rainfall patterns, and increased frequency of extreme events interact with land-use change to amplify stress on forests and freshwater systems (Seidl *et al.*, 2017; Deb *et al.*, 2018). These pressures affect species distributions, phenology, and ecosystem functioning, particularly among endemic and climate-sensitive taxa (Rajan *et al.*, 2023). Implementing adaptive management remains challenging due to data gaps, limited long-term monitoring, and uncertainties in projecting future impacts. Addressing these challenges requires integrated governance, improved scientific synthesis, and sustained commitment to balancing ecological integrity with human well-being across this globally significant biodiversity hotspot (Gadgil *et al.*, 2011).

3. Methodology

This review followed a structured and transparent framework consistent with best practices for evidence synthesis in ecology and environmental sciences (Moher *et al.* 2009; Bilotta *et al.* 2014). The objective was to compile, screen, and synthesize peer-reviewed, open-access literature published during the last fifteen years (2010–2025) addressing

ecological patterns, drivers of change, and conservation challenges in the Western Ghats, India.

3.1 Literature search strategy

A comprehensive literature search was conducted using major scientific databases, including Scopus, Web of Science, and Google Scholar. Additional searches were performed in open-access repositories such as the Directory of Open Access Journals (DOAJ) and institutional repositories to retrieve freely available full-text articles.

Search queries combined geographic, ecological, and taxonomic keywords using Boolean operators. Core search strings included: ("Western Ghats" OR "Sahyadri") AND (biodiversity OR ecology OR forest OR vegetation OR soil OR river OR freshwater OR wetland OR fish OR plankton) AND (climate change OR "land-use change" OR fragmentation OR phenology OR conservation). Taxon-specific terms (e.g., mammals, birds, amphibians, reptiles, insects, and plants) were incorporated iteratively. Truncation and phrase searching were applied to capture variant word forms. The temporal scope of the search was restricted to 2010–2025, and only articles published in English were considered. All retrieved records were imported into reference management software, and duplicates were removed prior to screening. The study selection process followed a PRISMA-style workflow documenting identification, screening, eligibility, and final inclusion of studies.

3.2 Inclusion and exclusion criteria

Eligible studies were peer-reviewed articles presenting primary ecological data or validated models related to ecosystems of the Western Ghats. These included field-based surveys, long-term monitoring datasets, experimental studies, and regionally calibrated modeling studies. Review articles were consulted only for reference mining and were not treated as primary data sources.

Studies focusing on terrestrial (forests, grasslands, lateritic plateaus) and freshwater (streams, rivers, reservoirs, wetlands) ecosystems were included. Taxonomic coverage encompassed plants, mammals, birds, amphibians, reptiles, fishes, insects, plankton, and soil microbial communities.

Only open-access journal articles were retained to ensure reproducibility and accessibility. Exclusion criteria comprised studies conducted outside the Western Ghats region, publications prior to 2010, non-peer-reviewed documents, purely theoretical modeling without empirical validation, and articles unavailable in full text.

3.3 Data extraction and classification

For each eligible study, the following information was extracted into a standardized database: authorship, year of publication, geographic location, ecosystem type, elevation range, study duration, taxa examined, sampling design, response variables, principal findings, and reported drivers of change.

Studies were classified by ecosystem type (forest, freshwater, grassland/plateau, agro-ecosystem) and by taxonomic group (plants, mammals, birds, amphibians, reptiles, fishes, insects, plankton, microbes). Ecological response variables were further grouped into thematic categories:

- i. land cover and fragmentation metrics,
- ii. species diversity and abundance,
- iii. phenology and life-history traits,
- iv. soil physicochemical and microbial properties,
- v. hydrological and aquatic community attributes, and
- vi. ecosystem function indicators (e.g., productivity, nutrient cycling).

Basic methodological attributes (sample size, replication, temporal coverage, and analytical rigor) were recorded to facilitate interpretation of study reliability and consistency.

3.4 Analytical approach

Given the heterogeneity of study designs and response variables, a qualitative and thematic synthesis approach was adopted. Patterns were summarized within and across ecosystems and taxa, emphasizing consistency in the direction of reported trends (e.g., increase, decline, or shift), spatial context, and temporal dynamics.

Where comparable time-series or multi-year datasets were available, reported trend statistics (e.g., slopes, percentage change, or phenological shifts) were extracted and summarized across studies. Spatial trends were evaluated by grouping results according to subregions and elevation zones within the Western Ghats.

Thematic comparison was performed across major drivers (climate variability, land-use change, hydrological modification, and anthropogenic disturbance). Evidence was weighted according to the number of independent studies and their methodological robustness, and discrepancies among findings were interpreted in relation to scale, ecosystem type, and study duration.

3.5 Limitations of the review

The available literature shows spatial bias, with a concentration of studies in protected areas and easily accessible mid-elevation zones, while high-altitude plateaus and certain

northern segments of the Western Ghats remain underrepresented. Taxonomic bias is also evident, with vertebrates and flowering plants studied more extensively than invertebrates and soil microorganisms.

Temporal resolution is uneven, as many studies are short-term or cross-sectional, limiting inference about long-term ecological trajectories. In addition, methodological heterogeneity in sampling protocols, metrics, and analytical approaches constrained the use of formal meta-analysis and required reliance on qualitative synthesis. Restriction to peer-reviewed, open-access literature may have excluded relevant studies published behind paywalls or in non-indexed outlets; however, this criterion enhanced transparency and reproducibility of the review.

4. Results and Discussion

4.1 Vegetation and Forest Dynamics

Synthesis of satellite-based assessments and long-term field studies indicates a continued decline in contiguous forest cover in the Western Ghats during the last fifteen years, accompanied by increased fragmentation and edge effects (Forkuo & Frimpong, 2012; Ramachandran *et al.*, 2018; Kale *et. al.*, 2016). While protected areas retain relatively stable canopy cover, adjoining landscapes exhibit conversion to plantations, agriculture, and infrastructure corridors (Seidl, R *et al.* (2017)).

Across permanent plots and regional surveys, several studies report compositional shifts from late-successional evergreen species toward disturbance-tolerant and light-demanding taxa (Ramachandra *et al.*, 2020; Gimaret-Carpentier *et al.*, 2003). Phenological datasets reveal advancing flowering and fruiting periods in multiple tree species, associated with altered rainfall timing and rising temperatures (Bhat *et al.*, 2000).

Endemic and threatened plant species exhibit restricted distributions and reduced recruitment in fragmented habitats (Molur *et al.*, 2011). Population-level studies show that habitat isolation lowers seedling survival and disrupts regeneration of several endemic canopy species (Ceballos & Ehrlich, 2006).

4.2 Faunal Diversity and Distribution Patterns

Faunal studies reveal heterogeneous responses across taxa. Mammal surveys document declining occupancy of large-bodied species outside protected areas and increasing human–wildlife conflict in fragmented landscapes (Karanth *et al.*, 2017). Avian community analyses show reduced abundance of forest specialists and increasing dominance of habitat generalists in modified habitats (Cody, M. L. (2020); Robinson *et al.*, 2018). Amphibians and reptiles demonstrate strong sensitivity to elevation and monsoon seasonality, with several

species showing upslope shifts and altered breeding phenology (Zhang *et al.*, 2020). Insect taxa such as butterflies and odonates display reduced richness in disturbed forest patches and agricultural mosaics (Kunte *et al.*, 2012; Landmann *et al.*, 2023). Indicator and keystone species, including hornbills, fruit bats, and large frugivores, are consistently reported as declining outside intact forest tracts, with implications for seed dispersal and forest regeneration (Ceballos & Ehrlich, 2006).

4.3 Aquatic and Wetland Ecosystems

Riverine and reservoir systems show strong seasonal structuring of biotic communities driven by monsoonal hydrology. Fish assemblages are richest in headwater streams and decline downstream with increasing habitat modification and invasive species presence (Dahanukar *et al.*, 2011). Plankton diversity peaks during post-monsoon periods due to nutrient influx and thermal stratification in reservoirs. Multiple studies document disruption of flow regimes by dams, resulting in altered sediment transport, reduced flood pulses, and declining migratory fish populations. Wetlands and small reservoirs function as biodiversity refugia but are increasingly threatened by eutrophication and water abstraction (Wiens, 2002).

4.4 Soil and Nutrient Cycling

Forest soils maintain higher organic carbon and nutrient availability compared to plantation and agricultural soils. Long-term monitoring reveals gradual declines in soil organic carbon and changes in pH in intensively used landscapes. Nutrient cycling exhibits strong seasonal patterns, with nitrogen and phosphorus availability peaking during the monsoon due to enhanced microbial activity. Land-use change alters soil microbial community composition and reduces functional diversity related to decomposition and nutrient turnover (Szoboszlay, *et al.*, 2017). Vegetation structure is closely linked to soil quality, as degraded soils support simplified plant assemblages and reduced regeneration potential (Ramachandra *et al.*, 2020; Deb *et al.*, 2018).

4.5 Climate Change and Ecological Responses

Climatic analyses indicate increasing mean temperatures and higher interannual rainfall variability across the Western Ghats since 2000 (Rajendran *et al.*, 2012; Yim *et al.*, 2014). Extreme rainfall events have intensified, particularly in montane zones (Mishra *et al.*, 2020).

Species distribution studies document upslope range shifts in amphibians, birds, and plants, alongside changes in breeding and flowering timing (Zhang *et al.*, 2020; Forrest, J. R. (2016); Deb *et al.* (2018)). Ecosystem productivity and community structure show

increasing dominance of disturbance-tolerant species under combined climate and land-use stress (Cody, M. L. (2020); Dornelas *et al.*, 2014).

4.6 Human-Induced Disturbances

Land-use change, mining, and infrastructure development are identified as dominant drivers of ecological degradation (Forkuo & Frimpong, 2012; Kale et. al., 2016). Plantation expansion reduces habitat suitability for forest-dependent species, although shade-grown systems retain moderate biodiversity compared to monocultures (Seidl, R *et al.* (2017); Page & Shanker, 2020). Tourism and urbanization intensify water demand, increase pollution loads, and cause behavioral disturbance to wildlife, especially in hill stations and pilgrimage centers (Gimaret-Carpentier *et al.*, 2003; Molur *et al.*, 2011).

The synthesized evidence demonstrates that ecological change in the Western Ghats is driven by the combined effects of climate variability and human land-use transformation, rather than by a single dominant factor (Seidl, R *et al.* (2017); Kale *et al.*, 2016). Fragmentation emerges as a central process linking vegetation change with faunal declines and altered ecosystem functioning (Ramachandra *et al.*, 2020; Cody, M. L. (2020)). Forest compositional shifts toward generalist species mirror trends reported from other tropical biodiversity hotspots, indicating broader biotic homogenization (Dornelas *et al.*, 2014; Gimaret-Carpentier *et al.*, 2003).

Faunal responses exhibit taxon-specific sensitivity, with amphibians and insects responding rapidly to microclimatic and hydrological changes, while mammals and birds show delayed but spatially extensive range contractions (Ceballos & Ehrlich, 2006). The decline of keystone frugivores is particularly concerning because it disrupts seed dispersal networks and undermines forest regeneration processes (Teegalapalli & Datta 2016).

Aquatic ecosystems appear especially vulnerable to flow alteration and cumulative upstream disturbances (Sarkar *et al.*, 2021). The loss of seasonal flood pulses weakens connectivity between river channels and floodplain habitats, reducing breeding opportunities for native fish species (Wiens 2002). These findings reinforce the importance of environmental flow regimes for sustaining biodiversity in monsoon-driven river systems (Acreman *et al.*, 2014).

Soil and nutrient cycling studies highlight the role of belowground processes as mediators of ecosystem resilience (Tripathi *et al.*, 2016; Szoboszlay *et al.*, 2017). Degradation of soil microbial diversity and organic carbon stocks reduces nutrient availability and constrains vegetation recovery following disturbance (Jangir *et al.*, 2020; Deb *et al.* (2018)). This

linkage suggests that restoration strategies focused solely on vegetation without addressing soil health may have limited long-term success.

Climate change amplifies existing anthropogenic pressures by increasing temperature stress and rainfall variability (Yim *et al.*, 2014; Mishra *et al.*, 2020). Observed phenological shifts and upslope movements of species indicate that climatic thresholds are already being crossed for several taxa (Zhang *et al.*, 2020). However, dispersal barriers created by fragmented landscapes constrain adaptive range shifts, increasing extinction risk for endemic species with narrow elevational ranges (Molur *et al.*, 2011; Deb *et al.* (2018)). The evidence base remains uneven across space and taxa. Protected areas and accessible regions are well studied, whereas high-altitude plateaus, headwaters, and northern Western Ghats remain underrepresented (Forkuo & Frimpong, 2012; Kale *et. al.*, 2016). Invertebrates, microbes, and functional traits are also less frequently monitored than vertebrates and plants (Landmann *et al.*, 2023; Szoboszlay *et al.*, 2017). These gaps limit the ability to detect early-warning signals of ecosystem collapse.

From a management perspective, the results underscore the need for integrated landscape-level conservation that links forest protection, river-basin planning, and climate adaptation strategies (Das *et al.*, 2006; Acreman *et al.*, 2014). Long-term ecological monitoring across altitudinal gradients and ecosystem types is essential to track non-linear responses and guide adaptive policy (Lindenmayer & Likens, 2010). This synthesis indicates that maintaining ecological integrity in the Western Ghats requires addressing both proximate drivers (deforestation, dams, urbanization) and underlying pressures (climate change, governance limitations). Without coordinated interventions, current trends suggest increasing biotic homogenization and loss of endemic biodiversity over the coming decades (Gimaret-Carpentier *et al.*, 2003; Kale *et al.*, 2016).

Conclusion:

This review shows that the Western Ghats is experiencing clear ecological changes across forests, freshwater systems, and soils. Forest fragmentation and shifts in plant composition are increasing, many animal groups are showing changes in distribution and abundance, river ecosystems are being altered by dams and water regulation, and soil properties important for nutrient cycling are being degraded. These changes are driven by both human activities and climate variability, and they act together rather than independently.

The findings highlight the importance of long-term studies for detecting gradual trends such as changes in flowering and breeding times and shifts in species ranges along elevation gradients. However, many areas and taxonomic groups remain poorly studied,

which limits a full understanding of regional patterns. Effective conservation in the Western Ghats will require integrated management that links forest protection with river-basin planning and restoration of degraded lands. Future research should focus on underrepresented ecosystems and on ecological processes that connect soil, water, plants, and animals. Strengthening long-term monitoring will be essential to guide conservation actions and ensure the persistence of biodiversity and ecosystem services in this globally important region.

References:

1. Gadgil, M., & Guha, R. (2013). *Ecology and equity: The use and abuse of nature in contemporary India*. Routledge.
2. Presley, S. J., & Willig, M. R. (2023). Gradients and the structure of neotropical metacommunities: effects of disturbance, elevation, landscape structure, and biogeography. In *Neotropical gradients and their analysis* (pp. 419-450). Cham: Springer International Publishing.
3. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*, 403(6772), 853-858.
4. Dayal, R., Singh, S. P., Sarkar, U. K., Pandey, A. K., Pathak, A. K., & Chaturvedi, R. (2014). Fish biodiversity of the Western Ghats region of India: a review. *Journal of Experimental Zoology*, 17(2), 377-399.
5. Gimaret-Carpentier, C., Dray, S., & Pascal, J. P. (2003). Broad-scale biodiversity pattern of the endemic tree flora of the Western Ghats (India) using canonical correlation analysis of herbarium records. *Ecography*, 26(4), 429-444.
6. Rajendran, K., Kitoh, A., Srinivasan, J., Mizuta, R., & Krishnan, R. (2012). Monsoon circulation interaction with Western Ghats orography under changing climate: projection by a 20-km mesh AGCM. *Theoretical and Applied Climatology*, 110(4), 555-571.
7. Gunnell, Y. (1997). Relief and climate in South Asia: the influence of the Western Ghats on the current climate pattern of peninsular India. *International Journal of Climatology: a journal of the Royal Meteorological Society*, 17(11), 1169-1182.
8. Yim, S. Y., Wang, B., Liu, J., & Wu, Z. (2014). A comparison of regional monsoon variability using monsoon indices. *Climate dynamics*, 43(5), 1423-1437.
9. Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., ... & Reyer, C. P. (2017). Forest disturbances under climate change. *Nature climate change*, 7(6), 395-402.

10. Deb, J. C., Phinn, S., Butt, N., & McAlpine, C. A. (2018). Climate change impacts on tropical forests: identifying risks for tropical Asia. *Journal of Tropical Forest Science*, 30(2), 182-194.
11. Kuebbing, S. E., Reimer, A. P., Rosenthal, S. A., Feinberg, G., Leiserowitz, A., Lau, J. A., & Bradford, M. A. (2018). Long-term research in ecology and evolution: A survey of challenges and opportunities. *Ecological Monographs*, 88(2), 245-258.
12. Lindenmayer, D. B., Likens, G. E., Andersen, A., Bowman, D., Bull, C. M., Burns, E., ... & Wardle, G. M. (2012). Value of long-term ecological studies. *Austral Ecology*, 37(7), 745-757.
13. Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., & Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. *Science*, 344(6181), 296-299.
14. Das, A., Krishnaswamy, J., Bawa, K. S., Kiran, M. C., Srinivas, V., Kumar, N. S., & Karanth, K. U. (2006). Prioritization of conservation areas in the Western Ghats, India. *Biological conservation*, 133(1), 16-31.
15. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévéque, C., ... & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. *Biological reviews*, 81(2), 163-182.
16. Wiens, J. A. (2002). Riverine landscapes: taking landscape ecology into the water. *Freshwater biology*, 47(4), 501-515.
17. Molur, S., Smith, K. G., Daniel, B. A., & Darwall, W. R. T. (2011). The status and distribution of freshwater biodiversity in the Western Ghats, India. *Cambridge, UK and Gland, Switzerland: IUCN, and Coimbatore, India: Zoo Outreach Organisation*.
18. Bhat, D. M., Naik, M. B., Patagar, S. G., Hegde, G. T., Kanade, Y. G., Hegde, G. N., ... & Furtado, R. M. (2000). Forest dynamics in tropical rain forests of Uttara Kannada district in Western Ghats, India. *Current Science*, 975-985.
19. Ramachandra, T. V., Vinay, S., Bharath, S., Chandran, M. S., & Aithal, B. H. (2020). Insights into riverscape dynamics with the hydrological, ecological, and social dimensions for water sustenance. *Current Science*, 118(9), 1379-1393.
20. Cody, M. L. (2020). *Competition and the structure of bird communities* (Vol. 7). Princeton University Press.
21. Robinson, N. M., Scheele, B. C., Legge, S., Southwell, D. M., Carter, O., Lintermans, M., ... & Lindenmayer, D. B. (2018). How to ensure threatened species monitoring leads to

threatened species conservation. *Ecological Management & Restoration*, 19(3), 222-229.

22. Ceballos, G., & Ehrlich, P. R. (2006). Global mammal distributions, biodiversity hotspots, and conservation. *Proceedings of the National Academy of Sciences*, 103(51), 19374-19379.
23. Dahanukar, N., & Padhye, A. (2005). Amphibian diversity and distribution in Tamhini, northern Western Ghats, India. *Current science*, 1496-1501.
24. Green, D. M. (2017). Amphibian breeding phenology trends under climate change: predicting the past to forecast the future. *Global change biology*, 23(2), 646-656.
25. Zhang, P., Dong, X., Grenouillet, G., Lek, S., Zheng, Y., & Chang, J. (2020). Species range shifts in response to climate change and human pressure for the world's largest amphibian. *Science of the Total Environment*, 735, 139543.
26. Landmann, T., Schmitt, M., Ekim, B., Villinger, J., Ashiono, F., Habel, J. C., & Tonnang, H. E. (2023). Insect diversity is a good indicator of biodiversity status in Africa. *Communications Earth & Environment*, 4(1), 234.
27. Forrest, J. R. (2016). Complex responses of insect phenology to climate change. *Current opinion in insect science*, 17, 49-54.
28. Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., & Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. *Science*, 344(6181), 296-299.
29. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Bmj*, 339
30. Karanth, K. U., Srivaths, A., Vasudev, D., Puri, M., Parameshwaran, R., & Kumar, N. (2017). Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. *Proceedings of the Royal Society B: Biological Sciences*, 284(1848).
31. Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., & Tebbe, C. C. (2017). Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe. *FEMS Microbiology Ecology*, 93(12), fix146.
32. Ceballos, G., & Ehrlich, P. R. (2006). Global mammal distributions, biodiversity hotspots, and conservation. *Proceedings of the National Academy of Sciences*, 103(51), 19374-19379.
33. Teegalapalli, K., & Datta, A. (2016). Field to a forest: Patterns of forest recovery following shifting cultivation in the Eastern Himalaya. *Forest Ecology and Management*, 364, 173-182.

34. Sarkar, S., Sarkar, U. K., Ali, S., Kumari, S., & Puthiyotti, M. (2021). Status, ecological services, and management of aquatic weeds of floodplain wetlands in India: An overview. *Lakes & Reservoirs: Research & Management*, 26(1), 76-91.
35. Acreman, M. C., Overton, I. C., King, J., Wood, P. J., Cowx, I. G., Dunbar, M. J., ... & Young, W. J. (2014). The changing role of ecohydrological science in guiding environmental flows. *Hydrological Sciences Journal*, 59(3-4), 433-450.
36. Tripathi, R., Shukla, A. K., Shahid, M., Nayak, D., Puree, C., Mohanty, S., ... & Nayak, A. K. (2016). Soil quality in mangrove ecosystem deteriorates due to rice cultivation. *Ecological Engineering*, 90, 163-169.
37. Bunn, S. E., & Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. *Environmental management*, 30(4), 492-507.
38. Jangir, C. K., Sangwan, P. S., Panghaal, D., Kumar, S., Meena, R. S., Bharti, ... & Singh, N. (2024). Spatial variability and statistical analysis of soil properties in the rice wheat-based systems of North-West India. *Communications in Soil Science and Plant Analysis*, 55(8), 1205-1223.
39. Presley, S. J., & Willig, M. R. (2023). Landscape structure, habitat fragmentation, and biodiversity responses across tropical forest ecosystems. *Landscape Ecology*, 38(4), 789–805.
40. Rajan, S. C., Ramesh, B. R., & Sukumar, R. (2023). Forest degradation, connectivity loss, and implications for ecosystem resilience in the Western Ghats, India. *Forest Ecology and Management*, 544, 121156.
41. Joshi, A. A., Gadgil, M., & Bawa, K. S. (2024). Climate variability, forest fragmentation, and functional decline in tropical biodiversity hotspots. *Global Ecology and Conservation*, 47, e02641.
42. Bawa, K. S., Das, A., & Krishnaswamy, J. (2012). Ecosystem services in the Western Ghats, India: Policy, practice, and science. *Conservation and Society*, 10(4), 329–339.
43. Chandran, M. D. S., & Hughes, J. D. (2018). Sacred groves and biodiversity conservation in the Western Ghats of India. *Biodiversity and Conservation*, 27(13), 3545–3562.
44. Daniels, R. J. R., Kumar, N. S., & Gadgil, M. (2016). Community-based conservation in the Western Ghats: Successes and challenges. *Current Science*, 110(9), 1631–1638.

45. Deb, J. C., Phinn, S., Butt, N., & McAlpine, C. A. (2018). Climate change impacts on tropical forests: Identifying risks for biodiversity conservation. *Biological Conservation*, 227, 298–309.
46. Gadgil, M., Kasturirangan, K., Chandran, M. D. S., et al. (2011). *Western Ghats ecology expert panel report*. Ministry of Environment and Forests, Government of India.
47. Jha, C. S., Dutt, C. B. S., & Bawa, K. S. (2016). Deforestation and land use changes in Western Ghats, India. *Current Science*, 110(9), 1654–1662.
48. Joshi, A. A., Gadgil, M., & Bawa, K. S. (2024). Climate adaptation strategies for biodiversity conservation in tropical hotspots. *Global Ecology and Conservation*, 47, e02641.
49. Karanth, K. K., & DeFries, R. (2010). Conservation and management in human-dominated landscapes: Case studies from India. *Biological Conservation*, 143(12), 2865–2869.
50. Kumar, R., Raghavan, R., & Dahanukar, N. (2019). River conservation and community participation in the Western Ghats. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 29(8), 1343–1354.
51. Kunte, K., Joglekar, A., Utkarsh, G., & Padmanabhan, P. (2014). Patterns of butterfly diversity in the Western Ghats. *Journal of Threatened Taxa*, 6(1), 5748–5770.
52. Ministry of Environment, Forest and Climate Change. (2020). *India state of forest report 2019*. Government of India.
53. Nagendra, H., Ostrom, E., & Gurney, G. (2018). Community-based forest governance in India: Lessons from the Western Ghats. *World Development*, 101, 1–15.
54. Ormsby, A. A., & Bhagwat, S. A. (2010). Sacred forests of India: A strong tradition of community-based natural resource management. *Environmental Conservation*, 37(3), 320–326.
55. Prakash, A., Kumar, M., & Reddy, C. S. (2021). Ecologically sensitive areas and land-use regulation in the Western Ghats. *Environmental Management*, 67(5), 842–856.
56. Rajan, S. C., Ramesh, B. R., & Sukumar, R. (2023). Forest fragmentation and resilience in the Western Ghats biodiversity hotspot. *Forest Ecology and Management*, 544, 121156.
57. Seidl, R., Rammer, W., Scheller, R. M., & Spies, T. A. (2017). Climate change impacts on forest disturbance regimes and ecosystem services. *Nature Climate Change*, 7(6), 395–402.

DIVERSITY OF FISHES IN SIRPUR DAM, DISTRICT GONDIA, MAHARASHTRA, INDIA

Pratap Jawaharlal Patle

Department of Zoology,

J. M. Patel Art's, Commerce & Science College, Bhandara – 441904 (M.S.), India

Corresponding author E-mail: drpratapjpatle@gmail.com

Introduction:

Fishes are cold blooded vertebrates that breathe by means of gills and live in water. According to fish base 36,428 fish species has been described as of November 2025. That is more than the combined total of all other vertebrate species members including amphibians, reptiles and birds.

Globally nature as well as animal diversity are affected due to increase in anthropogenic activities. Aquatic ecosystem is also adversely affected due to releasing waste in them. Biodiversity is essential for balancing ecosystem and facing varied problems to environment. In the field of ichthyology there is valuable contribution by many workers. As far as economic importance is concerned the scope of fish and fisheries in Maharashtra is of prime interest.

Fisheries occupy a prominent place in the economy of the world as the fish is one of foods of vast majority of people. Fish not only provides long chain Omega-3 fatty acids, fat soluble vitamins, proteins, but also contains fat, inorganic substances and vitamins. Fish protein is easily digestible and it contains considerable proportion of soluble proteins. It is more valuable for human especially for a population whose staple food is rice. Besides, fisheries help in generating employment and revenue and raising nutritional level.

Fishes are aquatic creatures, well adapted for life in water. Fresh water bodies comprise variety of fishes. Irrigation tanks are one of the important inland fisheries resources in India besides providing agricultural water. India is having very rich sources of inland water bodies in the form of rivers, canals, reservoirs and lakes. These water bodies are located in different parts of the country especially in rural areas, it mainly used as a source of drinking water, irrigation and fish production. In order to maintain sustainable development and stability of ecosystem, surveillance of fish faunal diversity of water bodies is needed. Kamble and Reddi (2012), Kharat *et al.* (2012), Golib *et al.* (2013), Nagabhushanam and Hosetti (2013), Chandrashekhar (2014), Biswas and Panigrahi

(2014), Gadekar (2015), Narayana and Raju (2016), Chaudhary and Sitre (2020) have contributed in the field of study of fish faunal diversity in freshwater bodies.

The present work was undertaken to study the fish diversity of Sirpur dam. The objective of study was to give recent data regarding fish diversity of the Sirpur dam, aiming to contribute a better knowledge of the fish diversity and a tool for conservation planning of aquatic environment in this region.

Materials and Methods

1. Collection and Identification of Fishes

Fishes were collected with the help of fisherman using different types of nets; gill net, drag net, cast net and bhor jal. Diversity of fishes is studied by availability of particular species in fishermen caught. Study was undertaken from February-June 2025.

Collected fishes were identified by using standard literature given by Jayaram (1981), Talwar and Jhingran (1991) and Nelson (2016).

2. Photography and Preservation of Fishes

Fishes were photographed, thereafter stored in 10% formalin solution in glass jars.

Observations and Results

Table 1: Fishes reported from Sirpur dam

Order	Fish Species Reported
Order: Cypriniformes	
Sub-Order: Cyprinoidei	1. <i>Labeo rohita</i>
	2. <i>Labeo diplostomous</i>
	3. <i>Labeo dussumieri</i>
	4. <i>Labeo fimbriatus</i>
	5. <i>Labeo boggut</i>
	6. <i>Labeo calbasu</i>
	7. <i>Puntius ticto</i>
Sub-Order: Siluroidei	8. <i>Mystus bleekeri</i>
	9. <i>Mystus vittatus</i>
Order: Perciformes	10. <i>Ambassis nama</i>
	11. <i>Ambassis ranga</i>
Order: Ophiocephaliformes	12. <i>Ophiocephalus striatus</i>
Order: Clupeiformes	13. <i>Notopterus kapirat</i>
Order: Mastacembeliformes	14. <i>Mastacembelus punctatus</i>

1. *Labeo rohita*

2. *Labeo diplostomus*

3. *Labeo dussumieri*

4. *Labeo fimbriatus*

5. *Labeo boggut*

6. *Labeo calbasu*

7. *Puntius ticto*

8. *Mystus bleekeri*

9. *Mystus vittatus*

10. *Ambassis nama*

11. *Ambassis ranga*

12. *Ophiocephalus striatus*

13. *Notopterus kapirat*

14. *Mastacembelus armatus*

Summary and Conclusion:

Fishing affects not only exploited species but also other species that are linked ecologically or environmentally with fished species and their ecosystems. As a result, many species have been overexploited and more are at risk. During present study, fishes belonging to order Cypriniformes, Perciformes, Ophiocephaliformes, Clupeiformes and Mastacembeliformes were reported in Sirpur dam. Major collection of fishes belongs to order Cypriniformes. Fishes belonging to order Cypriniformes are usually preferred in fish culture practices. These fishes are cultured in order to fulfill the demand of consumers. Consumers majorly prefer these fishes as they grow and attain greater size and these are quite nutritive and delicious.

In present study we have reported the availability of diverse kind of fishes from Sirpur dam. These studies will help to explore the freshwater resources of this region and will also be helpful to carry out the research on these lines.

References:

1. Biswas, B. C., & Panigrahi, A. K. (2014). Abundance of pisces and status of water of Mathabhanga-Chumi River in Indo-Bangla border region. *Global Journal of Research Analysis*, 3(7), 281–283.
2. Chandrashekhar, B. S. (2014). Fishery co-operative societies in India: Problems and prospects. *Global Journal of Research Analysis*, 3(7), 92–94.

3. Chaudhary, A. N., & Sitre, S. R. (2020). Fish diversity of Pothara Dam of Samudrapur Tehsil in Wardha District. *International Research Journal of Science & Engineering*, A(7), 483–487.
4. Gadekar, G. P. (2015). Fish diversity of Bagh River, District Gondia, Maharashtra, India. *International Journal of Researches in Biosciences, Agriculture and Technology*, Special Issue 1, 216–219.
5. Golib, S. M., Abu Nasar, S. M., Mohsin, A. B. M., Chakri, N., & Hassan Fahad, F. (2013). Fish diversity of the River Choto Jamuna, Bangladesh: Present status and conservation needs. *International Journal of Biodiversity and Conservation*, 5(6), 389–395.
6. Jayaram, K. C. (1981). *The freshwater fishes of India, Pakistan, Bangladesh, Burma and Sri Lanka: A handbook*. Zoological Survey of India.
7. Kamble, A. B., & Reddi, K. R. (2012). Biodiversity of fish fauna at Mangi Reservoir, District Solapur, with respect to physicochemical parameters. *Life Science Bulletin*, 9(1), 55–58.
8. Kharat, S. S., Paingankar, M., & Dahanukar, N. (2012). Freshwater fish fauna of Krishna River at Wai, Northern Western Ghats, India. *Journal of Threatened Taxa*, 4(6), 2644–2652.
9. Nagabhushanam, C. M., & Hosetti, B. B. (2013). Limnological profile for the sustained fish production in Tungabhadra Reservoir, Hospet. *Global Journal of Research Analysis*, 2(5), 1–2.
10. Narayana, E., & Raju, E. (2016). Study on ichthyofauna of Pakhal Lake in Pakhal Wildlife Sanctuary, Warangal District (TS), India. *Journal of Current Research*, 8(11), 40856–40859.
11. Nelson, J. S. (2016). *Fishes of the world* (5th ed.). John Wiley & Sons.
12. Talwar, P. K., & Jhingran, A. G. (1991). *Inland fishes of India and adjacent countries* (Vols. 1–2). Oxford & IBH Publishing.
13. FishBase. (n.d.). *FishBase*. <https://fishbase.se/home.php>

HARNESSING NATURE'S BLUEPRINT: BIODIVERSITY-BASED APPROACHES FOR ECOLOGICAL SUSTAINABILITY IN AQUATIC SYSTEMS

Sanishth Sikotariya^{*1}, Milan Masani² and Upasana Vyas³

¹College of Fisheries Science, KU, Veraval

²ClimaCrew Pvt. Ltd., Mumbai, Maharashtra, India

³College of Fisheries Science, KU, Himmatnagar

*Corresponding author E-mail: sanishth2205@gmail.com

Abstract:

Aquatic ecosystems, spanning from freshwater streams to the vast open ocean, are confronting unprecedented challenges from climate change, pollution, overexploitation, and habitat destruction. Traditional management approaches, which often focus on single species or sectors, have proven inadequate to halt the decline of ecosystem health. This chapter argues that biodiversity is not merely a component of aquatic ecosystems but the fundamental engine driving their resilience, productivity, and stability. We explore the theoretical underpinnings of why biodiversity matters, detailing its role in ecosystem functioning and provision of services. We then review and analyze key biodiversity-based approaches for achieving ecological sustainability, including Ecosystem-Based Management (EBM), the strategic restoration of keystone species and habitats, the implementation of Marine Protected Areas (MPAs), and the integration of biodiversity into aquaculture. To illustrate the practical application and success of these principles, we present a case study of the community-led "Seawilding" project in Loch Craignish, Scotland. Finally, we discuss the challenges and future directions for scaling up these approaches, emphasizing the urgent need to shift from exploiting nature's capital to investing in its natural infrastructure.

Keywords: Biodiversity, Resilience, Restoration, Sustainability, Ecosystems, Community

1. Introduction:

The Crisis in Aquatic Systems and the Biodiversity Imperative

Aquatic ecosystems serve as the planet's lifeblood, regulating climate, providing sustenance for billions, and hosting an extraordinary diversity of life. However, their health is in a state of critical decline. According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) global assessment, over 66% of the marine environment has been significantly altered by human actions, and only 13% of the ocean's

biomass remains compared to pre-industrial levels (IPBES, 2019). Freshwater ecosystems are in even worse condition, with populations of monitored freshwater megafauna having declined by a staggering 88% since 1970 (WWF, 2020).

This degradation represents not just an ecological tragedy but a direct threat to human well-being. The collapse of fisheries, the loss of coastal protection from coral reefs and mangroves, and the degradation of water quality all have profound socio-economic consequences. In response, a paradigm shift is underway, moving away from resource-centric management toward a holistic, biodiversity-based framework. This approach recognizes that a diverse, functioning ecosystem is the prerequisite for long-term sustainability. It posits that by protecting and restoring the intricate web of life, we can secure the ecosystem services upon which we depend.

This chapter will delve into the science and application of this paradigm. We will first establish the foundational link between biodiversity and ecosystem stability. Then, we will explore the primary strategies being employed globally to harness this link for sustainability.

2. The Foundation: Why Biodiversity is the Cornerstone of Sustainability

Biodiversity, encompassing genetic, species, and ecosystem diversity, is the raw material for ecological resilience and productivity. Its importance can be understood through several key ecological principles:

2.1 Ecosystem Functioning and Productivity

Diverse ecosystems are generally more productive due to the "complementarity effect," which suggests that different species utilize resources in different ways, leading to more complete and efficient use of available energy and nutrients (Loreau & Hector, 2001). For example, a diverse phytoplankton community can sustain higher total primary production than a monoculture, as different species are adapted to different light and nutrient conditions. This diversity allows for more efficient resource partitioning and utilization, ultimately supporting greater biomass production and ecosystem productivity.

2.2 The Insurance Hypothesis

Biodiversity provides an "insurance policy" against environmental change. In a diverse system, if one species is negatively impacted by a disturbance (e.g., a disease, temperature spike, or pollutant), other species with similar functional roles can compensate, preventing a catastrophic collapse of ecosystem processes (Yachi & Loreau, 1999). This functional redundancy is critical for maintaining stability in an era of rapid, unpredictable change. The

insurance hypothesis is particularly relevant in the context of climate change, as ecosystems with higher biodiversity are better able to maintain their functions despite shifting environmental conditions.

2.3 Trophic Complexity and Food Web Integrity

Healthy aquatic systems possess complex food webs with multiple trophic levels. The loss of even a single species, particularly a keystone predator or engineer, can trigger a trophic cascade, leading to widespread ecosystem collapse. The classic example is the loss of sea otters, which led to an explosion of sea urchins and the subsequent decimation of kelp forests along the Pacific coast (Estes & Duggins, 1995). This example illustrates how the removal of a top predator can fundamentally alter ecosystem structure and function, highlighting the importance of maintaining trophic complexity for ecosystem stability.

3. Key Biodiversity-Based Approaches for Aquatic Sustainability

Translating the science of biodiversity into action requires a suite of integrated management and conservation strategies.

3.1. Ecosystem-Based Management (EBM)

EBM is a comprehensive, place-based approach that considers the entire ecosystem, including humans, rather than focusing on a single species or sector. Its core principles include:

- Emphasizing the health of the entire ecosystem over the short-term productivity of any single resource
- Accounting for the interconnectedness of species, habitats, and human activities
- Incorporating uncertainty and adapting management over time (adaptive management)

The shift from single-species stock assessments to EBM in fisheries management, for instance, aims to prevent bycatch, protect essential fish habitats, and consider the role of forage fish for seabirds and marine mammals (McLeod & Leslie, 2009). EBM requires interdisciplinary collaboration, integrated monitoring, and flexible governance structures that can respond to new information and changing conditions.

3.2. Restoration of Keystone Species and Habitats

Active restoration is a powerful tool for re-establishing biodiversity and ecosystem function. This often focuses on "ecosystem engineers" or keystone species that create or maintain habitat for others.

Oyster Reef Restoration

Oysters are filter feeders that improve water quality, and their complex reef structures provide critical habitat for fish, crabs, and invertebrates. Projects in the Chesapeake Bay and along the Gulf Coast have shown that restoring oyster reefs can significantly increase local biodiversity and fishery yields (Schulte *et al.*, 2009). A single adult oyster can filter up to 50 gallons of water per day, removing excess nutrients and suspended sediments. Additionally, oyster reefs provide shoreline protection by reducing wave energy and preventing erosion.

Mangrove and Seagrass Rehabilitation

These coastal habitats are vital nurseries for fish, act as carbon sinks ("blue carbon"), and protect coastlines from storms and erosion. Global efforts are underway to reverse the trend of mangrove loss, which has been estimated at over 35% in the last 50 years (FAO, 2020). Mangroves sequester carbon at rates up to 10 times higher than terrestrial forests, making their protection and restoration crucial for climate change mitigation. Seagrass meadows, though often overlooked, provide similar benefits and support diverse communities of fish and invertebrates.

3.3. Marine Protected Areas (MPAs) and OECMs

MPAs are geographically defined marine areas where human activities are restricted to achieve long-term nature conservation. When well-designed and enforced, they are one of the most effective tools for protecting biodiversity.

Spillover Effect

MPAs can serve as reservoirs of biodiversity and biomass. As fish populations inside the MPA thrive, adults and larvae can "spill over" into adjacent fishing grounds, potentially enhancing fisheries (Gell & Roberts, 2003). This spillover effect can benefit both conservation and fisheries objectives, creating a win-win scenario for marine ecosystems and human communities that depend on them.

The 30x30 Initiative

A growing global movement, formalized at the UN Biodiversity Conference (COP15) in 2022, aims to protect at least 30% of the world's land and ocean by 2030. This ambitious goal underscores the recognized importance of area-based conservation in safeguarding biodiversity (CBD, 2022). Achieving this target will require not only the establishment of new protected areas but also improved management of existing ones, with particular attention to connectivity, representativeness, and effectiveness.

3.4. Biodiversity-Informed Aquaculture (Integrated Multi-Trophic Aquaculture - IMTA)

To reduce the environmental footprint of aquaculture, IMTA mimics natural ecosystems by co-culturing species from different trophic levels. For example, fed species like salmon are grown alongside extractive species like seaweeds (which absorb inorganic waste) and shellfish (which filter organic particulates). This approach not only reduces pollution but also increases overall productivity and biodiversity, creating a more balanced and sustainable system (Chopin *et al.*, 2001). IMTA systems can transform waste products from one species into inputs for another, closing the loop and minimizing environmental impacts while potentially increasing economic returns.

4. Case Study: Seawilding Loch Craignish, Scotland - A Community-Led Renaissance Background

Loch Craignish, a sea loch on the west coast of Scotland, has suffered from decades of bottom-trawling and scallop dredging, which have decimated its once-rich seabed habitats. The native European flat oyster (*Ostrea edulis*), a keystone ecosystem engineer, had become locally extinct. In 2020, a group of local residents, fishermen, and conservationists formed "Seawilding" to restore the loch's biodiversity and create a sustainable, community-managed fishery.

Biodiversity-Based Approach

Seawilding's strategy is a multi-pronged, biodiversity-focused initiative:

Native Oyster Restoration

The project's flagship goal is to re-establish a self-sustaining population of native oysters. They have created Scotland's first community-led native oyster nursery, where wild oyster larvae (spat) are collected and grown in suspended cages protected from predators. Once large enough, they are deployed onto the seabed in carefully selected, protected restoration sites. The project uses innovative techniques such as broodstock enhancement and larval seeding to maximize restoration success.

Seagrass Meadow Rehabilitation

Recognizing the importance of seagrass as a nursery habitat and carbon sink, Seawilding is also working to restore seagrass meadows (*Zostera marina*). Volunteers collect seagrass seeds and plant them in designated areas to re-establish these vital habitats. The project has developed specialized techniques for seed collection, storage, and planting that have significantly improved survival rates compared to traditional methods.

Community Engagement and Citizen Science

The project is deeply rooted in the local community. It engages local creel fishermen, who have seen the benefits of a healthier ecosystem, and relies on volunteers for monitoring and restoration work. This "bottom-up" approach fosters local stewardship and ensures long-term support. The project has developed a comprehensive citizen science program that trains volunteers to monitor water quality, biodiversity, and restoration outcomes, creating a sense of ownership and connection to the marine environment.

Outcomes and Successes (as of 2023)

Oyster Re-establishment

Over 300,000 native oysters have been deployed onto the loch seabed. Early monitoring shows promising survival rates, and the project is on track to create a self-reproducing oyster population within the next decade (Seawilding, 2023). The oysters are already showing signs of natural recruitment, indicating that conditions are becoming suitable for self-sustaining populations.

Biodiversity Hotspots

The newly created oyster reefs are already showing signs of becoming biodiversity hotspots. Divers and underwater cameras have recorded a significant increase in species like juvenile cod, squat lobsters, and various invertebrates taking shelter within the reef structures. The restored seagrass meadows are similarly showing increased biodiversity, with higher densities of juvenile fish and invertebrates compared to unrestored areas.

Economic and Social Revitalization

The project has created jobs, attracted eco-tourism, and reconnected the local community with its marine environment. It has demonstrated that conservation and sustainable livelihoods can go hand-in-hand. Local fishermen have reported increased catches in areas adjacent to restoration sites, and the project has attracted funding and visitors interested in learning about community-led marine restoration.

Lessons Learned

The Seawilding project is a powerful success story that demonstrates the effectiveness of a small-scale, community-led, biodiversity-based approach. It shows that restoring keystone species can kickstart a cascade of positive ecological effects and that empowering local communities is key to achieving long-term, sustainable outcomes. The project has also highlighted the importance of adaptive management, as techniques have been refined based on monitoring results and experience gained over time.

5. Challenges and Future Directions

Despite the promise of biodiversity-based approaches, significant challenges remain. Climate change acts as a threat multiplier, causing ocean warming, acidification, and deoxygenation that can undermine restoration efforts. Political will, funding constraints, and the difficulty of enforcing regulations in vast oceanic areas are also major hurdles.

5.1 Climate-Smart Conservation

Future directions must focus on integrating climate projections into the design of MPAs and restoration projects to ensure their long-term viability. This includes identifying climate refugia, protecting genetic diversity that may confer resilience to changing conditions, and designing restoration projects with future climate scenarios in mind. For example, selecting oyster strains that are more tolerant of warmer temperatures or lower pH conditions may increase the success of restoration efforts in a changing climate.

5.2 Technological Innovation

Utilizing tools like environmental DNA (eDNA) for rapid biodiversity assessment, and satellite tracking to better understand species movements and inform protected area design. These technologies can greatly enhance our ability to monitor biodiversity, detect changes in ecosystem composition, and make informed management decisions. For example, eDNA can provide a comprehensive snapshot of biodiversity in water samples, allowing for more efficient and less invasive monitoring than traditional methods.

5.3 Global Cooperation

Biodiversity loss is a transboundary problem that requires international agreements and collaboration, such as the new High Seas Treaty (BBNJ agreement). Effective management of marine biodiversity beyond national jurisdictions is particularly critical, as these areas constitute nearly two-thirds of the ocean and are home to a significant portion of marine biodiversity. International cooperation is also needed to address issues like illegal fishing, marine pollution, and climate change that transcend national boundaries.

5.4 Valuing Natural Capital

Developing economic models that properly account for the immense value of ecosystem services, making a clear business case for investing in biodiversity. This includes quantifying the economic benefits of healthy ecosystems in terms of fisheries production, tourism, carbon sequestration, coastal protection, and other services. By internalizing these values in decision-making, we can create incentives for conservation and sustainable use of marine resources.

Conclusion:

The path to ecological sustainability in aquatic systems is paved with biodiversity. It is not a luxury to be protected when economic times are good, but the fundamental infrastructure upon which all life, including human life, depends. The evidence is clear: diverse ecosystems are more productive, more resilient, and provide more services. The approaches outlined in this chapter—from EBM to community-led restoration—are not just theoretical ideals; they are practical, proven strategies for a healthier planet. The success of projects like Seawilding Loch Craignish offers a beacon of hope and a replicable model. The challenge now is to scale these efforts globally, with the urgency and commitment that the planetary crisis demands. By choosing to invest in nature's blueprint, we are not just saving species; we are securing our own future.

References:

1. CBD (Convention on Biological Diversity). (2022). *Kunming-Montreal global biodiversity framework*. <https://www.cbd.int/gbf/>
2. Chopin, T., Buschmann, A. H., Halling, C., Troell, M., Kautsky, N., Neori, A., & Yarish, C. (2001). Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. *Aquaculture*, 231(1-4), 361-391.
3. Estes, J. A., & Duggins, D. O. (1995). Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. *Ecological Monographs*, 65(1), 75-100.
4. FAO (Food and Agriculture Organization of the United Nations). (2020). *The state of the world's forests 2020: Forests, biodiversity and people*. FAO.
5. Gell, F. R., & Roberts, C. M. (2003). Benefits beyond boundaries: The fishery effects of marine reserves. *Trends in Ecology & Evolution*, 18(9), 448-455.
6. IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). (2019). *Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services* (E. S. Brondízio, J. Settele, S. Díaz, & H. T. Ngo, Eds.). IPBES Secretariat.
7. Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. *Nature*, 412(6842), 72-76.
8. Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. *Ecology Letters*, 16(1), 106-115.

9. McLeod, K. L., & Leslie, H. M. (2009). *Ecosystem-based management for the oceans*. Island Press.
10. Schulte, D. M., Burke, R. P., & Lipcius, R. N. (2009). Unprecedented restoration of a native oyster metapopulation. *Science*, 325(5944), 1124–1128.
11. Seawilding. (2023). *Annual report 2023*. <https://www.seawilding.org.uk/>
12. WWF (World Wide Fund for Nature). (2020). *Living planet report 2020: Bending the curve of biodiversity loss* (R. E. A. Almond, M. Grooten, & T. Petersen, Eds.). WWF.
13. Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. *Proceedings of the National Academy of Sciences*, 96(4), 1463–1468.

USING ENVIRONMENTAL DNA (eDNA) TO MONITOR FISH BIODIVERSITY FOR SUSTAINABLE FISHERIES

Sanishth Sikotariya^{*1}, Milan Masani² and Upasana Vyas³

¹College of Fisheries Science, KU, Veraval

²ClimaCrew Pvt. Ltd., Mumbai, Maharashtra, India

³College of Fisheries Science, KU, Himmatnagar

*Corresponding author E-mail: sanishth2205@gmail.com

Abstract:

The pursuit of sustainable fisheries is hindered by the high cost, limited resolution, and ecological impacts of conventional monitoring techniques. Environmental DNA (eDNA) analysis—the detection of genetic material shed by organisms into their environment—has revolutionized the capacity to assess aquatic biodiversity in a non-invasive and highly sensitive manner. This chapter provides a comprehensive technical review of eDNA metabarcoding and quantitative PCR (qPCR) applications in fisheries science. It presents the full end-to-end workflow, addressing critical methodological challenges including contamination control, PCR inhibition, primer bias, and the effects of hydrodynamic transport on data interpretation. The chapter critically evaluates the performance of eDNA in generating biodiversity metrics, estimating relative biomass, and detecting rare, invasive, and endangered species. Furthermore, it explores the integration of eDNA into Ecosystem-Based Management (EBM) frameworks, emerging forensic applications, and the potential of autonomous in-situ sampling platforms. The analysis concludes that while eDNA cannot yet replace stock assessment models based on catch-per-unit-effort (CPUE), it represents a powerful complementary tool that substantially enhances the resolution, efficiency, and sustainability of fisheries governance.

Keywords: Environmental DNA, Fish Biodiversity, Sustainable Fisheries, Metabarcoding, Ecosystem-Based Management

1. Introduction:

The Data Deficit in Global Fisheries

Effective fisheries management depends on accurate stock assessments and biodiversity monitoring. However, the Food and Agriculture Organization of the United Nations estimates that approximately 34.2% of global fish stocks are overfished, while the status of many additional stocks remains unknown due to persistent data deficiencies (FAO, 2022).

These gaps are most pronounced in small-scale, inland, and tropical fisheries, where monitoring infrastructure is limited.

Conventional monitoring tools—including trawl surveys, gillnetting, and underwater visual census (UVC)—are increasingly inadequate for contemporary sustainability challenges. These methods are labor-intensive, species-selective, and frequently ecologically disruptive, causing physical damage to benthic habitats and mortality among non-target species (Hallett *et al.*, 2022). Moreover, their limited spatial and temporal coverage restricts their capacity to detect rare, cryptic, or early life-stage organisms.

In contrast, fish continuously release genetic material into the aquatic environment via mucus, feces, urine, gametes, scales, and sloughed cells. This environmental DNA (eDNA) persists in the water column for hours to days, providing an integrated signal of recent species presence. Advances in high-throughput sequencing (HTS), particularly metabarcoding approaches, allow entire fish communities to be reconstructed from a single water sample (Taberlet *et al.*, 2012). This chapter examines how eDNA technologies are reshaping aquatic biodiversity assessment and supporting the transition toward sustainable, ecosystem-based fisheries management.

2. Methodological Workflow: Best Practices and Technical Considerations

To ensure that eDNA data are suitable for management and policy applications, rigorous and standardized workflows are essential. The analytical pipeline consists of four interconnected phases: (1) field collection, (2) filtration and extraction, (3) amplification, and (4) bioinformatic analysis.

2.1 Field Collection and Contamination Control

Contamination represents the principal risk in eDNA fieldwork. Water samples are typically collected using Niskin bottles for depth-resolved sampling or sterile containers for surface grabs. All sampling equipment must be sterilized using a 10% sodium hypochlorite solution followed by thorough rinsing with molecular-grade water between sites.

Recent best practice favors in-situ filtration, which minimizes DNA degradation and contamination during transport. Enclosed filtration systems such as Sterivex units enable filtration of 1–5 L of water through 0.22 µm membranes directly in the field, a critical advantage in oligotrophic marine environments where eDNA concentrations are low (Deiner *et al.*, 2015).

2.2 DNA Extraction and Inhibition Management

Environmental samples commonly contain PCR inhibitors such as humic acids, polysaccharides, and metal ions. Extraction kits designed for environmental matrices (e.g., DNeasy PowerWater) incorporate inhibitor removal steps that are critical for successful downstream amplification. DNA concentration and purity are assessed using fluorometric methods (Qubit), while inhibition is evaluated by spiking samples with an internal positive control (IPC) sequence.

2.3 Marker Selection and Amplification Strategies

Marker choice determines taxonomic resolution and detection efficiency. Although cytochrome c oxidase subunit I (COI) is the standard barcode for animals, its relatively long amplicon length (>300 bp) and primer mismatches across fish taxa reduce its effectiveness for degraded eDNA templates.

The mitochondrial 12S rRNA gene is currently the preferred marker for fish eDNA studies. The MiFish primer set amplifies a short (~170 bp), hypervariable region that is conserved across teleosts and chondrichthyans while providing species-level discrimination (Miya *et al.*, 2015). To suppress amplification of non-target DNA (e.g., humans or bacteria), blocking primers or peptide nucleic acid (PNA) clamps are increasingly employed (O'Donnell *et al.*, 2021).

2.4 Sequencing and Bioinformatic Processing

Sequencing libraries are prepared using dual-indexed adapters to minimize index hopping during Illumina sequencing. Bioinformatic pipelines such as DADA2 or QIIME2 generate Amplicon Sequence Variants (ASVs), which provide higher resolution than traditional operational taxonomic units (OTUs).

To reduce false positives, conservative detection thresholds are applied. A common criterion requires a minimum read count and consistent detection across technical PCR replicates (Ficetola *et al.*, 2015). Taxonomic assignment depends critically on the completeness and accuracy of reference databases such as GenBank, BOLD, and MIDORI.

3. From Presence to Biomass: The Quantification Challenge

While presence-absence data are valuable for biodiversity assessment, fisheries management requires information on abundance and biomass. The relationship between eDNA concentration and biomass is governed by shedding rates, hydrodynamic transport, and DNA decay.

Shedding rates vary with species, body size, metabolic activity, temperature, and physiological state. Spawning or stressed individuals often shed substantially more DNA than resting fish, introducing ecological covariance that complicates biomass inference (Klymus *et al.*, 2020).

Hydrodynamic transport further influences spatial interpretation, particularly in rivers and coastal systems. Coupling eDNA data with hydrodynamic models enables back-calculation of probable source locations and improves spatial resolution (Port *et al.*, 2016). DNA decay is accelerated by microbial activity, UV radiation, and temperature; eDNA half-life may range from 6-12 hours in warm tropical waters to several days in cold, deep environments (Barnes *et al.*, 2014).

Despite these challenges, controlled mesocosm studies demonstrate strong correlations between eDNA concentration and biomass when environmental variability is constrained, supporting the use of eDNA for relative abundance comparisons over time (Doi *et al.*, 2017).

4. Contributions to Ecosystem-Based Management

Ecosystem-Based Management (EBM) requires monitoring of entire communities rather than single target species. eDNA metabarcoding enables the calculation of standard biodiversity indices (e.g., Shannon, Simpson, Pielou's evenness) and facilitates detection of trophic restructuring associated with “fishing down the food web” (Pauly *et al.*, 1998).

The method excels at detecting rare, invasive, and cryptic species. In the Laurentian Great Lakes, eDNA provided the earliest detection of invasive Asian carp, enabling rapid management responses (Jerde *et al.*, 2011). Emerging forensic applications include identifying illegal, unreported, and unregulated (IUU) fishing through eDNA recovered from vessel holds and processing water (Stoeckle *et al.*, 2021).

5. Case Studies

Large-scale applications demonstrate operational feasibility. The MiFish coastal survey in Japan detected 680 fish taxa across 685 sites, including numerous IUCN-listed species, with high concordance to conventional surveys but at substantially lower cost (Ushio *et al.*, 2018). In the North Sea, eDNA-based monitoring of Atlantic cod showed strong correlations with independent stock assessment indices, validating its use for tracking recovery trajectories (Mariani *et al.*, 2019).

6. Limitations, Ethics, and Data Governance

Key limitations include incomplete reference databases, inability to resolve life stage, and challenges in translating DNA copy numbers into absolute biomass. Ethical concerns arise from releasing high-resolution distribution data for commercially valuable or endangered species, necessitating data governance frameworks that balance transparency and conservation security (Kelly *et al.*, 2022).

7. Future Horizons: Automation and eRNA

Autonomous platforms such as the Environmental Sample Processor (ESP) now enable in-situ filtration, extraction, and qPCR analysis, providing near-real-time biodiversity data from remote environments (Yamahara *et al.*, 2019). Environmental RNA (eRNA) analysis offers additional potential by revealing physiological state and stress responses, although its rapid degradation presents technical challenges (Sansom *et al.*, 2020).

Conclusion:

Environmental DNA has emerged as a transformative tool in fisheries science, providing a non-invasive, cost-effective, and high-resolution approach to monitoring fish biodiversity across aquatic ecosystems. By overcoming many limitations of conventional survey methods, eDNA enhances the detection of rare, cryptic, and non-target species and improves ecosystem-scale understanding essential for sustainable fisheries management.

While eDNA cannot yet replace traditional stock assessment methods based on catch-per-unit-effort or biomass surveys, it serves as a powerful complementary approach that strengthens ecosystem-based management by filling critical data gaps, particularly in data-poor and biodiversity-rich regions. Advances in standardization, reference database coverage, and quantitative modeling are steadily improving its reliability for management applications.

As molecular technologies continue to advance, the integration of eDNA with conventional fisheries monitoring, autonomous sampling platforms, and ecosystem models will further enhance its value for adaptive management. Strategic adoption of eDNA within fisheries governance frameworks offers a practical pathway toward more resilient, transparent, and ecologically sustainable fisheries in an era of rapid environmental change.

References:

1. Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. *Conservation Genetics*, 17, 1–17.

2. Barnes, M. A., Turner, C. R., Jerde, C. L., Renshaw, M. A., Chadderton, W. L., & Lodge, D. M. (2014). Environmental conditions influence eDNA persistence in aquatic systems. *Biological Conservation*, 183, 161–166.
3. Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W., & de Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. *Trends in Ecology & Evolution*, 29(6), 358–367.
4. Bylemans, J., White, N. E., Eames, C. V., Nielsen, D. M., & Furlan, E. M. (2023). Environmental DNA metabarcoding for monitoring marine and estuarine fisheries: A systematic review and global synthesis. *Fisheries Research*, 260, 106835.
5. Coble, A. A., Ardura, A., Maes, G. E., & Egan, S. P. (2021). An introduction to the application of environmental DNA (eDNA) analysis in fisheries management. *North American Journal of Fisheries Management*, 41(1), 1–12.
6. Deiner, K., & Altermatt, F. (2014). Transport distance of environmental DNA in a natural river. *PLoS ONE*, 9(2), e88786.
7. Deiner, K., Walser, J. C., Mächler, E., & Altermatt, F. (2015). Choice of capture and extraction methods affects detection of freshwater biodiversity from environmental DNA. *Biological Conservation*, 183, 53–63.
8. Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., de Vere, N., Pfrender, M. E., & Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. *Molecular Ecology*, 26(21), 5872–5895.
9. Djurhuus, A., Pitz, K., Sawaya, N. A., Rojas-Márquez, J., Michaud, B., Montes, E., Muller-Karger, F., & O'Brien, T. (2020). Evaluation of marine eDNA for ecosystem monitoring: Insights from an oceanographic time-series. *PLoS ONE*, 15(10), e0240634.
10. Doi, H., Uchii, K., Takahara, T., Yamanaka, H., Minamoto, T., & Honjo, M. N. (2017). Biomass quantification of aquatic animals by environmental DNA analysis. *Limnology*, 18(1), 71–76.
11. FAO. (2022). *The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation*. Food and Agriculture Organization of the United Nations, Rome.
12. Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. *Biology Letters*, 4(4), 423–425.
13. Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., Gielly, L., Lopes, C. M., Boyer, F., Pompanon, F., & Taberlet, P. (2015). Replication levels, false

presences and the estimation of presence/absence from eDNA metabarcoding data. *Molecular Ecology Resources*, 15(3), 543–556.

14. Hallett, C. S., Valesini, F. J., Elliott, M., & Clarke, K. R. (2022). Fish-based indicators of ecosystem condition in estuarine and coastal waters. *Environmental Research*, 204, 111964.
15. Hansen, B. K., Jensen, P. R., & Hansen, M. M. (2020). Comparison of environmental DNA and trawl surveys for monitoring marine fish biodiversity. *ICES Journal of Marine Science*, 77(4), 1445–1454.
16. Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. *Conservation Letters*, 4(2), 150–157.
17. Kelly, R. P., Closek, C. J., O’Grady, J., Silliman, K., & Krapfl, K. (2022). Genetic and genomic tools for marine conservation and management. *Marine Policy*, 144, 105118.
18. Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C. (2020). Quantification of eDNA shedding rates from invasive carp. *Biological Invasions*, 22, 2431–2442.
19. Mariani, S., Baalsrud, H. T., Hovinen, J., Jensen, A. J., Tsagkarakis, A., Østergaard, S., & Nielsen, E. E. (2019). Fishing for DNA: The potential of environmental DNA analysis for improving marine fisheries management. *Fish and Fisheries*, 20(5), 860–876.
20. Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., & Iwabuchi, T. (2015). MiFish primers for metabarcoding environmental DNA from fishes. *Royal Society Open Science*, 2(7), 150088.
21. O’Donnell, J. L., Kelly, R. P., Wooliver, R., & Bicknell, A. W. J. (2021). Fine-scale assessment of reef fish assemblages using eDNA metabarcoding. *Molecular Ecology Resources*, 21(8), 2399–2414.
22. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F. (1998). Fishing down marine food webs. *Science*, 279(5352), 860–863.
23. Port, J. A., O’Donnell, J. L., Romero-Maraccini, O. C., Leary, P. R., Litvin, S. Y., Nickols, K. J., Yamahara, K. M., & Kelly, R. P. (2016). Assessing vertebrate biodiversity using environmental DNA. *Molecular Ecology*, 25(2), 527–541.
24. Sansom, B. J., Majoris, J. E., Heckman, R. A., Jones, A. K., Caselle, J. E., & Bernard, A. M. (2020). Environmental RNA for aquatic animal monitoring. *Communications Biology*, 3, 55.

25. Stoeckle, M. Y., Charlop-Powers, Z., & Sokolow, S. (2021). Aquatic environmental DNA for conservation and market fraud detection. *Conservation Biology*, 35(3), 826–839.
26. Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012). Environmental DNA. *Molecular Ecology*, 21(8), 1789–1793.
27. Ushio, M., Murakami, H., Masuda, R., Sado, T., Minamoto, T., Miya, M., & Kondoh, M. (2018). Quantitative monitoring of fish biodiversity using eDNA metabarcoding. *Scientific Reports*, 8, 1–11.
28. Weigand, H., Beukema, W., Ghazali, S. A. M., Groenenberg, D. S. J., Hendrich, L., & Rulik, B. (2019). Building a global reference library for aquatic biodiversity. *Scientific Reports*, 9, 18083.
29. Yamahara, K. M., Sogin, E. M., Zhang, Y., Harper, S. B., Christensen, D., Devereux, R., & Ryan, J. P. (2019). Autonomous in-situ preservation of marine environmental DNA. *Frontiers in Marine Science*, 6, 483.

SUITABLE PLANTS AND FISH SPECIES FOR AQUAPONICS AND BIOFLOC TECHNOLOGIES IN INDIA

S. Tamil Selvi¹, A. Muthulakshmi¹, M. Nandhini¹ and M. Sasirekhamani^{*2}

¹PG & Research Department of Zoology,

Kamaraj College (Autonomous), Thoothukudi

²Department of Biotechnology,

Thulasi College of Arts & Science for Women, Thoothukudi

*Corresponding author E-mail: sasirekhamani@gmail.com

Abstract:

Aquaponics and biofloc technologies (BFT) are emerging, resource-efficient aquaculture-horticulture hybrid systems that can help India meet rising demands for fish and vegetables while conserving water and reducing pollution. Aquaponics couples fish production with soilless plant culture: fish waste provides nutrients for plants while plants and biofilters return cleansed water to fish. Biofloc technology emphasizes on-site conversion of waste nitrogen into microbial biomass (flocs) which serve as supplemental feed and improve water quality. This chapter reviews species selection for both systems in Indian contexts — climatic zones, market preferences, regulatory constraints and available hatchery supply — and provides practical tables of recommended fish and plant species, stocking densities, ranges for temperature and salinity tolerance, preferred feeds, and key husbandry notes. Management parameters (e.g., C:N ratio and aeration) and species-specific considerations (disease, marketability, polyculture options) are highlighted. Representative figures (system schematics and the microbial loop in BFT) and ready-to-use tables are included to guide researchers, extensionists, and small-scale entrepreneurs planning aquaponics or biofloc projects in India. Key recommendations stress starting with robust species (tilapia, Indian carps, pangasius, shrimp where permitted) and fast-growing vegetables/herbs (leafy greens, basil, water spinach) to optimize nutrient balance and income streams.

1. Introduction:

India is the world's second largest producer of fish and a major global aquaculture hub (FAO, 2020). With limited arable land, growing urban populations, and increasing freshwater constraints, urban and peri-urban aquaculture innovations present an attractive pathway for enhancing food and nutritional security (Bhanja *et al.*, 2024).

Aquaponics — the marriage of recirculating aquaculture systems (RAS) and hydroponics — and biofloc technology (BFT) — microbial conversion of waste into nutritious floc — each minimize water exchange, increase yields per unit area, and allow intensive production in tanks and controlled environments (Khanjani *et al.*, 2024; Hwang *et al.*, 2025). However, success strongly depends on species selection: species must be biologically suited to system conditions (temperature, oxygen, salinity), available in hatchery form, have market demand, and ideally synergize with crop selection in aquaponics or floc nutrition in BFT (Raza *et al.*, 2024). This chapter provides a practical, India-focused review and decision framework for choosing plants and aquatic species, supported by tables and figures for implementation.

2. Principles that Guide Species Selection

- **Environmental compatibility:** Choose species tolerant of local temperature ranges, dissolved oxygen regimes, and salinity (if brackish).
- **Feed conversion & growth rate:** Fast-growing, robust species with good FCRs reduce costs and time to market.
- **Disease resilience & management:** Species with established husbandry protocols and accessible diagnostics are preferable.
- **Hatchery availability & legal/regulatory status:** Use species with reliable seed supply; observe state/national regulations (some species have restrictions).
- **Complementarity with plants (aquaponics):** Fish should produce nutrients that plants can assimilate (primarily ammonia → nitrate via biofilter). Plants with high nutrient uptake and fast growth help maintain water quality.
- **Compatibility with BFT:** Species that efficiently utilize microbial floc (benthic/column feeders, omnivores) often perform well in biofloc systems.

3. Aquaponics: Fish and Plant Species Suitable for India

3.1. Overview of aquaponic fish choices

Aquaponic fish should be hardy, tolerant of variable water quality, and of commercial interest. In India the most practical choices are:

- **Nile tilapia (*Oreochromis niloticus*)** — highly tolerant of crowding and variable water quality; fast growth and strong feed conversion; widely used worldwide and increasingly in India. Good for small to large scale aquaponics.
- **Indian major carps (*Rohu Labeo rohita, Catla Catla catla, Mrigal Cirrhinus mrigala*)** — culturally accepted and marketable; perform well in polyculture; carp species are used in greenhouse/pond aquaponic trials in India.

- **Common carp (*Cyprinus carpio*)** — hardy and omnivorous; works in cooler regions.
- **Catfish / Pangasius (*Pangasianodon hypophthalmus* / *Pangasius pangasius*)** — fast growth, good fillet yield; requires management of turbidity and oxygen.
- **Freshwater prawn (*Macrobrachium rosenbergii*)** — possible in hybrid systems but require separate considerations (substrate, molting issues).
- **Ornamental species (Koi, goldfish)** — not for food, but useful in demonstration/education systems.

Key aquaponics fish selection considerations: market demand, juvenile availability, temperature tolerance (tilapia 20–32°C; Indian carps 22–30°C; carp tolerant to cooler), and stocking densities adapted to system size and biofilter capacity.

3.2. Plants well-suited to aquaponics in India

Plants for aquaponics should have: fast uptake of nitrogen, short time to harvest, and economic value. Groupings:

Leafy greens and herbs (best starting crops)

- Lettuce (*Lactuca sativa*) — rapid growth, low nutrient requirement, continuous harvest.
- Spinach / Indian spinach / Palak (*Spinacia oleracea* / *Basella alba*) — high consumer demand.
- Water spinach / Kangkong (*Ipomoea aquatica*) — thrives in warm water systems, high nutrient uptake.
- Mint (*Mentha spp.*), Basil (*Ocimum basilicum* / *O. tenuiflorum*) — high-value herbs, aromatic crops.
- Coriander (*Coriandrum sativum*) — short-cycle herb.

Fruit/vegetable crops (for more experienced setups)

- Tomato (*Solanum lycopersicum*) — needs stable nutrient and pH management; performs in larger aquaponics systems.
- Cucumber (*Cucumis sativus*) — training and trellising required.
- Capsicum / Bell pepper — higher nutrient demand.
- Strawberries (*Fragaria × ananassa*) — possible but sensitive to nutrient imbalances.

Vegetables tolerant to aquaponic conditions: pak choi, kale, pak-choy, celery, arugula, choy sum. Use leafy/fast-growing crops initially to establish nutrient balance.

Table 1: Recommended Fish Species for Aquaponics (India)

Species (common & scientific)	Temp. range (°C)	Salinity tolerance	Stocking density (typical, fish/m ³)	Feed type / FCR typical	Notes for India
Nile Tilapia (<i>Oreochromis niloticus</i>)	20–32	Fresh to low brackish (<5 ppt)	20–200 (depending on system)	Pelleted grower, FCR ~1.2–1.8	Fast-growing, hardy; growing adoption in India; market awareness needed.
Rohu (<i>Labeo rohita</i>)	22–30	Fresh	10–50	Formula feed/vegetable mix, FCR ~1.5–2.0	Popular Indian carp; works in polyculture.
Catla (<i>Catla catla</i>)	24–30	Fresh	10–40	Sinking pellets/vegetation, FCR ~1.6–2.0	Surface feeder; may require mixed feeding strategies.
Common carp (<i>Cyprinus carpio</i>)	15–30	Fresh	10–80	Pelleted/vegetable, FCR ~1.4–1.9	Cold-tolerant; resilient.
Pangasius (<i>Pangasianodon hypophthalmus</i>)	20–30	Fresh	50–250	Pelleted feed, FCR ~1.0–1.5	Fast growth, boneless fillets popular; hatchery supply variable.
Freshwater prawn (<i>Macrobrachium rosenbergii</i>)	24–30	Fresh	5–40	Crumbled/dietary pellets	Molting and substrate needs; often separated in production.

Table notes: densities vary by system type (raft, media bed, NFT) and management intensity; these are indicative and must be adapted to biofilter capacity, DO and ammonia control. Sources: Indian trials and reviews.

Table 2: Recommended Plant Species for Aquaponics (India)

Crop (common & scientific)	Growth cycle (days)	Ideal pH range	Nutrient notes / Comments
Lettuce (<i>Lactuca sativa</i>)	30–45	6.0–7.0	Low nutrient demand; excellent starter crop.
Water spinach (<i>Ipomoea aquatica</i>)	25–40	6.0–7.5	Thrives in warm systems; high N uptake.
Spinach / Palak (<i>Spinacia oleracea</i> / <i>Basella alba</i>)	30–45	6.0–7.0	Fast growth; marketable.
Basil / Tulsi (<i>Ocimum spp.</i>)	40–70	5.5–6.8	High-value herb; aromatic oils sensitive to light.
Mint (<i>Mentha spp.</i>)	30–60	6.0–7.0	Vigorous — watch for spread/overcrowding.
Tomato (<i>Solanum lycopersicum</i>)	75–90 (fruiting)	5.8–6.8	Higher nutrient needs — need to balance with fish load.
Cucumber (<i>Cucumis sativus</i>)	50–70	5.8–6.8	Requires trellising and stable nutrient levels.

Plant selection tip: start with leafy greens and herbs to balance nitrogen quickly; when stable, introduce fruiting crops with careful nutrient monitoring.

3.3 Aquaponics System Design Notes (species-related)

- **Biofilter sizing:** Base biofilter on total feed load (g feed/day) rather than fish biomass alone. Fast feeders like tilapia require robust biofiltration.
- **Hydraulic loading and plant area:** Plants should assimilate nitrates produced; a common rule-of-thumb is 1:1 to 2:1 m² of raft area per m³ of fish tank at moderate stocking — but this varies widely with crop type and fish feed rate. Local trials recommended.

4. Biofloc Technology (BFT): Species and Management in India

4.1. BFT overview and species suitability

Biofloc systems manipulate the carbon-to-nitrogen (C:N) ratio to promote heterotrophic bacterial growth that assimilates dissolved nitrogen into microbial flocs. Flocs act as supplemental natural feed rich in protein and micronutrients, improving feed efficiency and often survival. BFT is particularly well-suited to:

- **Tilapia (*Oreochromis niloticus*)** — excellent performance in BFT and hybrid RAS/BFT systems; tolerates very high stocking densities.
- **Pangasius / Catfish** — omnivorous habits allow them to consume floc efficiently.
- **Indian major carps (Rohu, Catla)** — also have been trialed successfully; benthic carps can utilize floc on bottom.
- **Pacific white shrimp (*Litopenaeus vannamei*)** — widely adopted in India in brackish BFT ponds/tanks; requires skilled management (salinity control, molting).
- **Giant freshwater prawn (*Macrobrachium rosenbergii*)** — BFT used but molting and substrate management can complicate operations.

Why these species? They are robust, can utilize microbial protein, and have profitable markets. BFT success hinges on consistent aeration, carbon addition, and monitoring of DO, TAN, and floc volume.

Table 3: Recommended Species & BFT Parameters (India)

Species	Culture salinity	Typical stocking (ind/m ³)	C:N target (added)	Aeration requirement	Notes
Nile Tilapia	Fresh	50–300 (intensive)	10–20:1 (depending on feed)	High continuous aeration	High densities possible; monitor DO & sludge.
Pangasius	Fresh	100–400	12–18:1	High	Rapid growth; marketable flesh; warm temps.
Common carp / Rohu	Fresh	30–150	10–20:1	Moderate-high	Polyculture options; floc eaten at bottom.
<i>Litopenaeus vannamei</i> (shrimp)	Brackish 10–25 ppt	300–600 (juveniles) in tanks	10–15:1	Very high	Advanced management; commercial BFT shrimp practiced in India.

Notes: C:N ratios are management targets achieved by adding carbohydrate sources (molasses, cassava, cereal flours). Higher C:N favors heterotrophic microbes and rapid ammonia assimilation; excessive floc accumulation requires periodic removal. Continuous dissolved oxygen >5 mg/L is often targeted in intensive BFT.

4.2. Management highlights for BFT species

- **Start-up:** Seed floc inoculum from established systems or develop gradually by adding carbon and low initial stocking; inoculum accelerates floc formation.
- **Nutrition & feed strategies:** Because flocs contribute protein, reduce commercial feed inputs progressively as floc biomass becomes substantial — but do so cautiously. Monitor growth rates and body condition.
- **Aeration & mixing:** Continuous, high-capacity aeration prevents anoxic zones and supports microbial communities. Paddlewheel or diffused aeration commonly used.
- **Water quality monitoring:** Track TAN (total ammonia nitrogen), nitrite, nitrate, DO, pH, temperature, and floc volume (Imhoff cone). Low oxygen, sulfide buildup, or collapsed floc indicate management lapses.

5. Comparative Advantages: Aquaponics vs Biofloc (Species perspective)

- **Nutrient flow & feed substitution:** BFT provides direct microbial protein that many species consume, lowering feed costs. Aquaponics relies on plant uptake and biofiltration; fish feed cannot be substituted by plants, but plants add marketable value.
- **Species flexibility:** BFT supports very high densities of species that can utilize floc (tilapia, pangasius, shrimp). Aquaponics favours fish tolerant of re-circulating water and with manageable ammonia loads (tilapia, carps).
- **Capital & skill:** BFT requires strong operational skills in aeration and real-time water management (especially shrimp). Aquaponics needs system integration skills (biofilters, plant culture, hydraulic balancing). Both require training.
- **Selected Case Studies and Indian Evidences**
- **Tilapia + hydroponic vetiver / basil trials (India):** Trials indicate improved ammonia control and good tilapia growth when plants are integrated; basil and vetiver have been experimented for nutrient uptake and additional income. Local doctoral trials reported co-culture of rohu and tilapia with tomato in aquaponics systems.
- **Biofloc shrimp (*L. vannamei*) demonstrations:** ICAR and state research centers in India have documented high yields in tank-based BFT shrimp with careful aeration and biosecurity, showing that shrimp production in BFT is commercially feasible but sensitive to management lapses.

- **BFT for rohu and carps:** Research shows improved growth and survival of rohu under BFT relative to traditional systems when managed properly.

7. Practical Recommendations for Indian Farmers & Entrepreneurs

- **Start with pilot systems:** Begin with small tanks or greenhouse raft systems testing local fish (tilapia or Indian carp) with leafy vegetables. This reduces risk and helps learn nutrient cycling.
- **Secure seed and technical support:** Work with accredited hatcheries and extension services (ICAR, state fisheries departments) for seed and training.
- **Match fish feed to plant uptake:** Monitor feed rates and plant harvesting schedules to maintain balanced nitrate levels — increase plant area or add biofilter capacity when nitrate rises.
- **For BFT, train intensively:** If adopting BFT, ensure capacity to manage aeration, carbon inputs, monitor floc volume and avoid sudden load changes, particularly for shrimp systems.
- **Market planning:** Choose species that local consumers accept (Indian carps in many domestic markets; tilapia and pangasius in niche or processed markets). Herbs/leafy greens often achieve premium prices in urban areas.

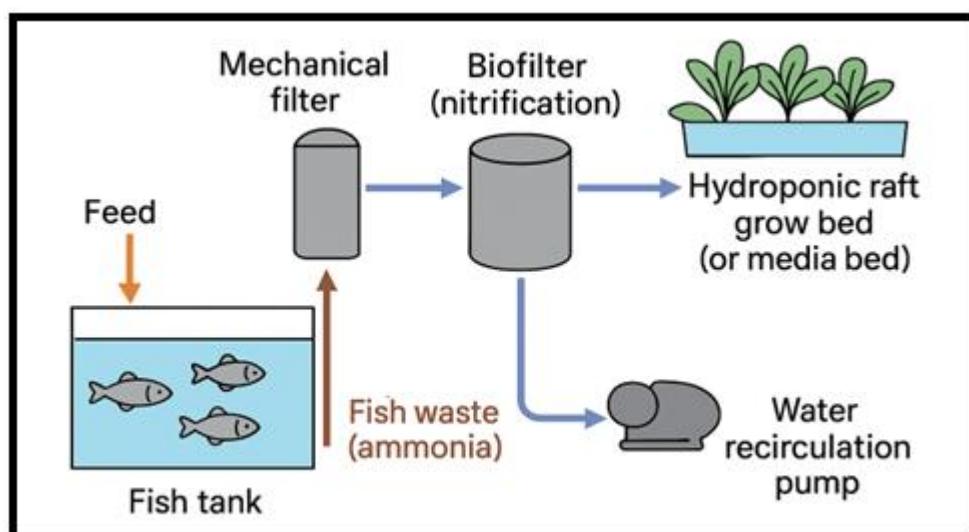


Figure 1: Schematic aquaponics layout (raft + media hybrid)

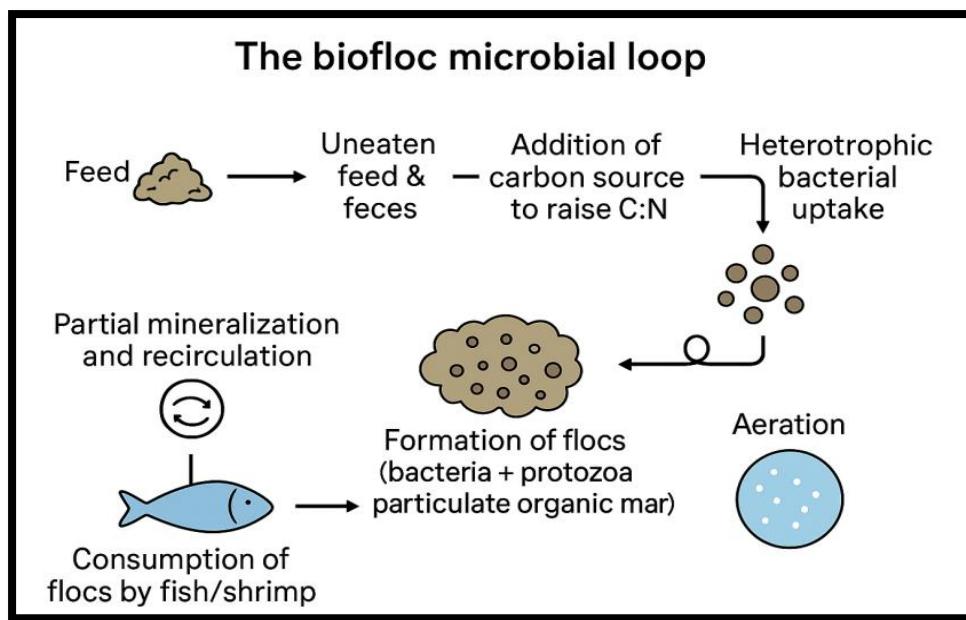


Figure 2: The biofloc microbial loop.

Limitations, Risks, and Regulatory Notes:

- **Invasiveness & ecological risk:** Some species (e.g., certain tilapia strains) are non-native and can become invasive if escaped; follow containment and local rules. Environmental impact assessments may be required for large systems.
- **Disease management:** Intensive systems (BFT & RAS/aquaponics) can amplify disease if biosecurity is weak. Regular screening and good husbandry are essential.
- **Market & consumer acceptance:** Consumer preferences differ by region — tilapia may face acceptance issues in some areas; value-addition (filleting, smoking) can expand markets.
- **Skill intensity:** Both technologies require more technical skill than traditional extensive pond culture; extension and training programs improve adoption success.

Conclusions and Future Directions:

Aquaponics and biofloc technologies both present scalable, water-efficient solutions for Indian aquaculture with different emphases: aquaponics integrates vegetable value chains and can suit urban/peri-urban farms, while BFT enables very high stocking densities and feed substitution via microbial protein, benefitting intensive fish and shrimp culture. For India, tilapia stands out as a versatile species for both systems (subject to regulatory and market factors), while Indian major carps, pangasius, and vannamei shrimp have important roles where permitted and supported by hatchery logistics. Fast-growing leafy greens and herbs are the recommended plant choice for beginners in aquaponics. Successful adoption

requires matching species to local climates, securing seed, training for technical management (biofiltering, aeration, C:N control) and aligning production with market demand. Continued research and demonstration trials in Indian agroecological zones will refine stocking densities, feed regimes, and integrated farming models that combine aquaponics/BFT with horticulture and livestock for circular, sustainable food systems.

References:

1. Bhanja, A., Payra, P., & Mandal, B. (2024). Aquaponics advancements: A comprehensive exploration of sustainable aqua-agriculture practices in the Indian context. *Current Agriculture Research Journal*.
2. FAO (Food and Agriculture Organization of the United Nations). (2020). *The state of world fisheries and aquaculture 2020: Sustainability in action*. FAO.
3. Hwang, J.-A., Park, J. S., & Jeong, H. S. (2025). Comparison of growth and water quality in the cultivation of *Anguilla japonica* and *Lactuca sativa* in aquaponics with biofloc and RAS technologies. *Animals*, 15(24), 3591.
4. Khanjani, M. H., Mohammadi, A., & Emerenciano, M. G. C. (2024). Water quality in biofloc technology (BFT): An applied review for an evolving aquaculture. *Aquaculture International*, 32, 9321–9374.
5. Raza, B., Zheng, Z., & Yang, W. (2024). A review on biofloc system technology, history, types, and future economical perceptions in aquaculture. *Animals*, 14(10), 1489.
6. Tacon, A. G. J., & Metian, M. (2015). Feed matters: Satisfying the feed demand of aquaculture. *Reviews in Fisheries Science & Aquaculture*, 23(1), 1–10.

INTEGRATIVE GENOMICS, TRANSCRIPTOMICS, PROTEOMICS, AND METABOLOMICS FOR CROP ENHANCEMENT

Arvind Patel*¹, Abhishek¹, Fakrudin B² and Satish D¹

¹Department of Genetics and Plant Breeding,

²Directorate of Research, UHS Bagalkot,

University of Horticultural Sciences, Bagalkot, Karnataka, India 587104

*Corresponding author E-mail: abhisheks72048@gmail.com

Abstract:

Crop improvement has entered a new era with the advent of omics technologies, which offer comprehensive insights into plant biology at multiple molecular levels. Genomics, transcriptomics, proteomics, metabolomics, phenomics, and epigenomics have individually advanced our understanding of complex traits, but their true potential lies in integration. This review presents a comprehensive overview of integrated omic approaches and their significance in accelerating crop improvement. By combining high-throughput data across different biological layers, researchers can decode genotype-to-phenotype relationships with unprecedented resolution, leading to the development of crops with enhanced yield, stress tolerance, disease resistance, and nutritional quality. The review highlights key methodologies, recent case studies in major crops, and the tools facilitating omics integration. It also discusses the current challenges in data harmonization, interpretation, and application, while offering perspectives on future directions such as systems biology, artificial intelligence, and precision breeding. Integrated omics is poised to become the cornerstone of next-generation crop improvement strategies in a climate-challenged and food-insecure world.

Introduction:

Global agriculture is under increasing pressure due to a confluence of challenges such as climate change, soil degradation, water scarcity, emerging pests and diseases, and a rapidly growing global population (Cruse, 2012). These stressors threaten crop productivity, quality, and sustainability, thereby intensifying concerns over global food and nutritional security. It is estimated that food production must increase significantly by 2050 to meet the demands of nearly 10 billion people, all while coping with diminishing arable land and fluctuating environmental conditions. Traditional plant breeding methods, while foundational to crop improvement, are often constrained by long breeding cycles, limited genetic gain, and a narrow understanding of complex, quantitative traits governed by

multiple genes and their interactions with the environment (Acién *et al.*, 2023) (“Genetic Diversity and Its Impact in Enhancement of Crop Plants,” 2022). Though conventional approaches have delivered significant achievements, they frequently fall short in addressing polygenic traits such as drought tolerance, heat resistance, and yield stability under stress-prone environments. To overcome these limitations, the integration of advanced molecular tools and high-throughput omics technologies offers a transformative path forward. Omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics, provide a multidimensional view of biological systems (Hurgobin & Lewsey, 2022). When integrated, these technologies enable the dissection of complex trait architecture, facilitate precise gene discovery, and support the development of improved cultivars through predictive breeding strategies. The objective of this review is to provide a comprehensive synthesis of integrated omic approaches and their applications in modern crop improvement. This article aims to: Present an overview of individual omics technologies and their integration; Highlight successful case studies across various crops; Discuss bioinformatics tools and data integration methods; Examine the current challenges and opportunities for future advancements. By evaluating the current landscape and emerging trends in omics-driven breeding, this review underscores the potential of multi-omics integration in developing resilient, high-performing crops to meet global agricultural demands.

Overview of Omics Technologies

Omics technologies encompass a suite of high-throughput tools that allow the systematic investigation of various biological molecules in an organism. Each omics layer—genomics, transcriptomics, proteomics, metabolomics, phenomics, and epigenomics—contributes unique insights into the complexity of plant systems. Individually, these approaches are powerful, but when integrated, they enable a holistic understanding and predictive improvement of crop traits (Fakrudin *et al.*, 2012; Gupta *et al.*, 2021; Krishnappa *et al.*, 2021).

1. Genomics

Whole Genome Sequencing (WGS):

WGS provides the complete DNA sequence of a genome, facilitating the identification of gene content, regulatory elements, and evolutionary dynamics. In crop breeding, WGS enables the discovery of quantitative trait loci (QTLs), structural variations, and genes associated with yield, stress tolerance, and disease resistance (Vourli *et al.*, 2021; Aluparambil *et al.*, 2021).

Marker-Assisted Selection (MAS) and Genomic Selection (GS):

MAS utilizes genetic markers linked to desirable traits to accelerate breeding decisions. Genomic selection extends this by using genome-wide markers to predict breeding values, allowing for early selection and increased genetic gain, particularly for polygenic traits (Boopathi, 2020; Darfour-Oduro & Schook, 2010). Pangenomics and Structural Variations: Pangenomics involves the analysis of core and dispensable genes across different accessions, uncovering the full genetic diversity of a species. Structural variations (e.g., insertions, deletions, duplications) play a vital role in phenotypic diversity and can be leveraged to enhance crop improvement (Tao *et al.*, 2019; Danilevicz *et al.*, 2020).

2. Transcriptomics RNA Sequencing (RNA-Seq):

RNA-Seq enables the quantification and characterization of the entire transcriptome. It provides insights into alternative splicing, non-coding RNAs, and expression dynamics across tissues and developmental stages (Nagalakshmi *et al.*, 2010; Jazayeri *et al.*, 2014).

Gene Expression Profiling Under Biotic/Abiotic Stresses:

Transcriptomics reveals how plants respond to stresses such as drought, salinity, heat, and pathogens. Differential gene expression analysis helps identify candidate genes and regulatory networks for stress resilience (Kudapa *et al.*, 2023).

3. Proteomics Protein Expression and Modification Studies:

Proteomics examines the abundance, localization, and post-translational modifications (PTMs) of proteins, providing a functional understanding of cellular processes that cannot be inferred from gene expression alone (Aizat & Hassan, 2018).

Role in Identifying Functional Proteins and Biomarkers:

By identifying proteins uniquely expressed or regulated under specific conditions, proteomics aids in discovering biomarkers for the selection and engineering of target traits in crops (Obaidi, 2019).

4. Metabolomics Untitled Notebook Metabolic Profiling and Pathway Analysis:

Metabolomics captures the chemical fingerprint of an organism, including primary and secondary metabolites. It offers insights into metabolic pathways involved in growth, defense, and adaptation (Macel *et al.*, 2010).

Stress-Responsive Metabolites:

Plants synthesize diverse metabolites under stress. Metabolomic profiling can identify key compounds linked to tolerance mechanisms, aiding in the development of resilient cultivars (Singh *et al.*, 2021).

5. Phenomics High-Throughput Phenotyping Platforms:

Phenomics involves the large-scale measurement of plant traits using imaging, sensors, and robotics. These platforms capture data on morphology, physiology, and performance under varying conditions. (Finkel, 2009)

Integration with Genotypic and Environmental Data:

When coupled with genomic and environmental data, phenomics allows for precise dissection of genotype-by-environment interactions, enabling the selection of superior genotypes for specific environments (Yang *et al.*, 2016).

6. Epigenomics

DNA Methylation, Histone Modification, and Gene Regulation: Epigenomics studies heritable changes in gene function without altering the DNA sequence. DNA methylation and histone modifications regulate gene expression during development and stress adaptation (Carlberg & Molnár, 2018).

Role in Heritable Traits and Stress Responses:

Epigenetic modifications can contribute to phenotypic plasticity and the transgenerational inheritance of adaptive traits, offering new avenues for crop improvement beyond traditional genetic variation (Greenspoon & Spencer, 2018).

4. Integrated Omics Approaches

Integrated omics refers to the simultaneous analysis and interpretation of multiple omics datasets—such as genomics, transcriptomics, proteomics, metabolomics, phenomics, and epigenomics—to achieve a comprehensive and systems-level understanding of biological processes. Rather than studying each omics layer in isolation, integration uncovers dynamic interactions and regulatory mechanisms across molecular networks, bridging the gap between genotype and phenotype.

In crop improvement, such integration is vital for dissecting complex traits governed by multilayered biological pathways and environmental interactions. It enhances the accuracy of trait prediction, accelerates gene discovery, and improves the efficiency of breeding programs targeting yield, resilience, quality, and nutritional traits.

Multi-Omics Data Integration Techniques and Tools

Integrating diverse omics data presents technical and computational challenges due to differences in data types, scales, and formats. However, several statistical and computational strategies have been developed: (Cambiaggi *et al.*, 2017; Kaur *et al.*, 2021)

- **Concatenation-based Integration:** Combines datasets horizontally (same samples, different omics layers) or vertically (same omics across different conditions) for joint analysis.
- **Model-based Integration:** Uses machine learning models (e.g., Bayesian networks, multivariate models) to infer relationships and patterns across omics layers.
- **Transformation-based Integration:** Converts data into a common intermediate form (e.g., networks, feature scores) for comparison and integration.
- **Correlation-based and Multiblock Methods:** Includes tools like PCA, PLS-DA, WGCNA, and MOFA (Multi-Omics Factor Analysis).
- **Key tools and platforms:**
- **MixOmics, Cytoscape, OmicsNet, Pathway Tools, MetaboAnalyst, iCluster, and PaintOmics** are commonly used for visualization, dimensionality reduction, and pathway-level integration. (Kaur *et al.*, 2021)

Systems Biology Approaches

Systems biology aims to model biological systems holistically by combining omics data with prior biological knowledge and computational modeling. This approach reconstructs gene regulatory networks, metabolic pathways, and signaling cascades to:

- Predict system behavior under different perturbations
- Identify key regulatory hubs and pathway bottlenecks
- Understand emergent properties like robustness, plasticity, and feedback regulation

Network Analysis and Predictive Modeling

Network analysis involves constructing and interpreting biological networks where nodes represent genes, proteins, or metabolites, and edges represent interactions or correlations.

Examples include:

- Gene Co-expression Networks
- Protein-Protein Interaction (PPI) Networks
- Gene Regulatory Networks (GRNs)
- Metabolite Correlation Networks

Predictive modeling, often powered by machine learning (e.g., random forests, support vector machines, neural networks), utilizes integrated omics data to predict phenotypes, classify traits, or identify promising genotypes. AI-assisted breeding and digital twins of plant models are emerging frontiers in this domain (Kaur *et al.*, 2021).

Applications in Crop Improvement

The integration of omics technologies has revolutionized crop improvement by enabling the dissection of complex traits, rapid identification of candidate genes, and implementation of precision breeding. Multi-omics approaches allow breeders to make informed decisions by linking molecular signatures with phenotypic outcomes. Below are key areas where integrated omics has shown significant promise in crop improvement.

1. Stress Tolerance (Drought, Salinity, Heat, etc.)

Integrated omics approaches have emerged as powerful tools for enhancing crop resilience to abiotic stresses like drought, heat, and salinity (Sarfraz *et al.*, 2025; Roychowdhury *et al.*, 2023). By combining genomics, transcriptomics, proteomics, and metabolomics, researchers can identify key biomarkers, regulatory networks, and genetic targets for improving stress tolerance (Sarfraz *et al.*, 2025). This multi-omics information is crucial for genome-assisted breeding and developing climate-resilient crops (Roychowdhury *et al.*, 2023). Studies in cereal crops have demonstrated the potential of integrated omics to unravel stress response mechanisms and identify stress-responsive genes (Jeyasri *et al.*, 2021). In rapeseed, omics approaches have been extensively employed to understand molecular mechanisms underlying abiotic stress tolerance (Raza *et al.*, 2021). The integration of omics technologies with genome editing and speed breeding offers promising avenues for developing stress-tolerant crop varieties, addressing global food security challenges in the face of climate change (Raza *et al.*, 2021; Sarfraz *et al.*, 2025).

2. Disease Resistance

Integrated omics technologies are revolutionizing crop improvement for disease resistance and enhanced traits. These approaches combine genomics, transcriptomics, proteomics, metabolomics, and other -omics data to provide a comprehensive understanding of plant biological processes (Faryal *et al.*, 2021; Chao *et al.*, 2023). Multi-omics integration enables the elucidation of complex trait regulatory networks and gene-phenotype interactions, facilitating more precise and efficient crop breeding strategies (Zhang *et al.*, 2022). The integration of omics databases is crucial for leveraging these technologies effectively, although challenges in data integration persist (Chao *et al.*, 2023). Omics approaches have broad implications for improving crop disease resistance, with next-generation sequencing and mass spectrometry playing key roles (Bhaduria, 2016). As these technologies advance, they promise to accelerate breeding processes, enhance crop traits, and contribute to global food security (Faryal *et al.*, 2021; Zhang *et al.*, 2022).

3. Nutritional Enhancement and Biofortification

Integrated omics approaches offer promising avenues for enhancing crop nutritional quality and developing functional foods. Multi-omics strategies, including genomics, transcriptomics, proteomics, and metabolomics, can elucidate genetic and biochemical pathways governing key nutritional traits in crops like millets and rice (Susmitha *et al.*, 2024; Rana *et al.*, 2019). These technologies enable the identification of genes, loci, and mutants associated with nutritional improvements, accelerating breeding programs for enhanced nutritional profiles and agronomic performance (Rana *et al.*, 2019; Spurthi and Nayak *et al.*, 2021). Integrated omics approaches, coupled with artificial intelligence and machine learning, can be applied to various crops, including cereals, pulses, fruits, vegetables, and medicinal plants, to enhance functional components and ensure nutritional security (Spurthi and Nayak *et al.*, 2021). While challenges exist in implementing omics technologies for crop improvement, their potential to revolutionize agriculture and address global food security and malnutrition issues is significant (Faryal *et al.*, 2021).

4. Yield and Quality Traits

Integrated multi-omics approaches have emerged as powerful tools for improving crop yield and quality traits, particularly in rice and other staple crops (Iqbal *et al.*, 2021; Singh *et al.*, 2021). These technologies, including genomics, transcriptomics, proteomics, and metabolomics, provide comprehensive insights into the genetic and molecular mechanisms underlying desirable traits and stress responses (Iqbal *et al.*, 2021; Chao *et al.*, 2023). By integrating data from various omics platforms, researchers can identify and characterize biological elements contributing to phenotypic traits, enhancing crop breeding efforts (Fan *et al.*, 2025). This integration allows for a more holistic understanding of plant biology and facilitates the development of climate-resilient, high-yielding crop varieties (Singh *et al.*, 2021). However, challenges remain in effectively integrating and analyzing large-scale omics data from different databases (Chao *et al.*, 2023). Nonetheless, the application of integrated multi-omics approaches holds great promise for improving global food security and sustainable agriculture (Fan *et al.*, 2025).

5. Development of Climate-Resilient Crops

Integrated omics approaches are crucial for developing climate-resilient crops to address global food security challenges amid climate change (Sarfraz *et al.*, 2025). These technologies, including genomics, transcriptomics, proteomics, and metabolomics, provide insights into genetic and molecular mechanisms underlying stress resistance, yield, and disease tolerance (Singh *et al.*, 2021). Multi-omics integration identifies biomarkers,

regulatory networks, and genetic targets for enhancing crop resilience (Sarfraz *et al.*, 2025). Genome-wide association studies, RNA-sequencing, and high-resolution proteomics facilitate the analysis of species-level genome variations and stress responses (Zenda *et al.*, 2021). Metabolomics is gaining attention due to its close links to phenotypic expression (Zenda *et al.*, 2021). Coupling multi-omics with modern breeding and genetic engineering methods, such as CRISPR/Cas9, enables the development of nutritionally-rich and climate-smart crops (Zenda *et al.*, 2021).

Challenges and Limitations

While integrated omics approaches hold great promise for crop improvement, their full potential is often hindered by several technical, computational, and regulatory challenges. Addressing these limitations is crucial for widespread adoption and impactful application in modern agriculture.

1. Data Complexity and Integration Issues

One of the major obstacles in multi-omics is the inherent complexity of the data:

- Each omics layer (genomics, transcriptomics, proteomics, etc.) generates data at different scales (e.g., nucleotide, expression level, protein abundance) and formats (e.g., sequence reads, spectral intensities).
- Integrating such heterogeneous data requires robust normalization methods and statistical models to ensure meaningful interpretation.
- Temporal and spatial resolution (i.e., different tissues or developmental stages) adds further complexity.
- Biological variability, batch effects, and experimental noise can obscure real biological signals if not properly accounted for. (Angione *et al.*, 2016)

2. Standardization of Protocols

Lack of standardization across experimental workflows limits reproducibility and comparability:

- Different platforms and techniques used for sample preparation, data acquisition, and preprocessing can introduce variability.
- Variability in metadata documentation (e.g., tissue source, growth conditions) makes cross-study comparisons difficult.
- There is a pressing need for community-wide standard operating procedures (SOPs), data formats, and ontologies for effective data sharing and reuse. (Angione *et al.*, 2016)

3. Computational and Bioinformatics Limitations

Omics integration is computationally intensive and demands high-level bioinformatics expertise:

- Large-scale multi-omics datasets require high-performance computing infrastructure and cloud-based platforms for storage and processing.
- Data analysis involves complex pipelines for normalization, feature extraction, statistical modeling, and visualization.
- A shortage of trained bioinformaticians and plant systems biologists poses a significant bottleneck, especially in developing countries.
- Additionally, integration tools are often domain-specific, making it difficult to apply generalized pipelines across different crops and traits. (James *et al.*, 2021)

Future Perspectives

As the demand for sustainable and resilient agriculture intensifies, the integration of omics technologies is poised to undergo a transformative shift. Emerging innovations in artificial intelligence (AI), precision agriculture, and next-generation omics platforms are expected to overcome current limitations and unlock new frontiers in crop improvement.

1. Role of AI/ML and Deep Learning in Omics Data Analysis

Artificial intelligence (AI) and machine learning (ML) are revolutionizing omics data analysis by enabling pattern recognition, feature selection, and predictive modeling at scales beyond human capability.

- **ML algorithms** (e.g., random forests, support vector machines) are used to identify key molecular signatures linked to complex traits.
- **Deep learning models**, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), can capture non-linear interactions and temporal dynamics across omics layers.
- **AI-driven integrative platforms** are being developed to harmonize multi-omics, phenotypic, and environmental data, improving trait prediction accuracy and decision-making in breeding programs.

2. Advances in Single-Cell Omics and Spatial Omics

The development of **single-cell omics** (e.g., scRNA-seq, scATAC-seq) and **spatial omics** technologies marks a significant leap in our ability to understand plant biology at unprecedented resolution:

- Single-cell omics allows researchers to explore cellular heterogeneity and lineage-specific gene expression, revealing cell-type-specific responses to stresses and developmental cues.
- Spatial transcriptomics and proteomics enable the mapping of gene and protein expression within tissues, preserving spatial context and architecture.
- In crops, these technologies can uncover organ- or cell-specific regulators of agronomic traits, such as root structure, stomatal density, or vascular development.

3. Prospects for Precision Agriculture and Synthetic Biology

Integrated omics is converging with other technological domains to drive **precision agriculture** and **synthetic biology**, heralding a new era of data-driven crop management and genome engineering:

- **Precision agriculture** benefits from omics-informed decision-making tools that can recommend crop genotypes optimized for specific environments and management practices. Coupled with IoT and remote sensing, omics data can help customize nutrient application, irrigation, and pest control.
- **Synthetic biology** leverages omics data to design synthetic pathways for novel traits such as drought-inducible gene circuits, nitrogen fixation in cereals, or biosynthesis of high-value nutraceuticals.
- **Genome writing and rewiring**, informed by multi-omics insights, could lead to custom-designed crops with enhanced resilience and productivity.

Conclusion:

Integrated omics approaches represent a paradigm shift in crop improvement, offering a holistic and data-driven pathway to decode the complex biological systems underlying key agronomic traits. By merging genomics, transcriptomics, proteomics, metabolomics, phenomics, and epigenomics, researchers can move beyond single-gene analyses to unravel intricate networks that govern plant growth, development, and stress adaptation. This multi-layered integration enhances the precision and efficiency of breeding programs by enabling the identification of novel genes, regulatory elements, biomarkers, and metabolic pathways associated with yield, resilience, and nutritional quality. When coupled with advances in artificial intelligence, single-cell analysis, and synthetic biology, integrated omics is poised to drive a new era of predictive and sustainable crop breeding. As agriculture faces mounting challenges from climate change and population growth, the adoption of integrated omics will be crucial for developing climate-resilient, high-yielding, and resource-efficient crops. By bridging the gap between genotype and phenotype, these

approaches will transform the future of plant breeding, ensuring food and nutritional security for generations to come.

References:

1. Acién, J. M., Cañizares, E., Candela, H., González-Guzmán, M., & Arbona, V. (2023). From Classical to Modern Computational Approaches to Identify Key Genetic Regulatory Components in Plant Biology. *International Journal of Molecular Sciences*, 24(3), 2526. <https://doi.org/10.3390/ijms24032526>
2. Aizat, W. M., & Hassan, M. (2018). *Proteomics in Systems Biology* (Vol. 1102, pp. 31–49). Springer, Cham. https://doi.org/10.1007/978-3-319-98758-3_3
3. Al-Obaidi, J. R. (2019). *Proteoinformatics and Agricultural Biotechnology Research: Applications and Challenges* (pp. 1–27). Springer, Cham. https://doi.org/10.1007/978-3-030-19318-8_1
4. Aluparambil, R. N., Sreejith, S., Sunil, P., & Krishnankutty, R. E. (2021). *Application of WGS Technologies in Disease Diagnostics, Surveillance, Transmission, and Outbreak Investigation in the Food Sector* (pp. 375–392). CRC Press. <https://doi.org/10.1201/9780429329869-18>
5. Angione, C., Conway, M., & Liò, P. (2016). Multiplex methods provide effective integration of multi-omic data in genome-scale models. *BMC Bioinformatics*, 17(4), 83. <https://doi.org/10.1186/S12859-016-0912-1>
6. Bhaduria, V. (Ed.). (2016). *OMICS in plant disease resistance* (pp. 144-pp). Norwich: Caister Academic Press.
7. Boopathi, N. M. (2013). *Future Perspectives in MAS* (pp. 281–291). Springer India. https://doi.org/10.1007/978-81-322-0958-4_12
8. Boopathi, N. M. (2020). *Marker-Assisted Selection (MAS)* (pp. 343–388). Springer, Singapore. https://doi.org/10.1007/978-981-15-2949-8_9
9. Cambiaghi, A., Ferrario, M., & Masseroli, M. (2017). Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. *Briefings in bioinformatics*, 18(3), 498–510.
10. Carlberg, C., & Molnár, F. (2018). *What Is Epigenomics* (pp. 3–18). Springer, Singapore. https://doi.org/10.1007/978-981-10-7614-5_1
11. Chao, H., Zhang, S., Hu, Y., Ni, Q., Xin, S., Zhao, L., ... & Chen, M. (2024). Integrating omics databases for enhanced crop breeding. *Journal of integrative bioinformatics*, 20(4), 20230012.

12. Cruse, R. M. (2012). Agriculture: Is climate change a serious issue? *Agrociencia*, 16(3), 9–19. <https://doi.org/10.2477/VOL16ISS3PP9-19>
13. Danilevicz, M. F., Fernandez, C. T., Marsh, J. I., Bayer, P. E., & Edwards, D. (2020). Plant pangenomics: approaches, applications and advancements. *Current Opinion in Plant Biology*, 54, 18–25. <https://doi.org/10.1016/J.PBI.2019.12.005>
14. Darfour-Oduro, K. A., & Schook, L. B. (2010). *Livestock Marker-Assisted Selection* (pp. 1–3). CRC Press. <https://doi.org/10.1081/E-EBAF-120043003>
15. Fakrudin, B., Tuberrosa, R., Varshney, R., Varshney, R., & Varshney, R. (2012). *Omics Techniques in Crop Research: An Overview* (pp. 289–300). Wiley-VCH Verlag GmbH & Co. KGaA. <https://doi.org/10.1002/9783527632930.CH12>
16. Fan, B. L., Chen, L. H., Chen, L. L., & Guo, H. (2025). Integrative multi-omics approaches for identifying and characterizing biological elements in crop traits: current progress and future prospects. *International Journal of Molecular Sciences*, 26(4), 1466.
17. Faryad, A., Aziz, F., Tahir, J., Kousar, M., Qasim, M., & Shamim, A. (2021). Integration of OMICS technologies for crop improvement. *Protein and Peptide Letters*, 28(8), 896–908.
18. Finkel, E. (2009). With 'Phenomics,' Plant Scientists Hope to Shift Breeding Into Overdrive. *Science*, 325(5939), 380–381. <https://doi.org/10.1126/SCIENCE.325 380>
19. Genetic Diversity and Its Impact in Enhancement of Crop Plants. (2022). *Global Journal of Agricultural Research*, 10(2), 13–25. <https://doi.org/10.37745/gjar.2013/vol10no2pp.13-25>
20. Graw, S., Chappell, K., Washam, C. L., Gies, A., Bird, J. T., Robeson, M. S., & Byrum, S. D. (2021). *Multi-omics data integration considerations and study design for biological systems and disease*. 17(2), 170–185. <https://doi.org/10.1039/D0MO00041H>
21. Greenspoon, P. B., & Spencer, H. G. (2018). The evolution of epigenetically mediated adaptive transgenerational plasticity in a subdivided population. *Evolution*, 72(12), 2773–2780. <https://doi.org/10.1111/EVO.13619>
22. Gupta, V., Kumar, S., Kamboj, D., Mishra, C. N., Singh, C., Singh, G., & Singh, G. P. (2021). *Recent Advances in OMICS Technologies* (pp. 1–18). Springer, Singapore. https://doi.org/10.1007/978-981-16-0831-5_1
23. Hurgobin, B., & Lewsey, M. G. (2022). How 'omics technologies can drive plant engineering, ecosystem surveillance, human and animal health. *Emerging Topics in Life Sciences*, 6, 137–139. <https://doi.org/10.1042/ETLS20220020>

24. Iqbal, Z., Iqbal, M. S., Khan, M. I. R., & Ansari, M. I. (2021). Toward integrated multi-omics intervention: rice trait improvement and stress management. *Frontiers in Plant Science*, 12, 741419.
25. James, D., Renny, P. R., Mallavarapu, M. D., Panigrahi, R. C., & Patel, H. K. (2021). *Integrating Pan-Omics Data in a Systems Approach for Crop Improvement: Opportunities and Challenges* (pp. 215–246). Springer, Singapore.
https://doi.org/10.1007/978-981-16-2956-3_8
26. Jazayeri, S. M., Melgarejo Muñoz, L. M., & Romero, H. M. (2014). Rna-seq: a glance at technologies and methodologies. *Bothalia*, 20(2), 23–35.
<https://doi.org/10.15446/ABC.V20N2.43639>
27. Jeyasri, R., Muthuramalingam, P., Satish, L., Pandian, S. K., Chen, J. T., Ahmar, S., ... & Ramesh, M. (2021). An overview of abiotic stress in cereal crops: negative impacts, regulation, biotechnology and integrated omics. *Plants*, 10(7), 1472.
28. Kaur, P., Singh, A., & Chana, I. (2021). Computational Techniques and Tools for Omics Data Analysis: State-of-the-Art, Challenges, and Future Directions: P. Kaur et al. *Archives of Computational Methods in Engineering*, 28(7), 4595-4631.
29. Krishnappa, G., Gangadhara, K., Savadi, S., Kumar, S., Tyagi, B. S., Mamrutha, H. M., Yadav, S. S., Singh, G., & Singh, G. P. (2021). *Omics Technologies and Molecular Farming: Applications and Challenges* (pp. 47–67). Springer, Singapore.
https://doi.org/10.1007/978-981-16-2956-3_3
30. Kudapa, H., Barmukh, R., Garg, V., Chitikineni, A., Samineni, S., Agarwal, G., & Varshney, R. K. (2023). Comprehensive Transcriptome Profiling Uncovers Molecular Mechanisms and Potential Candidate Genes Associated with Heat Stress Response in Chickpea. *International Journal of Molecular Sciences*, 24(2), 1369.
<https://doi.org/10.3390/ijms24021369>
31. Macel, M., van Dam, N. M., & Keurentjes, J. J. B. (2010). Metabolomics: the chemistry between ecology and genetics. *Molecular Ecology Resources*, 10(4), 583–593.
<https://doi.org/10.1111/j.1755-0998.2010.02854.x>
32. *Multi-omics Data Integration: Applications in Systems Genomics* (pp. 137–155). (2022). Bentham Science Publishers. <https://doi.org/10.2174/9789815079517122010012>
33. Nagalakshmi, U., Waern, K., & Snyder, M. (2010). RNA-Seq: A Method for Comprehensive Transcriptome Analysis. *Current Protocols in Molecular Biology*, 89(1).
<https://doi.org/10.1002/0471142727.MB0411S89>

34. Nayak, S. N., Aravind, B., Malavalli, S. S., Sukanth, B. S., Poornima, R., Bharati, P., ... & Puppala, N. (2021). Omics technologies to enhance plant based functional foods: an overview. *Frontiers in Genetics*, 12, 742095.
35. Pott, D. M., Durán-Soria, S., Osorio, S., & Vallarino, J. G. (2021). Combining metabolomic and transcriptomic approaches to assess and improve crop quality traits. 2(1), 1-20. <https://doi.org/10.1186/S43170-020-00021-8>
36. Rana, N., Rahim, M. S., Kaur, G., Bansal, R., Kumawat, S., Roy, J., ... & Sharma, T. R. (2020). Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (*Oryza sativa* L.). *Critical reviews in food science and nutrition*, 60(19), 3304-3320.
37. Raza, A., Razzaq, A., Mehmood, S. S., Hussain, M. A., Wei, S., He, H., ... & Hasanuzzaman, M. (2021). Omics: The way forward to enhance abiotic stress tolerance in *Brassica napus* L. *GM crops & food*, 12(1), 251-281.
38. Roychowdhury, R., Das, S. P., Gupta, A., Parihar, P., Chandrasekhar, K., Sarker, U., ... & Sudhakar, C. (2023). Multi-omics pipeline and omics-integration approach to decipher plant's abiotic stress tolerance responses. *Genes*, 14(6), 1281.
39. Sarfraz, Z., Zarlashat, Y., Ambreen, A., Mujahid, M., Iqbal, M. S., Fatima, S. A., ... & Fiaz, S. (2025). Plant Biochemistry in the Era of Omics: Integrated Omics Approaches to Unravel the Genetic Basis of Plant Stress Tolerance. *Plant Breeding*.
40. Sarfraz, Z., Zarlashat, Y., Ambreen, A., Mujahid, M., Iqbal, M. S., Fatima, S. A., ... & Fiaz, S. (2025). Plant Biochemistry in the Era of Omics: Integrated Omics Approaches to Unravel the Genetic Basis of Plant Stress Tolerance. *Plant Breeding*.
41. Singh, N., Mansoori, A., Dey, D., Kumar, R., & Kumar, A. (2021). *Potential of Metabolomics in Plant Abiotic Stress Management* (pp. 193–214). Springer, Singapore. https://doi.org/10.1007/978-981-16-2956-3_7
42. Singh, R. K., Sood, P., Prasad, A., & Prasad, M. (2021). Advances in omics technology for improving crop yield and stress resilience. *Plant Breeding*, 140(5), 719-731.
43. Susmitha, P., Kapoor, M., Keerthana, D., Naimuddin, S. K., & Srivastava, S. (2024). Unlocking nutritional potential: Multi-omics strategies for enhancing millet nutritional traits. *Journal of Advances in Biology & Biotechnology*, 27(6), 131-149.
44. Tao, Y., Zhao, X., Mace, E. S., Mace, E. S., Henry, R. J., & Jordan, D. (2019). Exploring and Exploiting Pan-genomics for Crop Improvement. *Molecular Plant*, 12(2), 156–169. <https://doi.org/10.1016/J.MOLP.2018.12.016>

45. Tolani, P., Gupta, S., Yadav, K., Aggarwal, S., & Yadav, A. K. (2021). *Big data, integrative omics and network biology* (Vol. 127, pp. 127–160). Academic Press. <https://doi.org/10.1016/BS.APCSB.2021.03.006>
46. Vourli, S., Kontos, F., & Pournaras, S. (2021). *WGS for Bacterial Identification and Susceptibility Testing in the Clinical Lab* (pp. 25–44). Springer, Cham. https://doi.org/10.1007/978-3-030-62155-1_3
47. Wörheide, M. A., Krumsiek, J., Kastenmüller, G., & Arnold, M. (2021). Multi-omics integration in biomedical research - A metabolomics-centric review. *Analytica Chimica Acta*, 1141, 144–162. <https://doi.org/10.1016/J.JACA.2020.10.038>
48. Yang, Y., Xu, L., Feng, Z., Cruz, J. A., Savage, L. J., Kramer, D., & Chen, J. (2016). PhenoCurve: capturing dynamic phenotype-environment relationships using phenomics data. *Bioinformatics*, 33(9), 1370–1378. <https://doi.org/10.1093/BIOINFORMATICS/BTW673>
49. Zenda, T., Liu, S., Dong, A., Li, J., Wang, Y., Liu, X., ... & Duan, H. (2021). Omics-facilitated crop improvement for climate resilience and superior nutritive value. *Frontiers in Plant Science*, 12, 774994.
50. Zhang, R., Zhang, C., Yu, C., Dong, J., & Hu, J. (2022). Integration of multi-omics technologies for crop improvement: status and prospects. *Frontiers in Bioinformatics*, 2, 1027457.

HARNESSING PROTEOMICS FOR CROP IMPROVEMENT

Abhishek*¹, Arvind Patel¹, Satish D¹ and Fakrudin B²

¹Department of Genetics and Plant Breeding

²Directorate of Research, UHS Bagalkot

University of Horticultural Sciences, Bagalkot, Karnataka, India 587104

*Corresponding author E-mail: abhisheks72048@gmail.com

Abstract:

Proteomics, the large-scale study of proteins, has become a cornerstone in the advancement of crop improvement, addressing critical agricultural challenges such as climate change, food security, and sustainability. By analyzing the structure, function, and interactions of proteins, proteomics bridges the gap between genotype and phenotype, offering insights into plant growth, stress responses, and development. Unlike genomics and transcriptomics, proteomics focuses on the functional molecules directly involved in cellular processes, providing a dynamic perspective on how plants adapt to environmental conditions. One of the most significant applications of proteomics lies in enhancing stress tolerance. By identifying stress-responsive proteins, proteomics has facilitated the development of crop varieties that can withstand abiotic stresses such as drought, salinity, and extreme temperatures, as well as biotic stresses from pathogens and pests. Additionally, proteomics has been instrumental in improving crop yield and nutritional quality. For example, it has enabled researchers to uncover proteins involved in photosynthesis, nutrient assimilation, and metabolic pathways that regulate the synthesis of essential nutrients and bioactive compounds. The integration of proteomics with other omics approaches, such as genomics, transcriptomics, and metabolomics, has been pivotal in providing a holistic understanding of plant systems. This multi-omics framework has identified biomarkers and key regulatory networks for targeted crop breeding and genetic engineering. Despite its immense potential, proteomics faces challenges such as data complexity, high costs, and limited accessibility in resource-constrained settings. Advances in high-throughput technologies, artificial intelligence, and computational biology are addressing these limitations, making proteomics more accessible and effective. As proteomics continues to evolve, its applications are expanding beyond traditional crop improvement to include sustainable agriculture, precision farming, and biofortification. By unlocking the molecular intricacies of plant biology, proteomics offers innovative solutions for developing resilient, high-yielding, and nutritionally enriched crops, thereby contributing to global food security and environmental sustainability.

Keywords: Proteomics, Crop Improvement, Stress Tolerance, Multi-Omics, Sustainability, Biomarker Discovery.

Introduction:

The ever-growing global population, escalating climate change challenges, and the need to enhance agricultural productivity have placed immense pressure on the agricultural sector (Albahri *et al.*, 2023). These issues demand innovative and sustainable solutions. This multidisciplinary approach not only enhances our understanding of plant responses to environmental stressors but also paves the way for integrating genomics and metabolomics, further enriching the landscape research in agricultural biotechnology. to ensure global food security. Among the advanced tools in modern science, proteomics has emerged as a pivotal approach in understanding plant biology at a molecular level (Gupta *et al.*, 2015). Proteomics, the study of an organism's complete set of proteins, bridges the gap between genes and phenotypes, offering insights into the intricate network of cellular processes (Steinmetz, 2022). This discipline has evolved as a key enabler in crop improvement, providing researchers with valuable data to tackle pressing agricultural challenges. Proteins play a critical role in governing the physiological processes of plants, acting as enzymes, signaling molecules, structural components, and more (*Crop Proteomics*, 2022) (Mustafa & Komatsu, 2021) (Agregán *et al.*, 2021). Unlike genomics and transcriptomics, which focus on the genetic blueprint and gene expression, respectively, proteomics offers a dynamic view of cellular activities by analyzing the actual functional molecules at work. This makes proteomics indispensable for understanding how plants respond to environmental stimuli, manage stress, and regulate growth and development (Hakeem *et al.*, 2012) (Afroz *et al.*, 2011). One of the most significant applications of proteomics is in deciphering plant responses to abiotic stresses such as drought, salinity, extreme temperatures, and nutrient deficiencies. These stresses severely impact crop productivity and are exacerbated by climate change. Proteomic studies enable the identification of stress-responsive proteins, shedding light on the molecular mechanism plants employ to adapt and survive under adverse conditions. For instance, researchers have identified proteins involved in osmotic adjustment, detoxification, and antioxidant defense, which can be targeted to develop stress-resilient crop varieties (Gong *et al.*, 2015) (Heazlewood, 2011). By leveraging this knowledge, scientists can engineer or breed plants with enhanced tolerance to stressors, ultimately contributing to sustainable agriculture and food security in a rapidly changing environment (Ouyang *et al.*, 2017).

In addition to abiotic stresses, proteomics has proven invaluable in addressing biotic stresses caused by pests, pathogens, and microbial interactions. By studying the protein profiles of plants under attack, scientists can identify resistance-associated proteins and pathways (Gautam *et al.*, 2020; Wu & Wang, 2016), paving the way for breeding or engineering crops with enhanced immunity. Furthermore, proteomics facilitates the understanding of beneficial plant-microbe interactions, such as those with mycorrhizal fungi or nitrogen-fixing bacteria, which can improve nutrient uptake and overall crop performance.

Applications of Proteomics in Crop Improvement

Proteomics has revolutionized our approach to crop science by offering a dynamic understanding of plant biology at the protein level. This technology has opened new avenues for addressing agricultural challenges, ensuring food security, and promoting sustainable farming practices (Kausar *et al.*, 2022). Below are some key applications of proteomics in crop improvement:

1. Enhancing Stress Tolerance

Plants encounter various abiotic stresses such as drought, salinity, extreme temperatures, and nutrient deficiencies, as well as biotic stresses like pests and pathogens (Pandey *et al.*, 2020) (Gull *et al.*, 2019) (Oshunsanya *et al.*, 2019). Proteomic studies identify stress-responsive proteins, revealing pathways and mechanisms that allow plants to adapt and survive under these adverse conditions. For instance:

Abiotic Stress: Proteomics helps in discovering proteins involved in osmotic adjustment, detoxification, and antioxidant defense, which can be targeted to develop resilient crop varieties.

Biotic Stress: By analyzing proteins related to plant defense, such as those involved in pathogen recognition and immune responses, proteomics facilitates the breeding of crops with enhanced resistance to pests and diseases.

2. Improving Crop Yield and Growth

Proteomics enables the identification of proteins linked to key physiological processes like photosynthesis, nutrient uptake, and energy metabolism. By understanding how these proteins influence growth and development, researchers can identify targets for genetic engineering or selective breeding to increase crop yield (Porubleva & Chitnis, 2000; Kausar *et al.*, 2022). For example, high-yielding varieties have been associated with efficient nutrient assimilation and enhanced photosynthetic efficiency, which can be further optimized using proteomic insights.

3. Enhancing Nutritional Quality

Proteomics allows researchers to identify and manipulate proteins involved in metabolic pathways that influence the nutritional content of crops (Agregán *et al.*, 2021; Ali *et al.*, 2020). Application is critical for addressing malnutrition and ensuring better health outcomes. For example:

Enrichment of essential nutrients such as vitamins, minerals, and amino acids. Reduction of anti-nutritional factors that inhibit nutrient absorption. Engineering crops to produce bioactive compounds with health-promoting properties, such as antioxidants and phytochemicals.

4. Post-Translational Modifications (PTMs)

Proteomics is invaluable for studying PTMs, such as phosphorylation, glycosylation, and ubiquitination, which regulate protein function and activity. Understanding PTMs provides insights into how proteins mediate complex regulatory processes in plants, such as stress responses, signal transduction, and developmental pathways (Liu *et al.*, 2019) (Arsova *et al.*, 2018) (Wu *et al.*, 2016). This knowledge can be applied to fine-tune crop traits for better performance under specific conditions.

5. Decoding Plant-Microbe Interactions

Proteomics shed light on beneficial plant-microbe interactions, such as those involving nitrogen-fixing bacteria and mycorrhizal fungi. By identifying proteins that mediate these interactions, researchers can enhance nutrient acquisition, improve soil health, and reduce reliance on chemical fertilizers (Melin, 2004) (Gong *et al.*, 2015) (Mustafa & Komatsu, 2021).

6. Crop-Specific Proteomic Studies

Proteomic analysis of elite or high-yielding crop varieties provides valuable benchmarks for identifying proteins and pathways that contribute to desirable traits. These benchmarks can guide breeding and engineering programs to replicate or amplify these traits in other varieties (Landels *et al.*, 2015; Vanderschuren *et al.*, 2013; Raja *et al.*, 2017).

7. Integration with Multi-Omics Approaches

Proteomics, when integrated with genomics, transcriptomics, and metabolomics, provides a holistic understanding of plant systems. This integration enables researchers to uncover relationships between different molecular layers, offering more comprehensive insights for crop improvement strategies (Tohge *et al.*, 2015) (Gong *et al.*, 2015) (Hu *et al.*, 2015) (Wu & Wang, 2016).

The procedure for proteomic analysis

The procedure for proteomic analysis involves several key steps (Li *et al.*, 2006), each designed to extract, separate, identify, and analyze proteins from biological samples. Here's an overview of the process:

1. Sample Preparation

Proteins are extracted from the biological sample (e.g., plant tissue, cells, or fluids) using chemical and physical methods. This step often involves the use of detergents, buffers, and organic solvents to solubilize proteins and disrupt cellular membranes. The sample is then purified to remove contaminants like nucleic acids, lipids, and polysaccharides.

2. Protein Separation

Proteins are separated based on their physical and chemical properties, such as size, charge, or hydrophobicity.

Common techniques include:

- Two-Dimensional Gel Electrophoresis (2D-GE): Separates proteins by isoelectric point (pH gradient) in the first dimension and molecular weight in the second.
- Liquid Chromatography (LC): Uses columns to separate proteins or peptides based on their interactions with the stationary phase.

3. Protein Digestion

Proteins are enzymatically digested into smaller peptides, typically using trypsin, to facilitate identification and analysis. This step is crucial for mass spectrometry-based proteomics.

4. Protein Identification

Mass spectrometry (MS) is the primary tool for identifying proteins and peptides. Techniques like Matrix-Assisted Laser Desorption/Ionization (MALDI) and Electrospray Ionization (ESI) are commonly used. Tandem MS (MS/MS) provides detailed information about peptide sequences and post-translational modifications.

5. Data Analysis

The mass spectrometry data is analyzed using bioinformatics tools to match peptide masses with protein databases. This step helps identify proteins, quantify their abundance, and determine their modifications or interactions.

6. Validation

Identified proteins and their functions are validated using complementary techniques, such as Western blotting, immunoassays, or functional assays.

7. Integration with Omics Data

Proteomic data can be integrated with genomics, transcriptomics, and metabolomics to provide a comprehensive understanding of biological systems. This workflow is adaptable depending on the research objectives, such as studying stress responses, protein-protein interactions, or metabolic pathways.

Proteomics integrated with genomics

Proteomics and genomics are complementary fields that, when integrated, provide a comprehensive understanding of biological systems and processes (Steinmetz, 2022; Foster & Ahmadi, 2011; Trent, 2005; Souza, 2013). Here's how the integration works and why it's so powerful, especially in areas like crop improvement:

1. Connecting Genotype to Phenotype

Genomics reveals the genetic blueprint of an organism by identifying genes, their sequences, and their locations. However, genes are not the final functional molecules; they must be transcribed and translated into proteins. Proteomics bridges this gap by analyzing the products of gene expression—proteins—and their functional roles. This helps link specific genes to phenotypic traits, such as stress tolerance, growth, or nutritional quality in crops.

2. Validating Gene Predictions

Genomic data often includes predicted genes and functions, but these need to be experimentally validated. Proteomics confirms whether these genes are expressed as proteins and provides information on their abundance, modifications, and interactions. For example, a gene predicted to confer drought tolerance can be validated if proteomics identifies the corresponding protein under drought conditions.

3. Post-Transcriptional and Post-Translational Insights

While genomics focuses on the static genetic code, proteomics captures the dynamic nature of cellular processes. It reveals how gene expression is regulated at the levels of translation and post-translational modifications (e.g., phosphorylation or glycosylation). These insights are crucial for understanding how plants adapt to environmental changes or stressors, beyond what can be inferred from genomics alone.

4. Multi-Omics Integration

Proteomics is often integrated with transcriptomics (the study of RNA) to provide a layered view of gene expression. Discrepancies between RNA levels and protein abundance can highlight regulatory mechanisms, such as translational control or protein degradation. In systems biology, integrating genomics, transcriptomics, proteomics, and metabolomics

provides a holistic view of plant systems. This is particularly useful for complex traits like yield, which involve multiple genes and pathways.

5. Functional Annotation of Genomes

Many plant genomes, especially those of non-model species, contain unannotated or hypothetical genes. Proteomics can help assign functions to these genes by identifying the corresponding proteins and studying their roles in cellular processes.

6. Applications in Crop Breeding and Biotechnology

By combining genomics and proteomics data, researchers can identify candidate genes and proteins for traits of interest. These targets can then be used in marker-assisted selection, genetic engineering, or CRISPR-based genome editing to develop improved crop varieties.

Challenges and Solutions to overcome:

Despite its immense potential, proteomics as a field faces several challenges that can limit its applications, particularly in crop improvement and agricultural research (Vanderschuren *et al.*, 2013) (Weckwerth, 2008) (Wu, 2011) (Zheng *et al.*, 2014) (Wu, 2011). Here's a breakdown of these challenges and potential strategies to overcome them:

1. Complexity of Proteomes

Challenge: Proteomes are highly complex due to the vast diversity of proteins, their dynamic nature, and their abundance levels that can vary widely within a single sample.

Solution: Advances in high-throughput technologies, such as next-generation mass spectrometry, can improve the resolution and sensitivity needed to handle such complexity. Additionally, fractionation techniques can simplify samples before analysis.

2. Post-Translational Modifications (PTMs)

Challenge: PTMs, such as phosphorylation and glycosylation, add another layer of complexity to protein analysis and are often difficult to study comprehensively.

Solution: Specialized enrichment methods and high-resolution mass spectrometry can enhance the detection and characterization of PTMs. Combining proteomics with computational modeling also helps in understanding their biological implications.

3. Data Interpretation and Analysis

Challenge: Proteomics generates massive datasets, requiring advanced computational tools for accurate analysis and biological interpretation.

Solution: Developments in bioinformatics, such as machine learning algorithms and integrative multi-omics tools, can streamline data analysis. Open-access protein databases and collaborative platforms also aid in better annotation and interpretation.

4. Cost and Resource Intensity

Challenge: Proteomics requires expensive instruments, reagents, and technical expertise, which may not be readily available in resource-limited settings.

Solution: Funding initiatives and international collaborations can make proteomics more accessible. Sharing facilities and expertise across research institutions can also reduce costs and enhance capacity-building.

5. Sample Preparation Challenges

Challenge: Protein extraction and purification from plant tissues, especially those rich in secondary metabolites, are technically challenging and can affect downstream analysis.

Solution: Optimized protocols tailored to specific crops and tissues can improve sample preparation. Innovations in sample processing technologies, such as microfluidics, can enhance efficiency and reproducibility.

Limited Knowledge of Non-Model Crops

Challenge: Many proteomic studies focus on model organisms, while non-model crops with complex genomes remain underexplored.

Solution: Expanding genomic and proteomic resources for non-model crops through sequencing efforts and publicly available databases can close this gap. Integrating proteomics with genomics for such crops can help overcome this limitation.

6. Integration with Other Omics

Challenge: Effective integration of proteomics with genomics, transcriptomics, and metabolomics is complex due to differences in data types and processing requirements.

Solution: Developing standardized protocols and software tools for multi-omics integration can facilitate data harmonization and comprehensive insights.

7. Reproducibility and Standardization

Challenge: Proteomic studies often suffer from variability due to differences in sample handling, experimental protocols, and data analysis methods.

Solution: Adopting standardized methodologies and quality control measures across laboratories can improve reproducibility. Establishing global guidelines for proteomic workflows can also enhance consistency.

Achievement in crop improvement by using Proteomics

Proteomics has recently achieved remarkable advancements across various fields, including agriculture, medicine, and biotechnology (Elrick *et al.*, 2006; Bahtiyar *et al.*, 2007; Malmström *et al.*, 2005). Here are some notable achievements:

Integration of Multi-Omics Data: Researchers have developed platforms like "Multiomics2Targets," which integrate proteomics with genomics and transcriptomics to identify therapeutic targets and biological pathways. This approach has been transformative in understanding complex traits and diseases (Schrattenholz *et al.*, 2010; Mehan *et al.*, 2013).

- 1. Advances in Mass Spectrometry:** Recent innovations in mass spectrometry have improved the resolution and sensitivity of proteomic analyses, enabling the study of native proteins and their interactions. These advancements are crucial for exploring protein functions in plants and other organisms.
- 2. Applications in Stress Tolerance:** Proteomics has been used to explore arsenic toxicity and tolerance in plants, providing insights into stress-response mechanisms and potential strategies for developing resilient crops.
- 3. AI-Driven Proteomics:** Artificial intelligence has been increasingly applied to proteomics, enhancing data analysis and biomarker discovery. This integration has accelerated research in both agriculture and healthcare.
- 4. Functional Characterization of Proteins:** Spatial proteomics techniques have been employed to study protein functions in specific tissues, such as the human kidney. Similar approaches are being adapted for plant systems to understand tissue-specific protein roles.

Future Prospects of Proteomics in Crop Improvement

Proteomics holds immense promises for revolutionizing agriculture and addressing some of the most pressing challenges in crop production. As the field continues to evolve, several future directions and opportunities emerge for leveraging proteomics in crop science:

1. Development of Climate-Resilient Crops

With climate change intensifying abiotic stresses like drought, salinity, and heat, proteomics will play a key role in identifying stress-adaptive proteins. Future research may focus on engineering crops that can thrive in extreme environments by fine-tuning stress-responsive pathways.

2. Personalized Crop Breeding

By integrating proteomics with precision breeding techniques, researchers could develop crop varieties tailored to specific regions, climates, and soil conditions. Proteomic markers could be used for customized breeding programs to address localized agricultural challenges.

3. Advancing Sustainable Agriculture

Proteomics can guide the development of eco-friendly agricultural practices, such as reducing reliance on chemical fertilizers and pesticides. By studying beneficial plant-

microbe interactions, researchers could enhance nutrient cycling and soil health, promoting sustainable crop production.

4. Integration with Artificial Intelligence (AI)

The integration of proteomics with AI and machine learning will enable faster data analysis, pattern recognition, and predictive modeling. This synergy could revolutionize crop improvement programs by providing actionable insights from large-scale proteomic datasets.

5. Decoding Post-Translational Modifications (PTMs)

Future advancements in proteomics will likely focus on unraveling the role of PTMs in regulating protein functions. This could provide new targets for genetic engineering to enhance traits such as stress tolerance and yield efficiency.

6. Cross-Species Comparative Proteomics

Comparative proteomics across different plant species can uncover conserved and unique stress-response mechanisms, offering insights for transferring desirable traits to crops.

7. Improving Nutritional Security

Proteomics could be used to design biofortified crops with enhanced levels of essential nutrients, vitamins, and bioactive compounds. This would address global malnutrition challenges and improve dietary health outcomes.

8. High-Throughput Technologies

The future of proteomics lies in advancements in high-throughput and single-cell proteomic technologies. Such innovations will enable deeper insights into protein dynamics, spatial distributions, and cellular functions, facilitating more precise crop improvement strategies.

9. Multi-Omics Integration

Proteomics will increasingly be integrated with genomics, transcriptomics, and metabolomics for a holistic understanding of plant systems. This integration will allow researchers to uncover complex regulatory networks and develop crops with improved multi trait performance.

10. Applications in Synthetic Biology

Proteomic insights could guide synthetic biology approaches to design novel proteins or pathways, creating crops with entirely new capabilities. For example, synthetic proteins could improve photosynthetic efficiency or enhance resilience to emerging pathogens.

Conclusion:

Proteomics also plays a vital role in improving crop yield and quality. By investigating the proteomes of high-yielding and elite varieties, researchers can pinpoint key proteins

associated with enhanced growth, photosynthesis, and nutrient utilization. These findings provide valuable targets for genetic manipulation or selective breeding programs. Additionally, proteomics has applications in improving the nutritional quality of crops. For instance, identifying and modulating proteins involved in metabolic pathways can help enhance the levels of essential nutrients, vitamins, and bioactive compounds in staple crops.

References:

1. Afroz, A., Ali, G. M., Mir, A., & Komatsu, S. (2011). Application of proteomics to investigate stress-induced proteins for improvement in crop protection. *Plant Cell Reports*, 30(5), 745–763. <https://doi.org/10.1007/S00299-010-0982-X>
2. Agregán, R., Echegaray, N., López-Pedrouso, M., Aadil, R. M., Hano, C., Franco, D., & Lorenzo, J. M. (2021). Proteomic advances in cereal and vegetable crops. *Molecules*, 26(16), 4924. <https://doi.org/10.3390/molecules26164924>
3. Albahri, G., Alyamani, A. A., Badran, A., Hijazi, A., Nasser, M., Maresca, M., & Baydoun, E. (2023). Enhancing essential grains yield for sustainable food security and bio-safe agriculture through latest innovative approaches. *Agronomy*, 13(7), 1709. <https://doi.org/10.3390/agronomy13071709>
4. Ali, A., Bhat, B. A., Rather, G. A., Malla, B. A., & Ganie, S. A. (2020). Proteomic studies of micronutrient deficiency and toxicity (pp. 257–284). Springer, Cham. https://doi.org/10.1007/978-3-030-49856-6_11
5. Arsova, B., Watt, M., Usadel, B., & Usadel, B. (2018). Monitoring of plant protein post-translational modifications using targeted proteomics. *Frontiers in Plant Science*, 9, 1168. <https://doi.org/10.3389/fpls.2018.01168>
6. Bahtiyar, M. O., Copel, J. A., Mahoney, M. J., Buhimschi, I. A., & Buhimschi, C. S. (2007). Proteomics: A novel methodology to complement prenatal diagnosis of chromosomal abnormalities and inherited human diseases. *American Journal of Perinatology*, 24(3), 167–181. <https://doi.org/10.1055/S-2007-972927>
7. *Crop proteomics* (pp. 265–285). (2022). CRC Press eBooks. <https://doi.org/10.1201/9781003159636-13>
8. Elrick, M. M., Walgren, J. L., Mitchell, M. D., & Thompson, D. C. (2006). Proteomics: Recent applications and new technologies. *Basic & Clinical Pharmacology & Toxicology*, 98(5), 432–441. https://doi.org/10.1111/j.1742-7843.2006.pto_391.x
9. Foster, G. P., & Ahmadi, N. (2011). Genomics and proteomics: The role of contemporary biomolecular analysis in advancing the knowledge of atherosclerotic

coronary artery disease (pp. 135–149). Humana Press, Totowa, NJ.
https://doi.org/10.1007/978-1-60327-179-0_10

10. Gautam, A., Pandey, P., & Pandey, A. K. (2020). Proteomics in relation to abiotic stress tolerance in plants (pp. 513–541). Academic Press. <https://doi.org/10.1016/B978-0-12-818204-8.00023-0>

11. Gong, F., Hu, X., & Wang, W. (2015). Proteomic analysis of crop plants under abiotic stress conditions: Where to focus our research? *Frontiers in Plant Science*, 6, 418. <https://doi.org/10.3389/fpls.2015.00418>

12. Gong, F., Hu, X., & Wang, W. (2015). Proteomic analysis of crop plants under abiotic stress conditions: Where to focus our research? *Frontiers in Plant Science*, 6, 418. <https://doi.org/10.3389/fpls.2015.00418>

13. Gull, A., Lone, A. A., & Wani, N. U. I. (2019). *Biotic and abiotic stresses in plants*. IntechOpen. <https://doi.org/10.5772/intechopen.85832>

14. Gupta, D., Shekhar, S., & Agrawal, L. (2015). Plant proteomics: Technologies and applications (pp. 213–256). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_8

15. Hakeem, K. R., Chandna, R., Ahmad, P., Iqbal, M., & Ozturk, M. (2012). Relevance of proteomic investigations in plant abiotic stress physiology. *OMICS: A Journal of Integrative Biology*, 16(11), 621–635. <https://doi.org/10.1089/omi.2012.0041>

16. Heazlewood, J. L. (2011). The green proteome: Challenges in plant proteomics. *Frontiers in Plant Science*, 2, 6. <https://doi.org/10.3389/fpls.2011.00006>

17. Hu, J., Hu, J., Rampitsch, C., & Bykova, N. V. (2015). Advances in plant proteomics toward improvement of crop productivity and stress resistance. *Frontiers in Plant Science*, 6, 209. <https://doi.org/10.3389/fpls.2015.00209>

18. Kausar, R., Wang, X., & Komatsu, S. (2022). Crop proteomics under abiotic stress: From data to insights. *Plants*, 11(21), 2877. <https://doi.org/10.3390/plants11212877>

19. Landels, A., Evans, C. A., Noirel, J., & Wright, P. C. (2015). Advances in proteomics for production strain analysis. *Current Opinion in Biotechnology*, 35, 111–117. <https://doi.org/10.1016/j.copbio.2015.05.001>

20. Li, J., Jin, T., & Ruan, K. (2006). Method for proteomic analysis utilizing immune recognition and cumulative subtraction. <https://www.freepatentsonline.com/y2008/0008699.html>

21. Liu, Y.-H., Lu, S., Liu, K., Wang, S., Huang, L., & Guo, L.-P. (2019). Proteomics: A powerful tool to study plant responses to biotic stress. *Plant Methods*, 15(1), 135. <https://doi.org/10.1186/s13007-019-0515-8>
22. Malmström, J., Malmström, L., & Marko-Varga, G. (2005). Proteomics: A new research area for the biomedical field. *Journal of Organ Dysfunction*, 1(1), 83–94. <https://doi.org/10.1080/17471060500223910>
23. Mehan, M. R., Ostroff, R., Wilcox, S. K., Steele, F., Schneider, D., Jarvis, T. C., Baird, G. S., Gold, L., & Janjic, N. (2013). Highly multiplexed proteomic platform for biomarker discovery, diagnostics, and therapeutics. In *Advances in Experimental Medicine and Biology* (Vol. 735, pp. 283–300). https://doi.org/10.1007/978-1-4614-4118-2_20
24. Melin, P. (2004). Proteomics as a tool to study microbial interactions. *Current Proteomics*, 1(1), 27–34. <https://doi.org/10.2174/1570164043488261>
25. Mustafa, G., & Komatsu, S. (2021). Plant proteomic research for improvement of food crops under stresses: A review. <https://doi.org/10.1039/D1MO00151E>
26. Oshunsanya, S., Nwosu, N. J., & Li, Y. (2019). Abiotic stress in agricultural crops under climatic conditions (pp. 71–100). Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1_3
27. Ouyang, B., Gu, X., & Holford, P. (2017). Plant genetic engineering and biotechnology: A sustainable solution for future food security and industry. *Plant Growth Regulation*, 83(2), 171–173. <https://doi.org/10.1007/s10725-017-0300-5>
28. Pandey, P., Srivastava, S., Pandey, A. K., & Dubey, R. S. (2020). Abiotic-stress tolerance in plants: System biology approach (pp. 577–609). Academic Press. <https://doi.org/10.1016/B978-0-12-818204-8.00025-4>
29. Porubleva, L., & Chitnis, P. R. (2000). Proteomics: A powerful tool in the post-genomic era. *Indian Journal of Biochemistry & Biophysics*, 37(6), 360–368. <http://nopr.niscair.res.in/bitstream/123456789/15396/1/IJBB%2037%286%29%20360-368.pdf>
30. Raja, V., Wani, M. A., Wani, U. M., Jan, N., & John, R. (2017). Understanding abiotic stress tolerance in plants by proteomics approach (pp. 383–420). Apple Academic Press. <https://doi.org/10.1201/9781315365930-13>
31. Schrattenholz, A., Groebe, K., & Soskic, V. (2010). Systems biology approaches and tools for analysis of interactomes and multi-target drugs (Vol. 662, pp. 29–58). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-800-3_2

32. Souza, D. F. de. (2013). Genomics and proteomics (pp. 285–298). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3685-0_22
33. Steinmetz, R. (2022). *Proteomics*. Elsevier eBooks. <https://doi.org/10.1016/b978-0-12-822563-9.00058-5>
34. Tohge, T., Scossa, F., & Fernie, A. R. (2015). Integrative approaches to enhance understanding of plant metabolic pathway structure and regulation. *Plant Physiology*, 169(3), 1499–1511. <https://doi.org/10.1104/pp.15.01006>
35. Trent, R. J. (2005). Genomics, proteomics and bioinformatics (pp. 119–141). <https://doi.org/10.1016/B978-012699057-7/50005-9>
36. Vanderschuren, H., Lentz, E. M., Zainuddin, I. M., Zainuddin, I. M., & Gruisse, W. (2013). Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement. *Journal of Proteomics*, 93, 5–19. <https://doi.org/10.1016/j.jprot.2013.05.036>
37. Weckwerth, W. (2008). Integration of metabolomics and proteomics in molecular plant physiology—Coping with the complexity by data-dimensionality reduction. *Physiologia Plantarum*, 132(2), 176–189. <https://doi.org/10.1111/j.1399-3054.2007.01011.x>
38. Wu, C. H. (2011). Integrative bioinformatics for genomics and proteomics. *Journal of Biomolecular Techniques*, 22. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186664/>
39. Wu, X., & Wang, W. (2016). Increasing confidence of proteomics data regarding the identification of stress-responsive proteins in crop plants. *Frontiers in Plant Science*, 7, 702. <https://doi.org/10.3389/fpls.2016.00702>
40. Zheng, H., Jiang, R., & Zhao, Z. (2014). Integrated approach in systems biology. *Computational and Mathematical Methods in Medicine*, 2014, 656473. <https://doi.org/10.1155/2014/656473>

Biodiversity and Ecological Sustainability

(ISBN: 978-93-47587-19-1)

About Editors

Dr. Anila George is an Associate Professor and Head of the Department of Environmental Science at St. John's College, Anchal, Kollam, Kerala. She completed her M.Sc. in Environmental Science from St. John's College, Anchal, and earned her Ph.D. in Environmental Science from the University of Kerala. She has over fourteen years of teaching and research experience and is an approved research guide, currently guiding research scholars. Dr. George has authored more than thirty-five publications, including a book titled *Impact of Climate Change on Biodiversity & Environment*, published by Astral International Put. Ltd., along with research articles, book chapters, and conference papers in national and international forums. Her research interests include hydrochemistry, environmental pollution, biodiversity conservation, and solid waste management, and she contributes to scholarly activities.

Prof. Dr. Yashodhara Shrikant Varale is currently serving as Principal of Dr. Ambedkar College of Commerce and Economics, Wadala, Mumbai. She earned her Ph.D. in 2003 from Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. With seventeen years of teaching and nineteen years of research experience, she has published more than fifty research papers in reputed national and international journals. Dr. Varale has received several national level awards for excellence in teaching, research, and social service. She actively serves on advisory, reviewer, and editorial boards of academic journals. A committed academician and social contributor, she holds lifetime membership in the Indian Social Science Association and other professional bodies, reflecting dedication to knowledge advancement and community welfare globally.

Dr. Shubhangee Ankushrao Waske is the former In-charge Principal of Trimurti Women's College of Science, Shegaon, and is presently serving at SM Joshi College, Hadapsar, Pune, Maharashtra. She holds an M.Sc., B.Ed., and Ph.D. in Botany. Dr. Waske has published several research papers in reputed national and international journals. She has participated in over twelve national and international seminars, conferences, and workshops, along with four faculty development programs. She has authored two books, including a reference book and an SPPU syllabus-based book. She received the Best Poster Presentation Award at a national conference in 2025 and has filed two patents, reflecting her academic and research contributions.

Mr. Eknath Dhuraji Pawde is an Assistant Professor at Shri Datta Arts, Commerce and Science College, Hadgaon, District Nanded, Maharashtra, India. He holds an M.Sc. in Zoology and has qualified the MH-SET and GATE examinations in Life Sciences. Mr. Pawde is currently pursuing his Ph.D. at Swami Ramanand Teerth Marathwada University, Nanded, focusing on Fisheries Science, particularly the biochemical composition of *Cyprinus carpio*. He has published numerous research papers, articles, and book chapters in UGC-CARE listed journals, contributing significantly to zoology and fisheries science. His academic interests include fish biology, aquatic ecology, and biochemical analysis, reflecting his commitment to research and scientific advancement.

