ISBN: 978-81-993182-0-5

Ecology Research:

Trends and Techniques

Editors:

Prof. (Dr.) Sanjay Khajuria

Dr. Vinayaka K.S

Dr. Balbir Dhotra

Ms. Mitali Chetia

Ecology Research: Trends and Techniques

(ISBN: 978-81-993182-0-5)

DOI: https://doi.org/10.5281/zenodo.17244609

Editors

Prof. (Dr.) Sanjay Khajuria

Chief Scientist & Head,

Krishi Vigyan Kendra,

Samba, SKUAST,

Jammu

Dr. Vinayaka K.S

Assistant Professor & Head,

Department of Botany,

Sri Venkataramana Swamy College,

Bantwal, Dakshina Kannada, Karnataka

Dr. Balbir Dhotra

Professor,

Centre for Organic and Natural Farming

(CONF), SKUAST-Jammu

Ms. Mitali Chetia

Assistant Professor,

Department of Zoology,

Nanda Nath Saikia College, Titabor, Jorhat

September 2025

Copyright © Editors

Title: Ecology Research: Trends and Techniques

Editors: Prof. (Dr.) Sanjay Khajuria, Dr. Vinayaka K.S, Dr. Balbir Dhotra, Ms. Mitali Chetia

First Edition: September 2025

ISBN: 978-81-993182-0-5

DOI: https://doi.org/10.5281/zenodo.17244609

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

Published by Bhumi Publishing,

a publishing unit of Bhumi Gramin Vikas Sanstha

Nigave Khalasa, Tal – Karveer, Dist – Kolhapur, Maharashtra, INDIA 416 207

E-mail: <u>bhumipublishing@gmail.com</u>

Disclaimer: The views expressed in the book are of the authors and not necessarily of the publisher and editors. Authors themselves are responsible for any kind of plagiarism found in their chapters and any related issues found with the book.

PREFACE

Ecology, as a discipline, continues to evolve in response to the growing challenges posed by climate change, biodiversity loss, pollution, and unsustainable development. The integration of traditional ecological knowledge with modern scientific techniques has become essential for understanding complex ecosystems and devising effective conservation strategies. In this context, Ecology Research: Trends and Techniques seek to present a comprehensive overview of contemporary developments in ecological studies while highlighting emerging methodologies and tools.

This book has been carefully compiled to serve as a valuable resource for students, researchers, educators, and practitioners in the field of ecology and environmental sciences. It encompasses a wide range of themes—ranging from fundamental ecological concepts and experimental approaches to advanced analytical methods and applied research. By bringing together contributions from diverse subject areas, the volume provides insights into both classical ecological research and cuttingedge innovations such as remote sensing, GIS applications, molecular techniques, and statistical modeling.

One of the key objectives of this work is to emphasize the importance of interdisciplinary perspectives in ecological research. The growing interconnections between ecology, biotechnology, environmental policy, and data science demonstrate that addressing ecological challenges requires a holistic and collaborative approach. This book aims to foster such an approach by offering updated trends and techniques that can support informed decision-making, sustainable resource management, and conservation efforts.

We hope that Ecology Research: Trends and Techniques will not only serve as an academic reference but also inspire further inquiry, innovation, and responsible action toward preserving the delicate balance of nature. The contributions included in this volume reflect the commitment of scholars and researchers to advancing ecological science for the benefit of both present and future generations.

We extend our sincere gratitude to all contributors, reviewers, and institutions whose efforts have made this book possible. Their dedication and expertise have ensured the quality and relevance of the content presented here.

TABLE OF CONTENT

Sr. No.	Book Chapter and Author(s)	Page No.
1.	SUBSTRATE SPECIFICITY AND SUCCESSION PATTERNS OF	1 – 15
	DUNG-INHABITING FUNGI	
	Yulia I. Lytvynenko	
2.	RESILIENCE AND RESISTANCE: THE FUTURE OF ALPINE	16 – 27
	PLANTS IN A CHANGING WORLD	
	Geken Riba, Egam Basar and Tadar Jamja	
3.	INTEGRATING INDIGENOUS KNOWLEDGE INTO	28 - 34
	BIOPROSPECTING FOR SUSTAINABLE CONSERVATION	
	Monika Sanyal	
4.	THE NEED OF ACTIONS TO REDUCE	35 – 43
	THE IMPACT OF CLIMATE CHANGE	
	Jyoti S. Pattanshetti	
5.	MICROPLASTICS AND HUMAN HEALTH:	44 – 48
	EMERGING EVIDENCE AND FUTURE DIRECTIONS	
	Vimala K John	
6.	PLANKTON AS BIOINDICATORS OF AQUATIC POLLUTION	49 – 58
	Misba Rehman, Monisa Malik and Adnan Abubakr	
7.	RIPARIAN ECOSYSTEMS UNDER PRESSURE:	59 – 67
	IMPACTS AND CONSERVATION GUIDELINES	
	Misba Rehman, Tasaduq Hussain Shah and Syed Talia Mushtaq	
8.	THE FUSION OF ARTIFICIAL INTELLIGENCE AND REMOTE	68 – 75
	SENSING WITH THE CURRENT ECOLOGICAL STUDIES	
	Yogita Shinde and Rashmi Rajeghorpade	
9.	THE ROLE OF REMOTE SENSING IN	76 – 82
	SUSTAINABLE FISHERIES DEVELOPMENT	
	Aditya J. Chavan and Asmita B. Daspute	
10.	VALUING NATURE: ECONOMIC PERSPECTIVES	83 – 97
	ON ECOSYSTEM SERVICES	
	G. Hannah Jebamalar	

11.	FACTORS AFFECTING DEVELOPMENT OF FORENSICALLY	98 – 102
	IMPORTANT BLOW FLIES (DIPTERA: CALLIPHORIDAE)	
	Gajanan M. Deshmukh and Haribhau M. Pawar	
12.	CONSERVATION STRATEGIES FOR ALPINE PLANTS:	103 – 113
	A REVIEW	
	Shivangi Dobhal, Babita Patni and Vijaykant Purohit	
13.	STUDY OF VARIETY OF CENTIPEDES (CHILOPODA:	114 - 122
	SCOLOPENDROMORPHA) IN SATARA REGION,	
	DISTRICT SATARA, MAHARASHTRA, INDIA	
	N. A. Shaikh, K. A. Yadav, P. S. Shinde and M. R. Abdar	
14.	ETHNOBOTANY: TRADITIONAL USES OF	123 - 126
	PLANTS IN HEALTHCARE	
	Baig Mumtaz	
15.	QUANTUM ENTANGLEMENT AND RADICAL PAIR	127 – 142
	MECHANISM IN AVIAN MIGRATION:	
	A QUANTUM BIOLOGICAL PERSPECTIVE	
	Ranjana	
16.	WEBS OF BALANCE: THE ROLE OF SPIDERS IN	143 - 148
	SUSTAINABLE AGRICULTURE AND ECOSYSTEM HEALTH	
	Shamal Sabaji Mhaske, Ajit Sopan Masurkar,	
	Punam Dnyandeo Lonkar and Sunil Narayan Pokale	
17.	IMPACT OF LONG TERM CONVENTIONAL AND ORGANIC	149 - 156
	NUTRIENT MANAGEMENT PRACTICES IN	
	PULSE BASED CROPPING SYSTEMS	
	Vinay Kumar M, Jyothi Prakash H P and Sanjayakumar	
18.	HEMP CULTIVATION IN UTTARAKHAND: FROM	157 – 165
	TRADITIONAL USES TO ECOLOGICAL PROSPECTS	
	Madhushree Barik	

(ISBN: 978-81-993182-0-5)

SUBSTRATE SPECIFICITY AND SUCCESSION PATTERNS OF DUNG-INHABITING FUNGI

Yulia I. Lytvynenko

Department of Biology and Biology Teaching Methodology,

Sumy State Pedagogical University named after A.S. Makarenko, Sumy, Ukraine

Hetmanskyi National Nature Park, Trostianets, Sumy Region, Ukraine

Corresponding author E-mail: lytvynenko@sspu.edu.ua

Abstract:

Dung-inhabiting fungi constitute a distinct ecological group that plays a crucial role in organic matter decomposition and nutrient cycling. This chapter examines their substrate specificity and successional patterns, with a focus on ascomycetes. Laboratory studies on cow and roe deer dung revealed differences in species richness, timing, and duration of fruiting among morphological groups. Loculoascomycetes and pyrenomycetes generally appeared earlier, while discomycetes predominated in the later stages. Results highlight the influence of substrate characteristics, particularly moisture content, on fungal community development. Understanding these successional dynamics provides insights into fungal ecology, supports potential biotechnological applications, and underscores the educational value of dung-inhabiting fungi.

Keywords: Dung-Inhabiting Fungi, Coprophilous Fungi, Ascomycetes, Succession, Substrate Specificity, Ecology.

1. Introduction:

Dung-inhabiting organisms (coprotrophs) are a group of organisms topically and trophically associated with animal dung, including soil contaminated with feces (Dix & Webster, 1995). The dung-inhabiting community is a complex biocoenosis that includes not only fungi but also numerous other organisms differing in taxonomic and trophic affiliation. Bacteria, protozoa, nematodes, arthropods, algae, fungi, lichens, mosses, and some higher plants develop both inside and on the surface of dung, forming an integrated complex that constantly interacts with each other and with the substrate. Thus, animal feces, with their inherent diversity of organisms, fully meet the definition of an ecosystem (Odum & Barrett, 2005). In this system, coprotrophs form a heterotrophic community functioning on initial reserves of organic matter and energy (Jones, 2017), with fungi being the most stable and abundant component.

Recently, Calaça *et al.* (2023) analyzed scientific publications on dung-inhabiting fungi from 1901 to 2020. A total of 661 publications were selected, and their temporal distribution showed a sharp increase in studies from the 1970s, reflecting growing scientific interest in this

group. This surge in research is linked to the widespread adoption of the moist chamber method as an effective tool for laboratory studies of these organisms (Calaça *et al.*, 2017).

Most studies on dung-inhabiting fungi have an ecological and taxonomic focus, highlighting interest in their role and functional importance in terrestrial ecosystems. These fungi act as key decomposers, breaking down fecal material and recycling nutrients, while also serving as a food source for numerous microphages and microphiles. Their value as model systems for studying the formation, organization, functioning, and development of natural fungal communities, as well as interactions among decomposers, further drives interest (Carroll & Wiklow, 1992; Misra *et al.*, 2014). Nevertheless, even after more than a century of research, studies on coprotrophs remain limited in number and geographic coverage, underscoring the need for further investigation of dung-inhabiting fungi biodiversity and ecology (Calaça *et al.*, 2023).

2. Methodology of Ecological and Floristic Studies of Dung-Inhabiting Fungi

Dung-inhabiting fungi are a group of organisms for which sample collection does not require special skills. Animal feces can be found in various phytocoenoses in any season, including winter, and can be collected either with fungal fruiting bodies or without them. Thus, fecal samples may be gathered by both experienced mycologists and amateurs. The latter can actively participate in research, contributing to different stages of the study, which facilitates the work of specialists and broadens the geographical coverage of investigations.

For dung-inhabiting fungi, animal feces are, in most cases, the main source of nutrition that determines their natural distribution. In the field, fungi are usually detected by the traditional method of searching for fruiting bodies during route-based surveys. The primary limiting factor for the development of saprotrophs is substrate moisture; therefore, the most favorable periods for their growth and collection are spring, autumn, and rainy summer months. However, the traditional field method often proves inefficient. Most dung-inhabiting fungi form very small fruiting bodies (up to 1 mm), making them difficult to detect with the naked eye. In addition, due to changing climatic conditions, rapid drying of the substrate under sun and wind can interrupt sporulation. At the same time, the spores of many fungi are already present in the fecal mass and are ready to germinate under favorable conditions (Krug *et al.*, 2004).

For effective detection of dung-inhabiting fungi, the laboratory moist chamber method is commonly applied, providing stable humidity and temperature conditions for their growth (Richardson, 2001). This approach allows collecting fecal samples in any season, regardless of the presence of fruiting bodies, making it a universal and convenient tool for ecological and floristic studies. Nevertheless, as noted by Prokhorov (1990), although the moist chamber method is more effective than direct collection of fungi in nature, it imposes certain limitations

(ISBN: 978-81-993182-0-5)

on the completeness of the revealed species composition. Still, it enables obtaining representative floristic lists and identifying the core diversity of the studied territory.

To obtain fruiting bodies of dung-inhabiting fungi, fecal samples are placed on moistened filter paper in Petri dishes or in transparent closed plastic containers. Depending on the size of the dung, either several small pellets (sheep, goat, hare, elk, deer) or a fragment of a larger one (horse, cattle) are placed in a 90-mm dish. The samples are moistened with settled tap water, and the required humidity level is maintained throughout the experiment. Incubation is carried out under natural light at room temperature (Richardson, 2001). To record fruiting bodies already formed in nature, a careful examination of the fecal surface is conducted the next day using a stereomicroscope. Subsequent observations are made every 2–3 days, depending on the dynamics of sporulation. Fruiting bodies are collected and studied as they mature.

In moist chambers, under conditions of high colonization of feces by fungi and other organisms, the incubation period usually does not exceed 35–50 days. This is due to inhibition caused by the accumulation of metabolic products and the decomposition of dead organisms. In natural conditions, such processes do not occur, since metabolites and decomposition products are washed away by rain or meltwater.

3. Substrate Specificity and Diversity of Dung-Inhabiting Fungal Communities

Most dung-inhabiting fungi develop exclusively on animal feces. However, some species are also able to colonize other substrates such as soil, litter, plant debris, charred organic matter, paper, and fabric. Spores of certain taxa germinate in feces only after passing through the digestive tract of animals, whereas others arrive from the external environment – for example, by air dispersal or soil contact. Thus, dung-inhabiting fungi represent a heterogeneous group of organisms in terms of their degree of substrate specialization.

Based on their dependence on animals and dung, Larsen (1971) divided these fungi into three groups: (1) obligate endocoprophilous fungi – species whose spores must pass through the digestive tract to germinate and develop; (2) facultative endocoprophilous fungi – species whose spores can germinate immediately after maturation without passage through the gut, but remain viable if ingested; and (3) ectocoprophilous fungi – species whose spores do not survive digestion but readily develop on dung once they reach it from the environment.

In more recent publications, a broader definition of dung-inhabiting fungi has been proposed and is now widely accepted (Bell, 1983; Doveri, 2004; Calaça *et al.*, 2017, 2023). This definition encompasses both coprophilous fungi, i.e., species with specific adaptations to the animal digestive tract, and fimicolous fungi, which lack such adaptations but opportunistically colonize feces.

Currently, there are no comprehensive data on the total number of known dung-inhabiting species; most publications provide floristic lists reflecting the composition of the dung-inhabiting

mycobiota in specific regions or within certain taxonomic groups (Krug *et al.*, 2004). These include representatives of Ascomycota, Basidiomycota, Mucoromycota, as well as some myxomycetes (Amoebozoa) and myxobacteria (Proteobacteria), which are also frequently studied in mycology (Calaça *et al.*, 2023). Recently, Calaça *et al.* (2020) published a synthesis of information on fimicolous myxomycetes, reporting 126 species known from the feces of various animals. A thorough literature review on the history of research, diversity, and distribution of dung-inhabiting fungi is provided by Misra *et al.* (2014). Among higher fungi, they reported 52 genera of Zygomycota, 169 genera of Ascomycota, and 33 genera of Basidiomycota that use animal feces as a substrate. Since then, the description of new dung-inhabiting fungal taxa has continued continuously (Fukiharu *et al.*, 2015; Kruys, 2015; Melo *et al.*, 2017; Jakob *et al.*, 2024; Noh *et al.*, 2025; Pan *et al.*, 2025). This highlights their considerable diversity and high potential for further research on this group of organisms.

Among filamentous fungi in dung-inhabiting communities, the majority belong to Ascomycota, which are the most numerous and diverse group, the majority of which are obligate coprophilous species. For these fungi, animal feces constitute the only substrate suitable for sporulation. After formation and maturation on feces, their spores are dispersed onto nearby plant organs (leaves, stems, bark, etc.), an essential part of their life cycle. Dispersal occurs passively via wind, rain, or through arthropods and mammals. In most cases, ascospores are actively ejected into the air by specialized mechanisms (Ingold, 1961). Spores adhere to plant surfaces via mucilaginous appendages and remain viable until ingested by animals. Non-adapted spores are digested, whereas obligate dung-inhabiting spores, with thickened cell walls, resist damage. Additionally, the chemical, enzymatic, and thermal conditions of the digestive tract often activate spores, which is frequently required for germination (Prokhorov, 1990). Experiments have shown that newly formed spores of some dung-inhabiting ascomycetes, taken directly from fruiting bodies, germinate poorly or not at all on agar media (Yu, 1954; Ranalli, 1974; Asina *et al.*, 1977; Dokmetzian *et al.*, 2004).

In the literature on dung-inhabiting fungi, the host animal from whose feces a given species was recorded is traditionally indicated alongside the locality. Such data are mostly of a registrational nature and allow assessment of the frequency of a fungus occurring on different substrates; however, the precise degree of host specificity for most dung-inhabiting fungi cannot be determined. At the same time, several studies emphasize the influence of the host species and the characteristics of its digestive system on the composition of the fungal community. For example, Richardson (2005), studying dung-inhabiting fungi on the Faroe Islands, demonstrated significant differences between the species assemblages found on sheep and hare feces, even under similar environmental conditions. Kruys and Ericson (2008), examining species richness and species composition of coprophilous ascomycetes in boreal forests, concluded that one of the

key factors affecting the species composition of dung-inhabiting ascomycetes is the animal's diet, and that some fungal species are more closely associated with the habitat and diet of the herbivore than with a specific type of dung or particular host species. In isolated cases, authors provide examples of species restricted to certain taxonomic groups of animals; for instance, Lundqvist (1972) described some members of the Sordariaceae that occur exclusively on cervid feces. Overall, however, most dung-inhabiting fungi exhibit a broad substrate range (Prokhorov, 1992; Richardson, 2001; Doveri, 2004; Watling & Richardson, 2010).

Coprophilous fungi have been recorded on a wide variety of animal feces, including those of insects, reptiles, birds, and mammals, with a predominance of herbivores. In some studies of dung-inhabiting fungal communities, it is sufficient to focus on a large number of fecal samples from herbivorous ungulates, particularly domestic species, which consistently exhibit the highest taxonomic diversity and frequency of dung-inhabiting fungi, especially ascomycetes (Prokhorov, 1992; Lytvynenko & Stepanovska, 2017). This approach significantly speeds up and simplifies the compilation of comprehensive regional mycological lists. By contrast, carnivore feces are more often decomposed by bacteria than fungi and may serve as a source of pathogens hazardous to humans (Bell, 1983).

Beyond substrate specificity, dung-inhabiting fungi also show patterns of geographic distribution. Long-term studies have revealed a latitudinal gradient in their taxonomic diversity: species richness of dung-inhabiting fungi increases toward lower latitudes (Watling & Richardson, 2010). Thus, in addition to substrate-related biological factors, latitudinal biogeographic factors play a significant role in the distribution and diversity of dung-inhabiting fungi.

4. Successional Changes in Coprophilous Fungal Species Composition

A key aspect of studying dung-inhabiting fungi is observing successional changes—the sequential shifts in their communities over time resulting from the gradual transformation of animal feces during decomposition. Fruiting bodies do not appear simultaneously; changes in species composition reflect complex interspecific interactions and adaptation to substrate changes (Jones & Hyde, 2002; Richardson, 2002). In mycology, dung fungal succession usually refers not to classical species replacement, but to the temporal sequence of fruiting body emergence after feces deposition, interpreted as "diversity over time": different fungal groups appear in a certain order, from fast-growing species to those requiring longer development (Richardson, 2002).

Successional patterns of dung-inhabiting fungi are relatively easy to quantify based on fruiting periods, although this does not account for productivity. This makes them convenient for experimental studies: material is readily available, allowing repeated sampling of potentially identical communities, and manipulations do not irreversibly affect natural ecosystems.

Communities are small, requiring minimal space and equipment, while fecal substrates provide sufficient nutrients for all members regardless of environmental conditions. Moreover, fungal reproductive structures offer a clear indicator of their success and efficiency in response to changing conditions.

Fungal succession on animal feces has long been a subject of systematic study, and classical sequences of species emergence have been established by numerous authors. A quantitative method to determine fruiting sequences was first proposed by Harper and Webster (1964), who showed that the minimum time to fruiting of certain species correlates with successional order. Ikediugwu and Webster (1970) later demonstrated that interspecific competition and antagonistic interactions limit fruiting periods and influence species replacements within successional stages. Characteristic fungal development patterns on different types of feces were summarized by Nagy and Harrower (1979), while Kuthubutheen and Webster (1986a, b) highlighted the significant effect of water potential on germination, growth, and sporulation. Other aspects of dung fungal succession were studied by Mitchell (1970), Bell (1975), Dickinson and Underhay (1977), and Richardson (2002). Pandey and Gupta (cited in Misra *et al.*, 2014) further contributed, particularly regarding the influence of physicochemical factors on fungal succession, showing that pH, sodium and potassium content, conductivity, and fecal moisture strongly affect growth, fruiting, and community structure.

Studies indicate that the complete succession sequence can mainly be observed under laboratory conditions using previously unincubated feces with stable temperature and moisture. Under such conditions, dung-inhabiting fungi form clearly defined successional stages. In natural environments, where air temperature, pH, and substrate moisture fluctuate rapidly, the proper order of successional stages is often disrupted, and some stages may be skipped. Results reported by Misra *et al.* (2014) confirm the importance of laboratory studies to reproduce full succession sequences while illustrating the impact of natural conditions on the dynamics of dung fungal communities.

The initial stage of coprophilous fungal succession is typically formed by Mucoromycota, followed by Ascomycota, with Basidiomycota completing the process (Bell, 1983; Prokhorov, 1990; Richardson, 2002). In laboratory conditions, when fecal samples are densely colonized by fungi and other organisms, the incubation period usually does not exceed 35–40 days (Richardson, 2002). This is due to inhibition caused by the accumulation of metabolic products from bacteria, fungi, nematodes, and other inhabitants, as well as the decomposition of their residues. In natural conditions, the leaching of inhibitory metabolites slows the sequential progression of successional stages (Misra *et al.*, 2014).

Several hypotheses have been proposed to explain successional changes in dunginhabiting fungi (Lytvynenko & Stepanovska, 2017). The "substrate depletion hypothesis," developed by Garret (1951) for soil fungi, attributes sequential species changes to the gradual use of different substrate components: Mucoromycota utilize simple sugars, Ascomycota display cellulolytic activity, and Basidiomycota can also degrade lignin. Lodha (1974) proposed an alternative hypothesis, emphasizing differences in the time required for fruiting structure formation: Mucoromycota produce sporangia quickly, Ascomycota fruit more slowly, and large Basidiomycota require the most energy and appear last. Both hypotheses are now regarded as largely of historical interest, as they do not account for the ecological and physiological traits of community members. Modern understanding emphasizes the complex nature of succession, shaped by genetic and ecological factors, including temperature fluctuations, photoperiod, substrate water potential, chemical composition, animal food preferences, and competition from other organisms. Feces are colonized not only by fungi but also by bacteria and protists, which develop first and strongly influence the subsequent fungal dynamics. For example, ammonia produced during bacterial protein degradation stimulates sporangium formation in *Pilobolus* sp. (Richardson, 2002). Other important factors include fungal exometabolites and antagonistic interactions (Ebersohn & Eicker, 1992), such as hyphal interference (Ikediugwa & Webster, 1970; Singh & Webster, 1973), where Coprinus sp. hyphae can suppress the development of Pilobolus sp. and Ascobolus sp.

Studies using numerical analysis methods, such as TWINSPAN and DECORANA, clearly identified successional phases and species associations on different types of African ungulate dung (Ebersohn & Eicker, 1992). Observed patterns result from a combination of ecological constraints, biotic interactions, and inherent physiological traits. Succession is thus viewed as a complex dynamic system, where fungal interactions with each other, bacteria, protists, and other decomposers drive efficient organic matter degradation and regulate the dynamics of the dung-inhabiting community.

Given their key role, further analysis focused on the species composition and successional dynamics of Ascomycota. Ascomycetes are traditionally classified into morphological groups based on fruiting body type: discomycetes, pyrenomycetes, and loculoascomycetes. Pyrenomycetes form perithecia – semi-closed, spherical or pear-shaped fruiting bodies with organized asci – whereas loculoascomycetes produce bitunicate asci in pseudothecia, morphologically similar to perithecia. Because of this similarity, both groups are often collectively referred to as "perithecioid ascomycetes" (Lytvynenko, 2022). By contrast, discomycetes form open, saucer- or cup-shaped apothecia, typically fleshy and brightly colored.

Literature data indicate that different morphological groups appear at different stages of succession, but specific patterns remain controversial. Prokhorov (1990, 1992) described a "classical" succession scheme: Mucorales \rightarrow Discomycetes \rightarrow Perithecioid ascomycetes \rightarrow Basidiomycetes. Subsequent studies refined and supplemented this model. Larsen (1971), studying

deer dung in Denmark, reported considerable variability in fruiting times, influenced in part by gut passage duration. Wicklow and Moore (1974), working with rabbit dung pellets, confirmed the effect of incubation temperature on fruiting onset but found no clear pattern for discomycetes and perithecioid ascomycetes. Meanwhile, Richardson (2001), analyzing over 300 dung samples from various herbivores in the UK and France, observed a more consistent pattern, supporting Prokhorov's findings: discomycetes appear first, followed by perithecioid ascomycetes in later stages of succession.

Given these discrepancies, we investigated successional changes in the species composition of dung-inhabiting fungi under laboratory conditions, focusing on ascomycetes. Particular attention was paid to the timing of appearance of different morphological groups, as existing literature provides inconsistent and sometimes contradictory information on their developmental stages.

When studying the succession of dung-inhabiting fungi, it is important to consider the type of host animals and the characteristics of their dung. Dung of ungulates, particularly domestic ones, is considered the most informative substrate due to its high species richness and fungal abundance (Prokhorov, 1992). For the experimental part of this study, samples of cattle (*Bos taurus*) and roe deer (*Capreolus capreolus*) dung were collected from various regions of Ukraine. Analysis revealed a higher number of ascomycete species in cattle dung (22) compared to roe deer dung (13), reflecting differences in substrate potential and emphasizing the need for parallel study. Subsequent observations of fruiting sequences under controlled laboratory conditions allowed us to trace successional patterns and assess the influence of substrate characteristics on the development of different morphological groups, providing a foundation for presenting the results.

During the experiment, differences were observed in the fruiting dynamics of coprophilous ascomycetes on cattle and deer feces. On cattle dung, the highest fruiting activity occurred between the 9th and 42nd days of incubation (Fig. 1), with 9–18 fungal species recorded simultaneously on the substrate. The overall duration of ascomycete fruiting on cattle feces was 45 days, reaching up to 48 days in some samples. From the early days, solitary loculoascomycetes, such as *Sporormiella minima* (J. Schröt.) Cain, and perithecial ascomycetes, such as *Sordaria fimicola* (Roberge ex Desm.) Ces. & De Not., were observed, while the first discomycetes (*Ascobolus immersus* Boud., *Iodophanus carneus* (Pers.) Korf) appeared from the 6th day. The highest discomycete species richness was recorded in the second half of this period (days 27–42). At the same time, the number of perithecioid species gradually declined toward the end of the experiment, leaving only a few representatives of all three morphological groups on the dung.

On deer feces, the fruiting dynamics differed, with two intervals of intensive development observed: from days 14 to 30 and from days 40 to 48 (Fig. 2). The overall fruiting duration was similar to that on cattle dung, lasting 50–52 days. The first interval of intensive development was dominated by loculoascomycetes, which formed the bulk of the community, reaching maximum species richness between days 18 and 22, with up to eight species recorded simultaneously. During the second interval, loculoascomycetes were gradually replaced by new discomycete and perithecial species, resulting in increased species diversity until the end of the experiment.

On both substrates, discomycetes formed the successional stage following perithecioid fungi. Although some species appeared at the early stages, peak fruiting and the highest species richness were generally observed in the second half of the incubation period. This aligns with known data on the dependence of coprophilous fungi development on microclimatic conditions, particularly substrate moisture. Discomycetes require significantly higher water content than pyrenomycetes or loculoascomycetes (Prokhorov, 1990), which explains their less frequent occurrence in temperate natural conditions and longer fruiting periods in tropical samples (Richardson, 2001). The higher water retention of cattle dung supports greater species richness compared to deer and other animal feces (Prokhorov, 1990; Lytvynenko & Stepanovska, 2017).

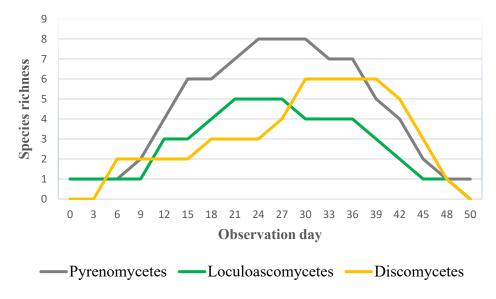


Figure 1: Timing of appearance and abundance of ascomycete morphological groups on cattle dung under moist chamber conditions

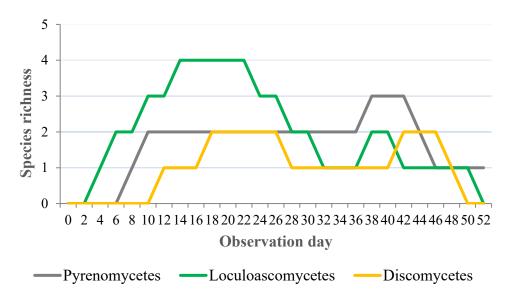


Figure 2: Timing of appearance and abundance of ascomycete morphological groups on roe deer dung under moist chamber conditions.

Pyrenomycetes and loculoascomycetes generally appear before discomycetes, although they develop concurrently for most of the incubation period. In our study, the earliest fruiting occurred in loculoascomycetes, particularly *Sporormiella minima*, present throughout the incubation. This aligns with Richardson (2001) and Brewer *et al.* (1972), who noted that pseudothecial species can develop earlier than perithecial fungi due to adaptations to near-anaerobic conditions in herbivore digestive tracts.

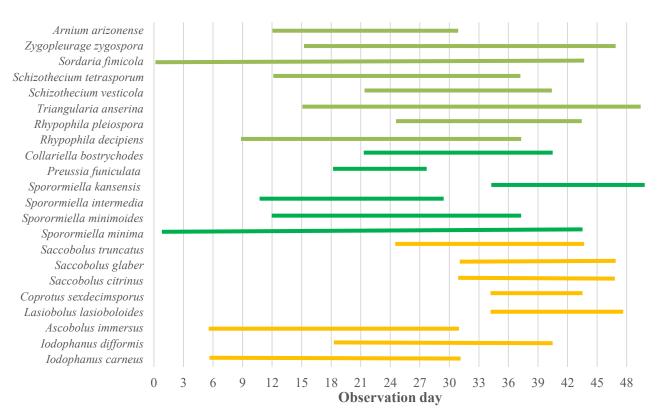


Figure 3: Duration of fruiting of coprophilous ascomycete species on cattle dung

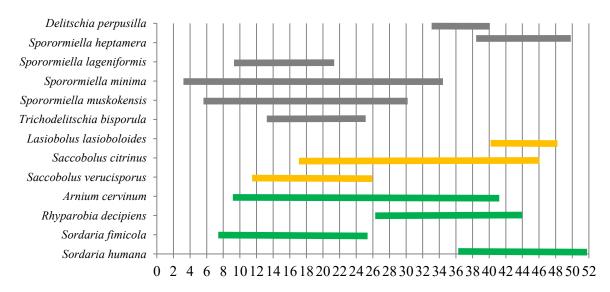


Figure 4: Duration of fruiting of coprophilous ascomycete species on roe deer dung

The coprophilous fungi recorded in our study can be divided into two main groups based on the timing and duration of fruiting: (1) species with a long fruiting period, whose fruiting bodies appeared on incubated samples for 15–40 days, and (2) species with a short fruiting period (ephemeral species), fruiting for 8–12 days. Within the second group, subgroups were distinguished: (a) species fruiting mainly in the first half of the study period, and (b) species appearing in the second half.

Long-fruiting species were mainly loculoascomycetes of the genus *Sporormiella* and pyrenomycetes of *Podospora*, *Schizothecium*, and *Sordaria* (Figs. 3, 4), along with some discomycetes, such as *Ascobolus*, *Saccobolus*, and *Iodophanus*, which fruited for 15–25 days. Early-developing species included *Sporormiella intermedia*, *S. minima*, *Sordaria fimicola*, *Rhyphophila decipiens*, *Schizothecium tetrasporum*, as well as *Ascobolus immersus* and *Iodophanus carneus*. Well-developed fruiting bodies of these species were already observed during the first 10 days of incubation, and the pseudothecia of *S. minima* had formed in the field prior to the experiment.

Among ephemeral species, only three were recorded on cattle dung. *Preussia funiculata* appeared in the first half of the incubation period (first two weeks), while late ephemeral species included *Coprotus sexdecimsporus* and *Lasiobolus lasioboloides*, fruiting after 30 days. On deer dung, ephemeral species included six species: early ephemerals were *Sporormiella lageniformis*, *Trichodelitschia bisporula*, and *Saccobolus verrucisporus*, while late ephemerals included *Delitschia perpusilla*, *Sporormiella heptamera*, and *Lasiobolus lasioboloides* (Fig. 4).

Overall, ascomycetes on cattle dung exhibited a longer fruiting period. For instance, *Sporormiella minima* fruited for 40 days on cattle dung versus 30 days on deer dung, while *Sordaria fimicola* fruited for 40 days versus 18 days, respectively.

Thus, the analysis of fruiting periods showed that ascomycetes on cattle dung exhibited longer development and a broader spectrum of dominant species compared to deer dung. This is likely due to the higher water retention and better aeration of cattle dung, which create more favorable microconditions for the formation and extended fruiting of coprophilous ascomycetes.

Conclusion:

Dung-inhabiting fungi represent a distinct ecological group that plays a key role in the mineralization of organic matter and nutrient cycling, contributing to the formation and dynamics of microbial communities. Despite this, their diversity, ecological strategies, and biochemical potential remain insufficiently studied. Investigating dung-inhabiting fungi has multidimensional significance: ecologically, it enhances the understanding of successional processes and the factors shaping species composition; biotechnologically, it reveals their potential as producers of enzymes, antibiotics, and other bioactive compounds, as their specialized habitat fosters high synthetic activity. Additionally, dung-inhabiting fungi have considerable educational value, being easily cultured in the laboratory and serving as excellent material for mycological demonstrations. These results underscore the importance of further comprehensive research on this fungal group in taxonomic, ecological, and applied contexts, as well as the need to preserve their biodiversity.

References:

- 1. Asina, S., Jain, K., & Cain, R. F. (1977). Factors influencing ascocarpe germination in three species of *Sporormiella*. *Canadian Journal of Botany*, 55(4), 1908–1914.
- 2. Bell, A. (1975). Fungal succession on dung of the brushtailed opossum in New Zealand. *New Zealand Journal of Botany*, 13, 437–462.
- 3. Bell, A. (1983). Dung fungi: An illustrated guide to coprophilous fungi in New Zealand. Wellington: Victoria University Press.
- 4. Brewer, D., Duncan, J. M., Safe, S., & Taylor, A. (1972). Ovine ill-thrift in Nova Scotia. IV. The survival at low oxygen partial pressure of fungi isolated from the contents of the ovine rumen. *Canadian Journal of Microbiology*, 18, 119–128.
- Calaça, F. J. S., Araújo, J. C., Silva-Neto, C. M., & Xavier-Santos, S. (2023). Overview of the global research on dung-inhabiting fungi: Trends, gaps, and biases. *Current Research* in Environmental & Applied Mycology (Journal of Fungal Biology), 13(1), 277–298. https://doi.org/10.5943/cream/13/1/12
- 6. Calaça, F. J. S., Araújo, J. C., & Xavier-Santos, S. (2017). O status ecológico das comunidades de fungos coprófilos. *Pesquisa, Ensino e Ciências Exatas e Naturais*, 1, 136–143. https://doi.org/10.29215/pecen.v1i2.452
- 7. Carroll, G. C., & Wiklow, D. T. (1992). *The fungal community: Its organization and role in the ecosystem*. New York: Marcel Dekker, Inc.

- 8. Dickinson, C. H., & Underhay, V. H. S. (1977). Growth of fungi in cattle dung. Transactions of the British Mycological Society, 69, 473–477.
- 9. Dix, N. J., & Webster, J. (1995). Fungal ecology. London: Chapman & Hall.
- 10. Dokmetzian, D. A., Giménez, M. C., Cinto, I. E., & Ranalli, M. E. (2004). Systematic and biological study of Ascobolaceae of Argentina XIX. Two new species of *Ascobolus* (Ascomycota). *Hickenia*, 3(49), 205–211.
- 11. Doveri, F. (2004). Fungi fimicoli Italici: A guide to the recognition of basidiomycetes and ascomycetes living on faecal material. Associazione Micologica Bresadola. 1104 p.
- 12. Ebersohn, C., & Eicker, A. (1992). Coprophilous fungal species composition and species diversity on various dung substrates of African game animals. *Botanical Bulletin of Academia Sinica*, 33, 85–95.
- 13. Eliasson, U. H., & Keller, H. W. (1999). Coprophilous myxomycetes: Updated summary, key to species, and taxonomic observations on *Trichia brunnea*, *Arcyria elaterensis*, and *Arcyria stipata*. *Karstenia*, 39(1), 1–10. https://doi.org/10.29203/ka.1999.332
- 14. Fukiharu, T., Shimizu, K., Nakajima, A., Miyamoto, T., Raut, J. K., & Kinjo, N. (2015). *Coprinopsis igarashii* sp. nov., a coprophilous agaric fungus from Hokkaido, northern Japan. *Mycoscience*, 56, 413–418. https://doi.org/10.1016/j.myc.2014.12.005
- 15. Garrett, S. D. (1951). Ecological groups of soil fungi: A survey of substrate relationship. *New Phytologist*, 50, 149–166.
- 16. Gloer, J. B. (1995). The chemistry of fungal antagonism and defense. *Canadian Journal of Botany*, 73(S1), 1265–1274. https://doi.org/10.1139/b95-387
- 17. Harper, J. E., & Webster, J. (1964). An experimental analysis of the coprophilous fungus succession. *Transactions of the British Mycological Society*, 47, 511–530.
- 18. Ikediugwa, F. E. O., & Webster, J. (1970). Antagonism between *Coprinus heptemerous* and other coprophilous fungi. *Transactions of the British Mycological Society*, 54, 181–204.
- 19. Ingold, C. T. (1961). Ballistics in certain Ascomycetes. *The New Phytologist*, 60(2), 143–149.
- 20. Jakob, S., Richardson, M. J., & Birkebak, J. (2024). *Sporormiella tela*, a new species of Pleosporales from dung of geese. *Northeastern Naturalist*, 31(1), 54–63. https://doi.org/10.1656/045.031.0105
- 21. Jones, E. B. J., & Hyde, K. D. (2002). Succession: Where do we go from here? *Fungal Diversity*, 10, 241–253.
- 22. Jones, R. (2017). Call of nature: The secret life of dung. Pelagic Publishing.

- 23. Krug, J. C., Benny, G. L., & Keller, H. W. (2004). Coprophilous fungi. In G. M. Mueller, G. F. Bills, & M. S. Foster (Eds.), *Biodiversity of Fungi: Inventory and Monitoring* (pp. 467–499). San Diego, CA: Elsevier. https://doi.org/10.1016/B978-012509551-8/50024-6
- 24. Kruys, Å. (2015). New species of *Preussia* with 8-celled ascospores (Sporormiaceae, Pleosporales, Ascomycota). *Phytotaxa*, 234, 143–150. https://doi.org/10.11646/phytotaxa.234.2.4
- 25. Kruys, Å., & Ericson, L. (2008). Species richness of coprophilous ascomycetes in relation to variable food intake by herbivores. *Fungal Diversity*, 30, 73–81.
- 26. Kuthubutheen, A.J., & Webster, J. (1986a). Water availability and the coprophilous fungus succession. *Transactions of the British Mycological Society*, 86, 63–76.
- 27. Kuthubutheen, A.J., & Webster, J. (1986b). Effects of water availability on germination, growth and sporulation of coprophilous fungi. *Transactions of the British Mycological Society*, 86, 77–91.
- 28. Larsen, K. (1971). Danish endocoprophilous fungi and their sequence of occurrence. *Botanisk Tidsskrift*, 66(1–2), 1–32.
- 29. Lodha, B.C. (1974). Decomposition of digested litter. In C.H. Dickinson & G.J.F. Pugh (Eds.), *Biology of Plant Litter Decomposition* (Vol. 1, pp. 213–241). Academic Press, London.
- 30. Lundqvist, N. (1972). *Nordic Sordariaceae s.l.* Symbolae Botanicae Upsalienses, 20, 1–374.
- 31. Lytvynenko, Y. I. (2022). Coprophilous perithecial ascomycetes of Hetmanskyi National Nature Park. *Visnyk Biosfernoho Zapovidnyka "Askania-Nova"*, 24, 41–50. https://doi.org/10.53904/1682-2374/2022-24/7 [In Ukrainian]
- 32. Lytvynenko, Y. I., & Stepanovska, S. V. (2017). Succession changes of species richness in coprophilous ascomycetes. *Prirodničì nauki, 14*, 32–40. [In Ukrainian]
- 33. Melo, R. F. R., Miller, A. N., & Maia, L. C. (2017). *Sporormiella longicolla* sp. nov. and new *Sporormiella* records on herbivore dung from Brazil. *Mycotaxon*, *132*(2), 459–470. https://doi.org/10.5248/132.459
- 34. Misra, J. K., Pandey, S., Gupta, A. K., & Deshmukh, S. K. (2014). Coprophilous fungi: A review and selected bibliography. In J. K. Misra, J. P. Tewari, S. K. Deshmukh, & C. Vagvolgyi (Eds.), *Fungi from different substrates* (pp. 170–200). Boca Raton, USA: CRC Press.
- 35. Mitchell, D. I. (1970). Fungus succession on dung of South African ostrich and Angora goat. *Journal of South African Botany*, *36*, 191–198.

- 36. Nagy, L. A., & Harrower, K. M. (1979). Analysis of two Southern Hemisphere coprophilous fungus succession. *Transactions of the British Mycological Society*, 72, 69–74.
- 37. Noh, H., Cho, H. U., & Kim, S. H. (2025). *Preussia jejuensis* sp. nov., *P. koreensis* sp. nov., and *P. isomera*, coprophilous fungi isolated from horse dung in Seopjikoji, Jeju Island in the Republic of Korea. *Mycobiology*, *53*(2), 200–213. https://doi.org/10.1080/12298093.2025.2455214
- 38. Odum, E. P., & Barrett, G. W. (2005). *Fundamentals of ecology* (5th ed.). Belmont, CA: Thomson Brooks/Cole.
- 39. Pan, H., Wang, Y., Tao, G., & Zhang, Z.-Y. (2025). Morphological and phylogenetic characterisation of *Podospora sichuanensis* sp. nov. (Podosporaceae, Sordariales). *Phytotaxa*, 695(1), 123–130. https://doi.org/10.11646/phytotaxa.695.1.7
- 40. Prokhorov, V. P. (1990). Ecology of coprotrophic discomycetes. *Mikologiya i Fitopatologiya*, 24(1), 27–29.
- 41. Prokhorov, V. P. (1992). Analysis of the geographical distribution of coprotrophic discomycetes and their association with animals. *Mikologiya i Fitopatologiya*, 26(6), 471–475.
- 42. Ranalli, M. E. (1974). Estudio sistemático y biológico de las Ascobolaceas de Argentina. *Boletín de la Sociedad Argentina de Botánica, 15*(4), 427–445.
- 43. Richardson, M. J. (2001). Diversity and occurrence of coprophilous fungi. *Mycological Research*, 105(4), 387–402.
- 44. Richardson, M. J. (2002). The coprophilous succession. Fungal Diversity, 10, 101–111.
- 45. Richardson, M. J. (2005). Coprophilous fungi from the Faroe Islands. *Fródskaparrit*, 53, 67–81.
- 46. Simões Calaça, F. J., Araújo, J. C., Cacialli, G., Silva, N. C., Rojas, C., & Xavier-Santos, S. (2020). Fimicolous myxomycetes: Overview of their global distribution and scientific production. *Biologia*, 75(2), 2159–2174. https://doi.org/10.2478/s11756-020-00578-9
- 47. Singh, N., & Webster, J. (1973). Antagonism between *Stilbella erythrocephala* and other coprophilous fungi. *Transactions of the British Mycological Society, 61*, 489–495.
- 48. Wicklow, D. I., & Moore, V. (1974). Effect of incubation temperature on the coprophilous fungus succession. *Transactions of the British Mycological Society*, *62*, 411–415.
- 49. Yu, C. C.-C. (1954). The culture and spore germination of *Ascobolus* with emphasis on *A. magnificus*. *American Journal of Botany*, 41(1), 21–30. https://doi.org/10.2307/2438578

RESILIENCE AND RESISTANCE:

THE FUTURE OF ALPINE PLANTS IN A CHANGING WORLD

Geken Riba*, Egam Basar and Tadar Jamja

State Horticulture Research and Development Institute, Itanagar, Arunachal Pradesh, India

*Corresponding author E-mail: gekenriba15@gmail.com

Abstract:

High-altitude plants are constantly exposed to multiple stressors, including extremely low temperatures, strong winds, and intense ultraviolet radiation. These challenging environmental conditions exert continuous pressure on plants, which results in the evolution of a wide range of survival strategies. Over time, such pressures have led to the development of diverse morphological, physiological, phenological, ecological, and genetic adaptations that enable these species to persist in alpine habitats. This chapter highlights these key adaptive mechanisms and further examines the prospects of alpine plants in a rapidly changing world. Understanding the strategies by which high-altitude plants cope with environmental stress is crucial for advancing scientific knowledge and for formulating effective conservation approaches. As climate change, habitat degradation, and anthropogenic pressures increasingly threaten fragile alpine ecosystems, safeguarding their unique flora has become a matter of urgency. Studying these adaptive traits not only helps in preserving biodiversity but also provides valuable insights for developing innovative methods to ensure the long-term survival of high-altitude plants.

Keywords: Alpine Plants, High Altitude Plant, Resistance and Resilience Strategies in Plants, Alpine Ecosystem, Abiotic Stress

1. Introduction:

Alpine ecosystems, situated above the treeline on every continent, represent one of the Earth's most extreme and biodiverse environments. These high-altitude alpine regions, though covering only 3% of the planet's land surface, host a staggering array of endemic flora that has evolved over millennia to withstand frigid temperatures, intense ultraviolet radiation, nutrient-poor soils (Körner, 2021). The temperatures in these zones drop below the threshold for tree growth, and a large difference in day and night temperatures, *viz.*, daily temperature can exceed 30°C, with night time frosts occurring even in summer (Larcher *et al.*, 2010) makes it inhospitable for plants. Additionally, at high elevations, UV-B levels are 20-50% higher than at sea level, damaging DNA and photosynthetic machinery (Caldwell *et al.*, 2007). Snow cover limits the growing season to 6-12 weeks, forcing plants to complete their life cycles rapidly (Körner, 2003).

To survive under such extreme environmental conditions, alpine plant species exploit microhabitats, for instance, *Rhododendron anthopogon* thrives in high-altitude meadows where snow persists into late spring, by maintaining the moisture during the growing season, while *Saussurea costus* grows in rocky, well-drained slopes and ridges, where its dense root systems help it surviving drought and extreme cold (Chauhan *et al.*, 2011 and Rawat *et al.*, 2012). On the other hand, *Soldanella pusilla* thrives in late-melting snow patches, where moisture persists into summer, while *Saxifraga oppositifolia* colonizes exposed ridges by forming dense mats that trap heat (Kudo & Hirao, 2006). Due to such extremities, alpine plants endure a suite of abiotic challenges.

Figure 1: a) Silene acaulis: The cushion-like growth form helps conserve heat and creates a microhabitat with a more suitable temperature around the plant.

- b) Ranunculus glacialis: Grows in colonies, which helps reduce heat loss and maintain a more favorable microclimate. c) Rheum nobile: The translucent outer leaves protect developing seeds from harmful UV radiation and extreme winds.
 - (a) https://www.inaturalist.org/photos/8163530 Credit: Andrea peterlongo
 - (b) https://www.inaturalist.org/observations/68593254 Credit: Felix Riegel
 - (c) https://www.inaturalist.org/observations/61218750 Credit: Valerio sbordoni

Nevertheless, such extreme conditions of alpine ecosystems are not uniform; they vary dramatically across latitudes and altitudes. For instance, the equatorial Andes host páramo ecosystems dominated by a giant rosette plant like *Espeletia* sp, while the Arctic-alpine tundra is characterized by low-growing sedges and mosses (Sklenář *et al.*, 2014). Despite their extreme ecosystems, alpine zones show great plant diversities, from the cushion-forming *Silene acaulis* of

the European Alps to the frost-resistant *Ranunculus glacialis* of the Arctic tundra, to the rare *Rheum nobile* of the Himalayas, alpine plants exemplify nature's ingenuity. Today, alpine ecosystems are recognized as critical biodiversity hotspots, with the Himalayas alone harboring over 3,000 endemic plant species (Myers *et al.*, 2000). However, these ecosystems are now under pressure and threat for their existence due to climate change, habitat fragmentation, and anthropogenic pressures, raising urgent questions about their capacity to adapt with the rapidly changing environment.

In the face of challenges posed by climatic extremities in alpine zones- further compounded by growing environmental degradation and climate change- it is of paramount importance to understand the various responses and adaptation mechanisms that alpine plants employ to develop resistance and resilience. These responses are reflected in their physiology, genetics, morphology, reproductive systems, and ecology. This chapter explores the morphological, physiological, phenological, ecological, and genetic dimensions of alpine plant resilience and resistance, integrating scientific research, real-world examples, and practical conservation efforts to better protect this fragile ecosystem.

2. Resistance and Resilience Mechanisms in Alpine Plants:

Alpine plants endure extreme conditions, intense solar radiation, cold and heat fluctuations, and limited water. Therefore, they adopt various resistance and resilience mechanisms to thrive under extreme environmental conditions. They manifest their physiological functions, genetics, ecology and reproductive systems to adapt to the prevailing environmental conditions. In the following sub-sections, different resistance and resilience mechanisms of alpine plants are discussed.

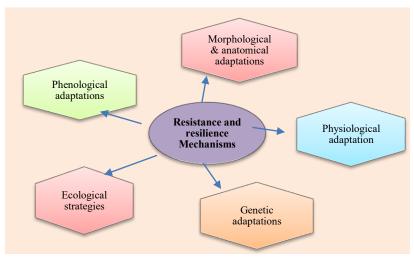


Figure 2: Different resistance and resilience mechanisms adopted by alpine plants in response to abiotic stresses

2.1 Morphological and Anatomical Adaptations

The alpine plants often have very small or cushion-shaped that minimizes exposure and conserving warmth. Many species produce UV-absorbing pigments and specialized anatomy to

dissipate excess light energy and detoxify reactive oxygen species. Freezing is common even in summer, so alpine plants exhibit frost-survival strategies: some tolerate ice formation in tissues, while others avoid freezing by supercooling their cells. Thick, often hairy leaves reduce water loss during droughts, and rapid spring growth helps exploit the short growing season.

2.2 Physiological Adaptations

Key physiological adaptations of alpine plant includes:

- Frost and Cold Tolerance: Alpine plants show extracellular freezing tolerance and freeze avoidance. Life-cycle timing (e.g. dormancy and deacclimation) is also adapted to escape spring frosts.
- **Light and UV Protection:** High-altitude UV radiation is mitigated by pigments (flavonoids, anthocyanins) and reflective hairs. Plants develop anatomical "screens" and dissipate excess energy via non-photochemical quenching. Edelweiss *Leontopodium nivale* is famous for its dense, reflective hairs covering its leaves and bracts, which scatter harmful UV rays and reduce water loss.
- Water-Use Efficiency: Many alpine species have low specific leaf area (thick, small leaves) and cuticular waxes to retain moisture. Some show stomatal control or CAM-like metabolism to endure summer droughts.
- Stress-Tolerance Plasticity: Experimental studies have reported substantial plasticity in leaf traits (area, thickness, nutrient content) across alpine gradients. This phenotypic plasticity in morphology and physiology can help individuals tolerate novel conditions (e.g. altered temperature or moisture) in a changing climate. (Henn *et al.*, 2018) (Figure 4).

Figure 3: *Leontopodium nivale* on its natural habitat https://www.inaturalist.org/photos/161891802. Credit: Sébastien SANT

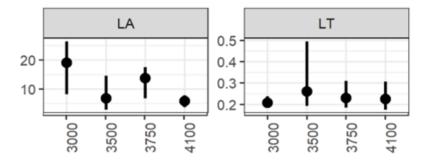


Figure 4 Phenotypic variation in leaf parameters of plant species at an altitude gradient. LA: Leaf area (cm²); LT: Leaf thickness (mm) (Henn *et al.*, 2018).

2.3 Phenological Adaptations

Timing of growth and reproduction is crucial in mountains. Alpine plants often flower and leaf out as early as possible to maximize the short season. Experimental warming consistently shows earlier snowmelt and higher spring temperatures trigger earlier flowering across alpine communities (Jabis *et al.*, 2020). For example, active-heating experiments demonstrated that snowmelt date, not ambient temperature, was the primary driver of first flowering in alpine environments. Plants flowers earlier with advanced snowmelt, but the total flowering duration did not lengthen. This means species may complete their life cycle more quickly. Selection experiments also find that warmer conditions impose directional selection for earlier flowering time and faster growth. However, these shifts have limits: A long-term study on a perennial herb found that while flowering earlier due to warming helped the plants survive better, overall fruit production dropped sharply when warming exceeded certain thresholds (Zettlemoyer *et al.*, 2024). Thus, phenological plasticity helps track climate change only up to a point. Important phenological strategies are:

- i. Early Flowering/Growth: Many alpine herbs advance phenology in response to warmer springs. Field studies show first flowering dates move earlier with increased growing-degree days and earlier snowmelt (Jabis *et al.*, 2020).
- **ii. Synchronized Life Stages:** Alpine plants tightly align flowering with snowmelt to ensure seed set before winter. Some species extend reproductive phases (longer flowering or fruiting) under favourable conditions, but others maintain short cycles to avoid late-season freezes (Zettlemoyer *et al.*, 2024).
- iii. Risk Spreading (Bet-Hedging): Some alpine plants produce both early and late germinating seeds, and multiple clonal shoots over years, spreading the risk of any single bad season. Seed banks that require cold stratification ensure germination only after prolonged winter, protecting against false springs.

2.4 Ecological Strategies

Alpine plants depend on interactions with other living organisms and their ability to use space effectively to cope with environmental changes. Facilitation is especially important in these harsh zones, certain plants create microhabitats that shelter others from extreme cold, wind,

or aridity. According to Anthelme *et al.* (2014) warming generally reduces plant-to-plant facilitation, and early snowmelt can actually enhance it. Further, they concluded that in undisturbed alpine communities, shrubs and cushion plants help stabilize microclimates, supporting the survival of other species and their movement to higher elevations.

On the other hand, competition and changes in the community can harm alpine adapted species. Climate warming enables species from lower elevations to move upward, changing the makeup of alpine communities (Auld *et al.*, 2022). In a reciprocal transplant experiment, Nomoto *et al.* (2023) found that when alpine plants grew alone, warming strongly selected for traits like smaller specific leaf area and earlier flowering. However, in the presence of novel competitors, these selective pressures were largely weakened. In other words, biotic interactions can hinder evolutionary adaptation (Nomoto *et al.*, 2024). This means alpine plants not only face physical stress but also intensified competition, which can limit their evolutionary response. The ecological strategies include:

- i. **Microhabitat Tracking:** Some species survive by shifting to favourable micro-sites (e.g. south-facing slopes, under rock overhangs) that mimic higher elevation climate. Microtopography can decouple plants from regional climate trends.
- ii. Species Reassembly: As climates change, alpine communities may shift. Cold-adapted plants could either move together or retreat to the highest peaks, while more generalist species and shrubs spread uphill, changing the competition dynamics. Alpine plants often depend on specialized pollinators or mycorrhizal fungi; disruptions to these mutualisms can further challenge adaptation.
- iii. Dormancy and Clonality: Many alpine forbs and grasses grow in dense mats or form clones, helping them resist competition by covering space and regrowing after disturbances. Some shrubs can quickly resprout after fire or have long-lasting roots, allowing them to persist in changing conditions.

2.5 Genetic Adaptations

Genetically, alpine plants often show signs of adaptation to harsh environments. Comparative genomics have found that stress-response and DNA-repair genes are under similar selection pressures in alpine species. For instance, Zhang *et al.* (2024) found that alpine plant *Triplostegia glandulifera* upregulates cold- and drought-response genes (CBFs, ERF-VIIs) and carries positively-selected variants of DNA repair genes (RAD1, DMC1, MSH3) compared to lowland relatives (Zhang *et al.*, 2024). These genes likely help the plants manage freeze-thaw damage and DNA breaks caused by UV exposure. At the population level, many alpine species have high levels of homozygosity and limited gene flow because they are isolated on "sky islands", the term first described by Lyman B. Smith in 1940 to describe isolated mountain ranges in the Southwestern United States. Also, a study of alpine herbs in Australia found that while there was a broad range of thermal tolerances within species, local genetic differences

were low, this suggests that past glacial migrations have had a greater influence on the current genetic structure than recent local selection. This means that while many alpine plants have wide thermal tolerances, they could still experience range reductions as temperatures rise. (Danzey *et al.*, 2024). Key genetic mechanisms for resistance and resilience in alpine plants include:

- i. Candidate Adaptation Genes: Positive selection on stress-related genes is often observed across different species. Examples include RAD1 (DNA repair), DMC1 (meiotic recombination), MSH3 (mismatch repair) and the CBF family of cold-responsive transcription factors (Zhang *et al.*, 2024). These may facilitate freeze tolerance and genome stability.
- ii. Local Adaptation vs. Gene Flow: Some species show altitudinal genetic differentiation and local adaptation of traits (e.g. leaf shape plasticity in *Arabis alpine*) at different elevations (de Villemereuil *et al.*, 2018). However, many alpine plants have fragmented populations with little gene flow, which can limit adaptive potential. For example, despite being at range margins, *Carex bigelowii* and other isolated sedges persist with low genetic diversity (Figure 5).
- iii. Polyploidy and Reproductive Strategy: Polyploidy is common in alpine flora and can increase genetic variation. In some cases polyploids have broader ecological niches. However, a study shows that in *Arabidopsis arenosa*, diploid and tetraploid cytotypes had similar alpine range and no clear niche differences (Wos *et al.*, 2019), indicating polyploidy does not always confer advantage.
- iv. Epigenetic Regulation: Although less studied, epigenetic mechanisms (DNA methylation, small RNAs) may allow rapid phenotypic shifts in alpine plants. These could prime stress-response genes for quick activation under extreme weather, complementing slower genetic change.

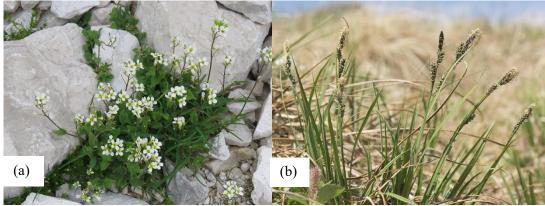


Figure 5: a) Arabis alpina on its natural habitat (left). b) Carex bigelowii showcase low genetic diversity (right).

- (a) https://www.inaturalist.org/observations/75355161 Credit: Valerio shordoni
- (b) https://www.inaturalist.org/observations/101818102 Credit: Pavel Gorbunov

3. The Future of Alpine Plants in a Changing World:

Alpine ecosystems, which are highly sensitive to climate fluctuations, face an uncertain future as global temperatures continue to rise. The delicate balance of these regions, where plants have evolved to thrive under extreme conditions, is being disrupted by ongoing climate change. With temperature increases, especially in high-altitude areas like the Himalayas and the Arctic, the habitats that alpine plants depend on are shrinking, pushing these species into smaller, more fragmented areas (Grabherr et al., 2007 and Körner, 2021). Increased temperatures are expected to alter the timing of snowmelt, which could affect plant phenology, particularly the timing of flowering and seed dispersal. Many alpine plants are adapted to a specific temperature and moisture regime that is changing as a result of warmer winters and earlier snowmelt (Gottfried et al., 2012). As a result, species that once thrived in the alpine zone may be outcompeted by more heat-tolerant species, such as shrubs and trees, leading to a potential range shift of subalpine species into alpine habitats (Pauli et al., 2012). This phenomenon, known as ecological compression, means that alpine species may not only face habitat loss but also face pressures from increasing competition with lower-altitude species. There are several studies across the globe that have depicted the loss of endemic alpine plant species over the decades. One study in the north-western Himalaya revealed a significant compositional change in alpine plant diversity over time, suggesting warming-driven shifts in vegetation structure (Verma et al., 2023). In the Arctic tundra, vegetation monitoring across multiple decades has shown that plant community structure is shifting rapidly in response to warming, with an increase in woody species and a loss of moisture-adapted tundra herbs (Bjorkman et al., 2020).

In the Himalayas, species such as *Rhododendron* species and rare plant species such as Meconopsis betonicifolia (Himalayan Blue Poppy) may face significant changes in their distribution patterns, with potential shifts in their altitudinal ranges (Chauhan et al., 2011). As temperatures increase, these species could be pushed to higher elevations, where their habitat becomes more constrained, and the availability of suitable microhabitats, like snowbeds and rock crevices, could diminish (Negi et al., 2012). In addition, the decreasing snow cover will expose these plants to harsher conditions for longer periods, potentially affecting their ability to complete life cycles. Despite these challenges, alpine species may also show resilience in certain cases. Some species possess unique adaptations that enable them to withstand extreme environmental conditions, such as freeze tolerance, drought resistance, and efficient water-use strategies (Körner, 2021). As the climate changes, these traits may be crucial for the survival of alpine plants in the face of increasing temperatures and altered precipitation patterns. Furthermore, alpine regions have been shown to experience shifts in plant communities, with some species expanding their ranges upward as temperatures rise, while others contract (Pauli et al., 2012). However, this upward migration is often limited by physical barriers, such as mountain peaks, and the lack of suitable habitat at higher altitudes.

Conclusion:

This book chapter focused on the resilience and resistance of alpine plants. These plants are exposed to extreme conditions such as low temperatures, low humidity, high UV radiation, and strong winds, which have driven the development of unique adaptive mechanisms. Various morphological, anatomical, physiological, phenological, ecological, and genetic adaptations were discussed, supported by relevant case studies from high-altitude plants. The chapter also explored future prospects, highlighting the current problems and challenges with recent case studies from the Himalayas and other alpine regions worldwide. Overall, this chapter provides valuable insights into the mechanisms and strategies alpine plants adopt to withstand the environmental stressors of high-altitude regions. Such knowledge will contribute to advancing research in this field, which is urgently needed to address the growing risks of extinction faced by endangered alpine plants due to climate change, anthropogenic activities, and habitat loss.

References:

- 1. Anthelme, F., Cavieres, L.A. and Dangles, O. (2014). Facilitation among plants in alpine environments in the face of climate change. *Frontiers in Plant Science*. 5: 387.
- 2. Auld, J., Everingham, S.E., Hemmings, F.A. and Moles, A.T. (2022). Alpine plants are on the move: Quantifying distribution shifts of Australian alpine plants through time. *Diversity and Distributions*. 28(5): 943-955.
- 3. Beever, E.A., Hall, L.E., Varner, J., Loosen, A.E., Dunham, J.B., Gahl, M.K., *et al.* (2017). Behavioral flexibility as a mechanism for coping with climate change. *Frontiers in Ecology and the Environment*. 15(6): 299-308.
- 4. Bennett, K.D. *et al.* (2014). Genetic diversity and adaptation in alpine plants. *Alpine Botany*. 124(2): 123-135.
- 5. Bjorkman, A.D., García Criado, M., Myers-Smith, I.H., Ravolainen, V., Jónsdóttir, I.S., Westergaard, K.B. and Normand, S. (2020). Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. *Ambio*. 49: 678-692.
- 6. Butola, J.S. and Samant, S.S. (2011). Distribution pattern and conservation of threatened medicinal and aromatic plants of Central Himalaya, India. *Journal of Forestry Research*. 22(3): 403-408.
- 7. Caldwell, M.M., Bornman, J.F., Ballaré, C.L., Flint, S.D. and Kulandaivelu, G. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. *Photochemical and Photobiological Sciences*. 6(3): 252-266.
- 8. Caldwell, M.M., Robberecht, R. and Flint, S.D. (1983). Internal filters: prospects for UV-acclimation in higher plants. *Physiologia Plantarum*. 58(3): 445-450.
- 9. Cavieres, L.A., Badano, E.I., Sierra-Almeida, A. and Molina-Montenegro, M.A. (2007). Microclimatic modifications of cushion plants and their consequences for seedling survival

- of native and non-native herbaceous species in the high Andes of central Chile. *Arctic, Antarctic, and Alpine Research.* 39(2): 229-236.
- 10. Chauhan, D., Rawat, S.D. and Negi, S.S. (2011). Ecological and conservation aspects of alpine flora of the Indian Himalayan region. *Indian Journal of Ecology*. 38(2): 162-169.
- 11. Cierjacks, A., Wesche, K. and Hensen, I. (2007). Potential lateral expansion of polylepis forest fragments in central Ecuador. *Forest Ecology and Management*. 242(2-3): 477-486.
- 12. Danzey, L. M., Briceño, V. F., Cook, A. M., Nicotra, A. B., Peyre, G., Rossetto., *et al.* (2024). Environmental and biogeographic drivers behind alpine plant thermal tolerance and genetic variation. *Plants.* 13(9): 1271.
- 13. de Villemereuil, P., Mouterde, M., Gaggiotti, O.E. and Till-Bottraud, I. (2018). Patterns of phenotypic plasticity and local adaptation in the wide elevation range of the alpine plant *Arabis alpina. Journal of Ecology.* 106(5): 1952-1971.
- 14. Dirnböck, T., Essl, F. and Rabitsch, W. (2011). Disproportional risk for habitat loss of high-altitude endemic species under climate change. *Global Change Biology*. 17(2): 990-996.
- 15. Giri, C. (2019). Decline of alpine plant species in the Indian Himalayan Region. *Environmental Science and Policy*. 98: 22-33.
- Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J. and Stoffel, M. (2014).
 21st century climate change in the European Alps-A review. Science of the Total Environment. 493: 1138-1151.
- 17. Gómez, J.M., Bosch, J., Perfectti, F., Fernández, J. and Abdelaziz, M. (2007). Pollinator diversity affects plant reproduction and recruitment: the tradeoffs of generalization. *Oecologia*. 153: 597-605.
- 18. Gottfried, M., *et al.* (2012). The effect of climate change on the vegetation of alpine habitats in Europe. *Ecology Letters*. 15(3): 278-287.
- 19. Grabherr, G., *et al.* (2007). Climate change and alpine plant biodiversity. *Nature*. 359(6395): 577-583.
- 20. Henn, J.J., Buzzard, V., Enquist, B.J., Halbritter, A.H., Klanderud, K., Maitner, B.S., *et al.* (2018). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. *Frontiers in Plant Science*. 9: 1548.
- 21. Jabis, M. D., Winkler, D. E. and Kueppers, L. M. (2020). Warming acts through earlier snowmelt to advance but not extend alpine community flowering. *Ecology*. 101(9): e03108.
- 22. Körner, C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain *Ecosystems*. Springer.

- 23. Körner, C. and Körner, C. (2021). Plant ecology at high elevations. In Alpine plant life: functional plant ecology of high mountain ecosystems: Cham: Springer International Publishing. pp. 1-22.
- 24. Kudo, G. and Hirao, A.S. (2006). Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. *Population Ecology*. 48: 49-58.
- 25. Larcher, W., Kainmüller, C. and Wagner, J. (2010). Survival types of high mountain plants under extreme temperatures. *Flora-Morphology, Distribution, Functional Ecology of Plants*. 205(1): 3-18.
- 26. Lütz, C. (2010). Cell physiology of plants growing in cold environments. *Protoplasma*. 244(1): 53-73.
- 27. Manel, S., Poncet, B.N., Legendre, P., Gugerli, F. and Holderegger, R. (2010). Common factors drive adaptive genetic variation at different spatial scales in *Arabis alpina*. *Molecular Ecology*. 19(17): 3824-3835.
- 28. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*. 403(6772): 853-858.
- 29. Negi, R.S., *et al.* (2012). Himalayan flora: Potential impact of climate change. *Environmental Conservation*. 39(4): 327-338.
- 30. Nomoto, H., Fior, S. and Alexander, J. (2024). Competitors alter selection on alpine plants exposed to experimental climate change. *Evolution Letters*. 8(1): 114-127.
- 31. Pauli, H., *et al.* (2012). Recent plant diversity changes on Europe's mountain summits. *Science*. 336(6087): 353-355.
- 32. Post, E. and Forchhammer, M.C. (2008). Climate change reduces reproductive success of an alpine plant. *Science*. 312(5771): 357-359.
- 33. Rawat, G.S., Negi, R.S. and Negi, S.S. (2012). Alpine plants of the Indian Himalayan region: Adaptations and ecological significance. *Environmental Conservation*. 39(4): 327-338.
- 34. Read, D.J. and Haselwandter, K. (1981). Observations on the mycorrhizal status of some alpine plant communities. *New Phytologist*. 88(2): 341-352.
- 35. Sklenář, P., Hedberg, I. and Cleef, A. M. (2014). Island biogeography of tropical alpine floras. *Journal of Biogeography*. 41(2): 287-297.
- 36. Steinger, T., Körner, C. and Schmid, B. (1996). Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine *Carex curvula*. *Oecologia*. 105: 94-99.
- 37. Telwala, Y., Brook, B.W., Manish, K. and Pandit, M.K. (2013). Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. *PloS one*. 8(2): e57103.

- 38. Verma, A., Chawla, A., Singh, C.P. and Kumar, A. (2023). Compositional change in vascular plant diversity in the alpine mountainous region of Indian north-western Himalaya indicate effects of warming. *Biodiversity and Conservation*. 32(7): 2425-2449.
- 39. Vigneron, J.P., Rassart, M., Vértesy, Z., Kertész, K., Sarrazin, M., Biró, L.P., Ertz., D. and Lousse, V. (2005). Optical structure and function of the white filamentary hair covering the edelweiss bracts. *Physical Review E-Statistical, Nonlinear, and Soft Matter Physics*. 71(1): 011906.
- 40. Walker, M.D. and Ahlquist, L.E. (2011). Climate change and its impacts on alpine plants in the Arctic. *Global Change Biology*. 17(7): 2444-2455.
- 41. Wos, G., Mořkovská, J., Bohutínská, M., Šrámková, G., Knotek, A., Lučanová, M., *et al.* (2019). Role of ploidy in colonization of alpine habitats in natural populations of *Arabidopsis arenosa. Annals of Botany.* 124(2): 255-268.
- 42. Zettlemoyer, M.A., Conner, R.J., Seaver, M.M., Waddle, E. and DeMarche, M.L. (2024). A long-lived alpine perennial advances flowering under warmer conditions but not enough to maintain reproductive success. *The American Naturalist*. 203(5): E157-E174.
- 43. Zhang, J., Dong, K. L., Ren, M. Z., Wang, Z. W., Li, J. H., Sun, W. J., *et al.* (2024). Coping with alpine habitats: genomic insights into the adaptation strategies of *Triplostegia glandulifera* (Caprifoliaceae). *Horticulture Research*. 11(5): uhae077.

INTEGRATING INDIGENOUS KNOWLEDGE INTO BIOPROSPECTING FOR SUSTAINABLE CONSERVATION

Monika Sanyal

Bherulal Patidar Govt. P.G. College, MHOW, Madhya Pradesh 453441

Corresponding author E-mail: monikasanyal@yahoo.com

1. Introduction:

Indigenous knowledge (IK) is a profound repository of wisdom, practices, and traditions cultivated over generations by indigenous communities through close interaction with their environments. This form of knowledge encompasses a wide range of insights, from the use of medicinal plants to sustainable agricultural practices and biodiversity management, often reflecting an intricate understanding of local ecosystems. As global biodiversity faces unprecedented threats from deforestation, climate change, and habitat loss, the importance of integrating IK into conservation and scientific efforts has gained widespread recognition.

Bioprospecting, the process of exploring natural resources for bioactive compounds and innovative applications, offers a unique opportunity to align modern scientific pursuits with the preservation of biodiversity. By leveraging the knowledge of indigenous communities, bioprospecting can accelerate the identification of valuable resources while promoting sustainable practices that safeguard ecosystems. Moreover, this integration acknowledges the significant contributions of indigenous peoples to global heritage and ensures their active involvement in conservation and development initiatives.

However, integrating IK into bioprospecting is not without its challenges. Issues such as biopiracy, inequitable benefit-sharing, and the potential exploitation of indigenous communities highlight the need for ethical and legal safeguards. Addressing these challenges requires robust frameworks that respect intellectual property rights, promote equitable collaboration, and prioritize the well-being of indigenous populations.

This chapter explores the multifaceted relationship between IK and bioprospecting, examining its significance in sustainable conservation, the methods for effective integration, and the challenges that must be navigated. Through case studies and best practices, it underscores the potential of IK to inform innovative, ethical, and inclusive conservation strategies that benefit both humanity and the environment.

(ISBN: 978-81-993182-0-5)

2. Understanding Indigenous Knowledge

2.1. Definition and Scope

Indigenous knowledge (IK) encompasses the collective wisdom, practices, and innovations developed by indigenous communities over centuries of close interaction with their natural environments. This form of knowledge is deeply embedded in cultural traditions, spiritual beliefs, and ecological observations, making it highly context-specific and dynamic. Unlike formal scientific knowledge, which relies on written records and standardized methodologies, IK is often transmitted orally across generations and evolves in response to environmental and societal changes (Berkes, 2018). Its scope is vast, spanning fields such as agriculture, healthcare, natural resource management, and environmental conservation, all of which contribute to sustainable development.

IK is fundamentally holistic, recognizing the interconnectedness of ecosystems and emphasizing harmony between human activity and the natural world. This perspective contrasts with many modern approaches that compartmentalize knowledge into discrete scientific disciplines. Indigenous communities often possess detailed, place-based knowledge of biodiversity, including the behavior, distribution, and interactions of plant and animal species within their ecosystems. For example, traditional agricultural practices, such as intercropping and seed selection, reflect a deep understanding of ecological dynamics that sustain soil fertility and crop resilience.

2.2. Value in Bioprospecting

The integration of IK into bioprospecting efforts offers significant advantages by guiding researchers toward potential discoveries of bioactive compounds and innovative uses of natural resources. Indigenous communities have long utilized plants, fungi, and other organisms for medicinal, nutritional, and ecological purposes, often predating scientific recognition of these resources' value. This repository of practical knowledge can streamline the process of identifying promising leads for pharmaceuticals, agrochemicals, and other applications, thereby saving time and resources.

For instance, the development of artemisinin, a potent anti-malarial drug, was directly inspired by the traditional Chinese use of *Artemisia annua* to treat febrile illnesses (Klayman, 1985). Similarly, indigenous knowledge has informed the discovery of other life-saving medications, such as aspirin, which originated from the use of willow bark in traditional European medicine. These examples underscore the immense potential of IK to drive scientific breakthroughs that benefit humanity.

Beyond its role in discovery, IK contributes to sustainable conservation practices by emphasizing the responsible use of natural resources. Indigenous management systems often

prioritize long-term ecological health over short-term exploitation, offering valuable lessons for addressing modern environmental challenges. For example, rotational farming systems practiced by many indigenous groups help prevent soil depletion and maintain biodiversity, aligning with the principles of sustainable resource use.

Integrating IK into bioprospecting also fosters respect for the cultural and intellectual contributions of indigenous communities. By acknowledging their role as stewards of biodiversity, researchers can build equitable partnerships that promote mutual learning and benefit-sharing. Such collaborations not only enhance the effectiveness of bioprospecting efforts but also ensure that the rights and knowledge of indigenous peoples are protected and valued.

Ultimately, understanding and incorporating IK into scientific and conservation initiatives represent a paradigm shift toward a more inclusive and sustainable approach to biodiversity management. This integration highlights the importance of preserving cultural diversity alongside biological diversity, recognizing that both are essential for the resilience and well-being of our planet.

3. Bioprospecting for Sustainable Conservation

3.1. Definition and Importance

Bioprospecting refers to the systematic exploration of biological resources to identify bioactive compounds and develop products for applications in fields such as medicine, agriculture, and biotechnology. It represents a convergence of scientific innovation and conservation, providing opportunities to harness biodiversity sustainably while promoting economic growth. This process is particularly important in addressing pressing global challenges, such as the development of new medications to combat emerging diseases and the creation of sustainable agricultural practices to feed a growing population (Reid *et al.*, 1993).

The importance of bioprospecting lies not only in its potential to create economic value but also in its capacity to incentivize biodiversity conservation. By demonstrating the tangible benefits of preserving ecosystems, bioprospecting can serve as a tool for sustainable development. This dual focus ensures that conservation efforts are not solely about protecting species and habitats but also about recognizing their intrinsic value and potential contributions to human well-being.

3.2. Challenges and Opportunities

Despite its promise, bioprospecting faces significant challenges that must be addressed to realize its full potential. One major issue is biopiracy, where indigenous knowledge and genetic resources are exploited without adequate compensation or acknowledgment. This unethical practice undermines trust between researchers and local communities, jeopardizing collaborative

efforts. Additionally, weak legal frameworks in many countries fail to protect the intellectual property rights of indigenous peoples, leaving them vulnerable to exploitation (Shiva, 1997).

Another challenge is the potential overharvesting of biological resources, which can lead to ecological imbalances and the depletion of valuable species. Without sustainable management practices, bioprospecting runs the risk of becoming a contributor to biodiversity loss rather than a solution.

However, bioprospecting also presents numerous opportunities. International agreements such as the Convention on Biological Diversity (CBD) and the Nagoya Protocol provide guidelines for ethical bioprospecting, emphasizing access and benefit-sharing (ABS) mechanisms. These frameworks promote equitable partnerships between researchers, governments, and indigenous communities, ensuring that the benefits derived from bioprospecting are shared fairly. Such collaborations can foster trust, enhance capacity building, and support local development initiatives.

Innovations in technology also offer opportunities to enhance the sustainability of bioprospecting. Advances in bioinformatics, genomics, and synthetic biology allow researchers to analyze biological resources more efficiently, reducing the need for large-scale harvesting. Additionally, digital platforms for documenting and sharing indigenous knowledge, when implemented ethically, can facilitate more inclusive participation in bioprospecting initiatives.

Integrating indigenous knowledge into bioprospecting efforts further amplifies its potential. By leveraging the ecological insights and traditional practices of indigenous communities, researchers can identify promising resources more effectively and develop conservation strategies that are culturally appropriate and environmentally sustainable. For example, partnerships with indigenous communities in the Amazon have led to the discovery of plant-based compounds with significant medicinal properties, highlighting the value of collaborative approaches.

In conclusion, bioprospecting for sustainable conservation represents a powerful strategy for addressing global challenges while promoting biodiversity preservation. To fully realize its potential, it is essential to navigate its challenges through robust ethical frameworks, equitable partnerships, and the integration of indigenous knowledge. By doing so, bioprospecting can serve as a catalyst for innovation, conservation, and social equity, ensuring that the benefits of biodiversity are shared by all.

3.2. Challenges and Opportunities

While bioprospecting holds great promise, it is not without challenges. Biopiracy, or the unauthorized use of IK and genetic resources, poses a significant threat to the rights and livelihoods of indigenous communities (Shiva, 1997). The lack of equitable benefit-sharing

mechanisms often exacerbates these issues, leading to exploitation and marginalization. Additionally, the commodification of biological resources can result in overharvesting and ecological imbalance.

However, opportunities exist to address these challenges. International frameworks such as the Convention on Biological Diversity (CBD) and the Nagoya Protocol provide guidelines for access and benefit-sharing (ABS), ensuring that indigenous communities receive fair compensation for their contributions. By fostering partnerships between researchers, governments, and indigenous communities, bioprospecting can promote ethical practices and equitable outcomes.

4. Methods of Integrating Indigenous Knowledge

Integrating IK into bioprospecting requires a multifaceted approach that respects the cultural, spiritual, and intellectual property rights of indigenous communities. Key methods include:

- 1. Participatory Research: Engaging indigenous communities in the research process ensures that their knowledge is accurately represented and valued. Participatory methods, such as community-based mapping and resource inventories, enable collaborative knowledge sharing (Agrawal, 1995).
- 2. Legal and Ethical Frameworks: Robust legal frameworks are essential for protecting the intellectual property rights of indigenous communities. The Nagoya Protocol emphasizes the importance of prior informed consent (PIC) and mutually agreed terms (MAT) in accessing genetic resources and IK.
- **3.** Capacity Building: Empowering indigenous communities through education, training, and resource access enhances their ability to participate in and benefit from bioprospecting initiatives.
- **4. Documentation and Knowledge Preservation:** Systematic documentation of IK helps preserve it for future generations while ensuring its accessibility for bioprospecting efforts. However, this must be done with the consent and active involvement of indigenous communities to avoid misuse or exploitation.
- **5. Equitable Benefit-Sharing:** Fair and transparent benefit-sharing mechanisms are crucial for fostering trust and collaboration. These mechanisms should address both monetary and non-monetary benefits, such as infrastructure development, healthcare access, and capacity building.

5. Case Studies and Best Practices

Case Study 1: The San People and the Hoodia Plant

The San people of Southern Africa have long used the Hoodia plant for its appetite-suppressing properties. In the early 2000s, researchers identified its potential for weight loss treatments, leading to a bioprospecting agreement between the San and the South African Council for Scientific and Industrial Research (CSIR). The agreement included provisions for benefit-sharing, ensuring that the San received a percentage of the profits from Hoodia-based products (Wynberg & Chennells, 2009). This case highlights the importance of equitable partnerships in bioprospecting.

Case Study 2: Artemisia annua and Anti-Malarial Research

The discovery of artemisinin, a potent anti-malarial compound, exemplifies the value of IK in modern medicine. Traditional Chinese medicine has long utilized *Artemisia annua* for treating fevers. Researchers built on this traditional knowledge to isolate artemisinin, revolutionizing malaria treatment and saving millions of lives (Klayman, 1985). This case underscores the scientific potential of IK and the need for its integration into bioprospecting efforts.

Case Study 3: The Maya and Agricultural Biodiversity

The Maya people's traditional agricultural practices have contributed to the conservation of crop genetic diversity, particularly maize. Collaborations between researchers and Maya communities have documented traditional knowledge related to seed selection, soil management, and pest control. These efforts have enhanced the understanding of sustainable agricultural practices while supporting the cultural and ecological heritage of the Maya people (Nigh & Diemont, 2013).

Conclusion and Future Directions:

The integration of indigenous knowledge into bioprospecting offers a transformative approach to sustainable conservation. By bridging traditional wisdom and scientific innovation, it is possible to create conservation strategies that are both effective and culturally inclusive. However, achieving this requires a commitment to ethical practices, equitable partnerships, and robust legal protections.

Future directions should focus on:

- 1. Strengthening Legal Frameworks: Enhancing international and national policies to protect the intellectual property rights of indigenous communities.
- **2. Promoting Participatory Approaches:** Ensuring that indigenous communities are actively involved in all stages of bioprospecting projects.

- **3. Fostering Interdisciplinary Research:** Encouraging collaborations between natural and social scientists to address the complex challenges of integrating IK into bioprospecting.
- **4. Investing in Education and Capacity Building:** Providing resources and training to empower indigenous communities to participate in and benefit from bioprospecting initiatives.
- **5.** Enhancing Awareness and Advocacy: Raising awareness about the value of IK and the ethical considerations involved in its use.

By embracing these strategies, the global community can harness the full potential of indigenous knowledge for bioprospecting and sustainable conservation, fostering a more equitable and resilient future.

References:

- 1. Agrawal, A. (1995). Dismantling the Divide Between Indigenous and Scientific Knowledge. *Development and Change*, 26(3), 413-439.
- 2. Berkes, F. (2018). Sacred Ecology (4th ed.). Routledge.
- 3. Glowka, L., Burhenne-Guilmin, F., & Synge, H. (1994). A Guide to the Convention on Biological Diversity. IUCN.
- 4. Klayman, D. L. (1985). Qinghaosu (Artemisinin): An Antimalarial Drug from China. *Science*, 228(4703), 1049-1055.
- 5. Nigh, R., & Diemont, S. A. W. (2013). The Maya Milpa: Fire and the Legacy of Living Soil. *Frontiers in Ecology and the Environment*, 11(1), e45-e54.
- 6. Posey, D. A. (1999). Cultural and Spiritual Values of Biodiversity. UNEP.
- 7. Reid, W. V., Laird, S. A., Meyer, C. A., et al. (1993). Bioprospecting: Using Genetic Resources for Sustainable Development. World Resources Institute.
- 8. Shiva, V. (1997). *Biopiracy: The Plunder of Nature and Knowledge*. South End Press.
- 9. Wynberg, R., & Chennells, R. (2009). Green Diamonds of the South: An Overview of the San-Hoodia Case. In R. Wynberg, D. Schroeder, & R. Chennells (Eds.), *Indigenous Peoples, Consent, and Benefit Sharing* (pp. 89-124). Springer.

THE NEED OF ACTIONS TO REDUCE THE IMPACT OF CLIMATE CHANGE Ivoti S. Pattanshetti

BLDEA's JSS College of Education,

PG Studies in Education and Research Centre, Vijayapur, Karnataka 586 101

Corresponding author E-mail: jsp123bjp@gmail.com

Abstract:

The world is now warming more faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. Burning fossil fuels for energy, transport and industry releases greenhouse gases, which cause global warming. Climate change refers to long-term shifts in temperatures and weather patterns. Such shifts can be natural, due to changes in the sun's activity or large volcanic eruptions. Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures. The main greenhouse gases that are causing climate change include carbon dioxide and methane. There is no doubt that human activities are causing climate change, which means we are also able to stop it. The main causes for the climate changes are generating electricity and heat by burning fossil fuels, manufacturing and industry produce emissions, cutting down forests, transportaion, production of food, powering the buildings and consumption of goods such as clothing, electronics & plastics. The effects of climate change on earth are increase in temperature, destructive storms, increased drought, rise in the level of sea, loss of species, not enough food, more health issues and poverty a displacement. Some the action can be used to reduce the impact of climate change on the environment like saving the energy at home by adapting the renewable energy, alternate ways to transport, swtiching to an electric vehicle, giving more imporantance to reduce, reuse, repair and recyle of goods, being vegetarian, not wasting the food, destruction of forests, clean up our environment, and speak up to get others to join in taking action. The present paper emphasis on need of action to reduce the impact of climate change on environment.

Keywords: Climate Change, Global Warming, Fossil Fuels, Greenhouse Gases, Environmental Impact

Introduction:

Life on Earth depends upon three factors, one is our distance from the Sun, second one is the chemical composition of our atmosphere and third one is the presence of the water cycle. A healthy environment has clean air, water, and soil without pollution. An unhealthy environment is contaminated and unsuitable for livinig. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth. Specific types of pollution like air, water, land, and sound pollution are described along with their causes. Burning fossil fuels for energy, transport and industry releases greenhouse gases, which cause global warming. This global warming has, in turn, dramatically altered natural cycles and weather patterns, with impacts that include extreme heat, protracted drought, increased flooding, more intense storms, and rising sea levels. Taken together, these miserable and sometimes deadly effects are what have come to be known as climate change. Things like farming, cutting down forests and overfishing are making it worse. There is no doubt that human activities are causing climate change, which means we are also able to stop it. The main cause of climate change is burning fossil fuels – such as coal, oil and gas – to produce energy and power transport. Climate change has always existed over the course of our planet's history. But the global warming that we have been seeing for around the last 150 years is anomalous because it is the result of human activity. It's called the anthropogenic greenhouse effect and occurs in addition to the natural greenhouse effect. For around 15 years, the data produced by thousands of scientists all over the world, analyzed and organized by the Intergovernmental Panel on Climate Change (IPCC), has confirmed that global warming derives from the anthropogenic greenhouse effect. In a series of UN reports, thousands of scientists and government reviewers agreed that limiting global temperature rise to no more than 1.5°C would help us avoid the worst climate impacts and maintain a livable climate. The emissions that cause climate change come from every part of the world and affect everyone, but some countries produce much more than others. The six biggest emitters (China, the United States of America, India, the European Union, the Russian Federation, and Brazil) togehter accounted for more than half of all global greenhouse gas emissions in 2023.

Climate Change

Climate change refers to long-term shifts in temperatures and weather patterns. Such shifts can be natural, due to changes in the sun's activity or large volcanic eruptions. Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures. The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from using gasoline for driving a car or coal for heating a building, for example. Clearing land and cutting down forests can also release carbon dioxide. Agriculture, oil and gas operations are major sources of methane emissions. Energy, industry, transport, buildings, agriculture and land use are among the main sectors causing greenhouse gases. Fossil fuels — coal, oil and gas — are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas

emissions and nearly 90 per cent of all carbon dioxide emissions. As greenhouse gas emissions blanket the earth, they trap the sun's heat. This leads to global warming and climate change.

Greenhouse Gases

Greenhouse gases include carbon dioxide (CO₂), methane (CH⁴) and nitrous oxide (N2O), which trap heat in the earth's atmosphere, increasing the average temperature worldwide. These gases are naturally present in the atmosphere, but human activities have massively increased them, trapping heat that then causes climate change.

- Carbon dioxide this comes from burning fossil fuels, deforestation.
- Methane this comes from natural gas flaring, permafrost melt, flooding.
- **Nitrous oxide** this comes from fertiliser used in farming.

The Causes of Climate Change

The following are main causes for the climate change on the earth.

- Generating Power: Generating electricity and heat by burning fossil fuels causes a large chunk of global emissions. Most electricity is still generated by burning coal, oil, or gas, which produces carbon dioxide and nitrous oxide powerful greenhouse gases that blanket the Earth and trap the sun's heat.
- Manufacturing Goods: Manufacturing and industry produce emissions, mostly from burning fossil fuels to produce energy for making things like cement, iron, steel, electronics, plastics, clothes, and other goods. Mining and other industrial processes also release gases, as does the construction industry. Machines used in the manufacturing process often run on coal, oil, or gas; and some materials, like plastics, are made from chemicals sourced from fossil fuels. The manufacturing industry is one of the largest contributors to greenhouse gas emissions worldwide.
- Cutting Down Forests: Cutting down forests to create farms or pastures, or for other reasons, causes emissions, since trees, when they are cut, release the carbon they have been storing. Since forests absorb carbon dioxide, destroying them also limits nature's ability to keep emissions out of the atmosphere. Deforestation, together with agriculture and other land use changes, is responsible for roughly a quarter of global greenhouse gas emissions.
- Using Transportation: Most cars, trucks, ships, and planes run on fossil fuels. That makes transportation a major contributor of greenhouse gases, especially carbon-dioxide emissions. Road vehicles account for the largest part, due to the combustion of petroleum-based products, like gasoline, in internal combustion engines. But emissions from ships and planes continue to grow. Transport accounts for nearly one quarter of

global energy-related carbon-dioxide emissions. And trends point to a significant increase in energy use for transport over the coming years.

- **Producing Food:** Producing food causes emissions of carbon dioxide, methane, and other greenhouse gases in various ways, including through deforestation and clearing of land for agriculture and grazing, digestion by cows and sheep, the production and use of fertilizers and manure for growing crops, and the use of energy to run farm equipment or fishing boats, usually with fossil fuels. All this makes food production a major contributor to climate change. And greenhouse gas emissions also come from packaging and distributing food.
- Powering Buildings: Globally, residential and commercial buildings consume over half of all electricity. As they continue to draw on coal, oil, and natural gas for heating and cooling, they emit significant quantities of greenhouse gas emissions. Growing energy demand for heating and cooling, with rising air-conditioner ownership, as well as increased electricity consumption for lighting, appliances, and connected devices, has contributed to a rise in energy-related carbon-dioxide emissions from buildings in recent years.
- Consuming too much: In our home and use of power, how you move around, what you eat and how much you throw away all contribute to greenhouse gas emissions. So does the consumption of goods such as clothing, electronics, and plastics. A large chunk of global greenhouse gas emissions is linked to private households. Our lifestyles have a profound impact on our planet.

Effects of Climate Changes

The following are main effects of the climate change on the earth.

- Temperatures: As greenhouse gas concentrations rise, so does the global surface temperature. The last decade, 2011-2020, is the warmest on record. Since the 1980s, each decade has been warmer than the previous one. Nearly all land areas are seeing more hot days and heat waves. Higher temperatures increase heat-related illnesses and make working outdoors more difficult. Wildfires start more easily and spread more rapidly when conditions are hotter. Temperatures in the Arctic have warmed at least twice as fast as the global average.
- More Severe Storms: Destructive storms have become more intense and more frequent in many regions. As temperatures rise, more moisture evaporates, which exacerbates extreme rainfall and flooding, causing more destructive storms. The frequency and extent of tropical storms is also affected by the warming ocean. Cyclones, hurricanes, and

typhoons feed on warm waters at the ocean surface. Such storms often destroy homes and communities, causing deaths and huge economic losses.

- Increased Drought: Climate change is changing water availability, making it scarcer in more regions. Global warming exacerbates water shortages in already water-stressed regions and is leading to an increased risk of agricultural droughts affecting crops, and ecological droughts increasing the vulnerability of ecosystems. Droughts can also stir destructive sand and dust storms that can move billions of tons of sand across continents. Deserts are expanding, reducing land for growing food. Many people now face the threat of not having enough water on a regular basis.
- A Warming, Rising Ocean: The ocean soaks up most of the heat from global warming. The rate at which the ocean is warming strongly increased over the past two decades, across all depths of the ocean. As the ocean warms, its volume increases since water expands as it gets warmer. Melting ice sheets also cause sea levels to rise, threatening coastal and island communities. In addition, the ocean absorbs carbon dioxide, keeping it from the atmosphere. But more carbon dioxide makes the ocean more acidic, which endangers marine life and coral reefs.
- Loss of Species: Climate change poses risks to the survival of species on land and in the ocean. These risks increase as temperatures climb. Exacerbated by climate change, the world is losing species at a rate 1,000 times greater than at any other time in recorded human history. One million species are at risk of becoming extinct within the next few decades. Forest fires, extreme weather, and invasive pests and diseases are among many threats related to climate change. Some species will be able to relocate and survive, but others will not.
- Not Enough Food: Changes in the climate and increases in extreme weather events are among the reasons behind a global rise in hunger and poor nutrition. Fisheries, crops, and livestock may be destroyed or become less productive. With the ocean becoming more acidic, marine resources that feed billions of people are at risk. Changes in snow and ice cover in many Arctic regions have disrupted food supplies from herding, hunting, and fishing. Heat stress can diminish water and grasslands for grazing, causing declining crop yields and affecting livestock.
- More Health Risks: Climate change is the single biggest health threat facing humanity. Climate impacts are already harming health, through air pollution, disease, extreme weather events, forced displacement, pressures on mental health, and increased hunger and poor nutrition in places where people cannot grow or find sufficient food. Every year,

environmental factors take the lives of around 13 million people. Changing weather patterns are expanding diseases, and extreme weather events increase deaths and make it difficult for health care systems to keep up.

• Poverty and Displacement: Climate change increases the factors that put and keep people in poverty. Floods may sweep away urban slums, destroying homes and livelihoods. Heat can make it difficult to work in outdoor jobs. Water scarcity may affect crops. Over the past decade (2010–2019), weather-related events displaced an estimated 23.1 million people on average each year, leaving many more vulnerable to poverty. Most refugees come from countries that are most vulnerable and least ready to adapt to the impacts of climate change.

Need of Actions to Reduce the Impact of Climate Change

The Sustainable Development Goals spell out how we can protect our environment and slow climate change, from forests to oceans to everywhere in between. Think about your electricity use and your travel. Check your dinner table. Reuse whatever you can. The possibilities for action are many – and add up fast. Here are some actions to reduce your impact on the environment.

- ➤ Save Energy at Home: Much of our electricity and heat are powered by coal, oil and gas. Use less energy by reducing your heating and cooling use, switching to LED light bulbs and energy-efficient electric appliances, washing your laundry with cold water, or hanging things to dry instead of using a dryer. Improving your home's energy efficiency, through better insulation for instance, or replacing your oil or gas furnace with an electric heat pump can reduce your carbon footprint by up to 900 kilograms of CO₂ per year.
- ➤ Change Your Home's Source of Energy: Switching our home from oil, gas or coalpowered energy to renewable sources of energy, such as wind or solar, can reduce our carbon footprint by up to 1.5 tons of CO₂ per year.
- ➤ Walk, Bike or Take Public Transport: The world's roadways are clogged with vehicles, most of them burning diesel or gasoline. Walking or riding a bike instead of driving will reduce greenhouse gas emissions -- and help your health and fitness. For longer distances, consider taking a train or bus. And carpool whenever possible. Living car-free can reduce your carbon footprint by up to 2 tons of CO₂ per year compared to a lifestyle using a car.
- > Switch to an Electric Vehicle: In many countries, electric cars help reduce air pollution and cause significantly fewer greenhouse gas emissions than gas or diesel-powered vehicles. But many electric cars still run on electricity produced from fossil fuels, and the batteries and engines require rare minerals which often come with high environmental

and social costs. Switching from a gasoline or diesel-powered car to an electric vehicle can reduce your carbon footprint by up to 2 tons of CO₂ per year. A hybrid vehicle can save you up to 700 kilograms of CO₂ per year.

- ➤ Consider Your Travel: Airplanes burn large amounts of fossil fuels, producing significant greenhouse gas emissions. That makes taking fewer flights one of the fastest ways to reduce your environmental impact. When you can, meet virtually, take a train, or skip that long-distance trip altogether. Taking one less long-haul return flight can reduce your carbon footprint by up to almost 2 tons of CO₂.
- ➤ Reduce, Reuse, Repair and Recycle: Electronics, clothes, plastics and other items we buy cause carbon emissions at each point in production, from the extraction of raw materials to manufacturing and transporting goods to market. To protect the climate, buy fewer things, shop second-hand, and repair what you can. Plastics alone generated 1.8 billion metric tonnes of greenhouse gas emissions in 2019 3.4 per cent of the global total. Less than 10 per cent is recycled, and once plastic is discarded, it can linger for hundreds of years. Buying fewer new clothes and other consumer goods can also reduce your carbon footprint. Every kilogram of textiles produced generates about 17 kilograms of CO₂.
- ➤ Eat More Vegetables: Eating more vegetables, fruits, whole grains, legumes, nuts, and seeds, and less meat and dairy, can significantly lower your environmental impact. Producing plant-based foods generally results in fewer greenhouse gas emissions and requires less energy, land, and water. Shifting from a mixed to a vegetarian diet can reduce your carbon footprint by up to 500 kilograms of CO₂ per year (or up to 900 kilograms for a vegan diet).
- ➤ Throw Away Less Food: When we throw food away, we are also wasting the resources and energy that were used to grow, produce, package, and transport it. And when food rots in a landfill, it produces methane, a powerful greenhouse gas. So purchase only what you need, use what you buy and compost any leftovers. Cutting your food waste can reduce our carbon footprint by up to 300 kilograms of CO₂ per year.
- ➤ Plant Native Species: If we have a garden or even just a plant or two outside our home, check for native species. Use a plant identification app to help. And then think about replacing non-natives, especially any considered invasive. Plants, animals and insects depend on each other. Most insects will not eat non-native plants, which means birds and other species lose a food source. Biodiversity suffers. Even a single tree or shrub can offer a refuge just remember to skip insecticides and other chemicals. The destruction of forests also causes substantial damage: trees help regulate the climate by absorbing

carbon dioxide from the atmosphere, so if they are destroyed, this beneficial effect is diminished and the carbon stored in those trees is emitted into the atmosphere, adding to the greenhouse effect.

- ➤ Clean Up Your Environment: Humans, animals and plants all suffer from land and water contaminated by improperly discarded garbage. Use what you need, and when you have to throw something out, dispose of it properly. Educate others to do the same, and participate in local clean-ups of parks, rivers, beaches and beyond. Every year, people throw out 2 billion tons of trash. About a third causes environment harms, from choking water supplies to poisoning soil.
- Make Your Money Count: Everything we spend money on affects the planet. You have the power to choose which goods and services you support. To reduce your environmental impact, choose products from companies who use resources responsibly and are committed to cutting their gas emissions and waste. If you have money that is being invested for you, through a pension fund for instance, it may be supporting fossil fuels or deforestation. Making sure your savings are invested in environmentally sustainable businesses can greatly reduce your carbon footprint.
- ➤ Speak Up: Speak up and get others to join in taking action. It's one of the quickest and most effective ways to make a difference. Talk to your neighbors, colleagues, friends, and family. Let business owners know you support bold changes from plastics-free products and packaging to zero-emissions vehicles. Appeal to local and world leaders to act now. Climate action is a task for all of us. And it concerns all of us. No one can do it all alone but we can do it together.

Conclusion:

Climate change is a problem that is facing our planet and it has progressed a lot after the industrial revolution. The emission of greenhouse gases has accelerated the progress of climate change and made our weather more intense. The consequences of climate change now include, among others, intense droughts, water scarcity, severe fires, rising sea levels, flooding, melting polar ice, catastrophic storms and declining biodiversity. However, the world's dependence on fossil fuel for energy, transportation, and manufacturing have created a major obstacle for us to switch to renewable energy. We need to transfer our energy to renewable energy. Scientists, environmentalists, communities, as well as policy makers need to diligently and cooperatively to live up to these challenges and combat climate change.

References:

- 1. Agarwal, K. C. (2001). Environmental biology. Nidi Publications.
- 2. Jadhav, H., & Bhosale, V. M. (1995). *Environmental protection and laws*. Himalaya Publishing House.
- 3. Gangrediwar, J. (2014). *Environmental science*. SBW Publishers.
- 4. Prashanth, M. S., & Hosetti, B. B. (2010). *Elements of environmental science*. Prateeksha Publications.
- 5. Sathyabhushan, G. R., & Mangalagiri, A. (1990). *Environmental education handbook for educational planners*. National Institute of Educational Planning and Administration (NIEPA).
- 6. Sharma, P. D. (1999). Ecology and environment. Rastogi Publications.
- 7. Singh, Y. K. (2007). Teaching of environmental science. APH Publishing House.

MICROPLASTICS AND HUMAN HEALTH: EMERGING EVIDENCE AND FUTURE DIRECTIONS

Vimala K John

Research and P G Department of Zoology,
St. Thomas College (Autonomous), Thrissur, Kerala 680 001
Affiliated to University of Calicut

Corresponding author E-mail: vimalmary@yahoo.com

Abstract:

Microplastics, defined as plastic particles smaller than 5 mm, have become pervasive in terrestrial and aquatic ecosystems. Recent studies indicate that these particles are increasingly present in human tissues and biological fluids, raising concerns about potential health risks. While the study of microplastics' impact on human biology is still nascent, experimental evidence from cellular, animal, and environmental toxicology models suggests possible links to inflammation, oxidative stress, genetic damage, reproductive dysfunction, and metabolic alterations. This review synthesizes current findings on the pathways of human exposure, biological effects, and broader ecological consequences of microplastic pollution, while highlighting research gaps and potential mitigation strategies.

Keywords: Microplastics, Ecosystem, Inflammation, Oxidative Stress Genetic Damage **Introduction:**

The rapid growth of global plastic production over the past seven decades has resulted in widespread environmental contamination. A significant portion of this waste fragments into microplastics (MPs), particles less than 5 millimeters in diameter, and even smaller nanoplastics (NPs), typically under 1 micrometer (Thompson *et al.*, 2004; Galloway *et al.*, 2017). These particles have been identified in oceans, rivers, soils, the atmosphere, and food webs, raising concern for both ecological and human health.

Although evidence of human exposure is mounting, the biological consequences remain poorly characterized. The World Health Organization (WHO, 2022) has emphasized that current methods cannot yet quantify population-level exposure or determine the retention of MPs within human tissues. Nonetheless, preliminary research suggests that MPs and NPs may interact with cellular and molecular systems in ways that resemble other environmental toxicants, such as particulate matter and heavy metals (Prata *et al.*, 2020).

Pathways of Human Exposure

Humans encounter microplastics through multiple routes, including ingestion, inhalation, and dermal contact. MPs have been detected in drinking water, seafood, table salt, fruits, vegetables, and processed foods (Toussaint *et al.*, 2019; Oliveri Conti *et al.*, 2020). Airborne MPs derived from textiles, dust, and industrial sources contribute to inhalation exposure, particularly in urban environments (Dris *et al.*, 2016).

Recent biomonitoring studies have confirmed the presence of MPs in human blood (Leslie *et al.*, 2022), breast milk (Ragusa *et al.*, 2022), placenta (Ragusa *et al.*, 2021), and stool (Schwabl *et al.*, 2019). Such findings suggest systemic distribution of MPs following entry through the gastrointestinal and respiratory tracts. The smaller NP fraction raises particular concern due to its ability to penetrate cell membranes and even reach the nucleus (Schirinzi *et al.*, 2017).

Biological Effects of Microplastics

Cellular and Genetic Impacts

Experimental studies indicate that MPs and NPs can induce oxidative stress, DNA strand breaks, and alterations in gene expression (Hwang *et al.*, 2020). Nanoplastic internalization has been shown to disrupt organelle function, potentially triggering apoptosis or impaired cell signaling (Yong *et al.*, 2020). These outcomes parallel mechanisms implicated in carcinogenesis and other chronic diseases.

Reproductive and Developmental Effects

Animal models suggest that MPs may interfere with reproductive processes. In mice, MP exposure has been associated with decreased sperm quality, ovarian fibrosis, and adverse metabolic effects in offspring (Hou *et al.*, 2021). Detection of MPs in meconium further raises questions about prenatal exposure pathways and developmental toxicity in humans (Ragusa *et al.*, 2021).

Systemic Toxicity

Microplastics' physical properties and chemical additives contribute to toxicity. Additives such as bisphenol A (BPA) and phthalates are known endocrine disruptors (Talsness *et al.*, 2009). Additionally, MPs can adsorb and transport heavy metals, persistent organic pollutants, and microbial pathogens, potentially acting as vectors for co-exposures (Koelmans *et al.*, 2016). In vivo studies in rodents demonstrate inflammatory responses, altered lipid metabolism, and gut microbiome dysbiosis following MP ingestion (Lu *et al.*, 2018).

Broader Environmental and Climate Implications

Microplastics not only pose direct risks to humans but also threaten ecological systems that regulate planetary health. In marine environments, organisms consuming MPs may suffer

reduced nutrient intake, impairing growth and reproduction (Wright *et al.*, 2013). Furthermore, recent findings suggest that MPs interfere with microbial communities responsible for carbon sequestration and oxygen production, amplifying climate change challenges (Zhang *et al.*, 2020).

The production and degradation of plastics also release greenhouse gases, contributing to global warming (Royer *et al.*, 2018). Thus, the nexus between plastic pollution, climate disruption, and human health underscores the urgency of integrated policy and scientific responses.

Research Gaps and Challenges

Despite growing concern, several uncertainties remain. Current limitations include the lack of standardized methods for MP detection in human tissues, insufficient epidemiological data, and limited understanding of dose-response relationships (WHO, 2022). Additionally, the diversity of MP sizes, shapes, and chemical compositions complicates risk assessment. Longitudinal human studies are essential to establish causal links between MP exposure and chronic disease outcomes.

Mitigation and Policy Directions

Efforts to address microplastic pollution span technological, medical, and policy domains. Promising approaches include the development of biodegradable plastics, plastic-degrading microorganisms, and enhanced recycling technologies (Shah *et al.*, 2008). On the clinical front, physicians and health systems can advocate for reduced plastic use, especially single-use plastics in medical settings (Demir & Demir, 2022).

At the policy level, measures such as restricting microbeads in cosmetics, limiting single-use plastics, and strengthening global agreements on plastic waste management are critical (UNEP, 2021). Public engagement in reducing plastic consumption and supporting sustainable alternatives also plays an important role.

Conclusion:

Microplastics are increasingly recognized as a global public health concern. Although definitive evidence of their long-term effects on humans is limited, experimental studies suggest potential risks involving inflammation, reproductive harm, and metabolic disruption. Their persistence in the environment, capacity to carry toxicants, and contribution to climate-related processes heighten their significance. Advancing standardized methodologies, epidemiological research, and international cooperation will be crucial in addressing the dual crises of plastic pollution and human health.

References

1. Demir, E., & Demir, F. T. (2022). Perspectives on plastic particle pollution in clinical environments. *Massachusetts General Hospital Research Communications*.

- 2. Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? *Marine Pollution Bulletin*, 104(1-2), 290–293.
- 3. Galloway, T. S., Cole, M., & Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. *Nature Ecology & Evolution*, 1(5), 0116.
- 4. Hou, B., Wang, F., Liu, T., Wang, Z., & Li, Y. (2021). Reproductive toxicity of polystyrene microplastics in male mice. *Journal of Hazardous Materials*, 401, 123430.
- 5. Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J., & Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. *Scientific Reports*, 10(1), 7391.
- 6. Koelmans, A. A., Bakir, A., Burton, G. A., & Janssen, C. R. (2016). Microplastic as a vector for chemicals in the aquatic environment. *Critical Reviews in Environmental Science and Technology*, 46(7), 670–700.
- 7. Leslie, H. A., van Velzen, M. J. M., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in human blood. *Environment International*, 163, 107199.
- 8. Lu, L., Luo, T., Zhao, Y., Cai, C., Fu, Z., & Jin, Y. (2018). Interaction between polystyrene microplastics and gut microbiota in mice. *Chemosphere*, 208, 318–325.
- Oliveri Conti, G., Ferrante, M., Banni, M., Favara, C., Nicolosi, I., Cristaldi, A., & Fiore, M. (2020). Micro- and nano-plastics in edible fruit and vegetables. *Environmental Research*, 187, 109677.
- 10. Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020).
- a. Environmental exposure to microplastics: An overview on possible human health effects. *Science of the Total Environment, 702,* 134455.
- 11. Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., ... & Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. *Environment International*, 146, 106274.
- 12. Ragusa, A., Notarstefano, V., Svelato, A., Belloni, A., Gioacchini, G., Blondeel, C., ... & Giorgini, E. (2022). Microplastics in human breastmilk: Experimental evidence. *Polymers*, *14*(13), 2700.
- 13. Royer, S. J., Ferrón, S., Wilson, S. T., & Karl, D. M. (2018). Production of methane and ethylene from plastic in the environment. *PLoS ONE*, *13*(8), e0200574.
- 14. Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of various microplastics in human stool. *Annals of Internal Medicine*, 171(7), 453–457.

- 15. Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. *Biotechnology Advances*, 26(3), 246–265.
- 16. Talsness, C. E., Andrade, A. J. M., Kuriyama, S. N., Taylor, J. A., & vom Saal, F. S. (2009). Components of plastic: Experimental studies in animals and relevance for human health. *Philosophical Transactions of the Royal Society B*, 364(1526), 2079–2096.
- 17. Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., ... & Russell, A. E. (2004). Lost at sea: Where is all the plastic? *Science*, 304(5672), 838.
- 18. Toussaint, B., Raffael, B., Angers-Loustau, A., Gilliland, D., Kestens, V., Petrillo, M., ... & Van den Eede, G. (2019). Review of micro- and nanoplastic contamination in the food chain. *Food Additives & Contaminants*, *36*(5), 639–673.
- 19. UNEP. (2021). From pollution to solution: A global assessment of marine litter and plastic pollution. *United Nations Environment Programme*.
- 20. WHO. (2022). Microplastics in drinking water: Updated assessment. World Health Organization.
- 21. Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. *Environmental Pollution*, 178, 483–492.
- 22. Yong, C. Q. Y., Valiyaveettil, S., & Tang, B. L. (2020). Toxicity of microplastics and nanoplastics in mammalian systems. *International Journal of Environmental Research and Public Health*, 17(5), 1509.
- 23. Zhang, Q., Zhao, Y., Du, F., Cai, H., Wang, G., & Shi, H. (2020). Microplastic fallout in different indoor environments. *Environmental Science & Technology*, 54(11), 6530–6539.

PLANKTON AS BIOINDICATORS OF AQUATIC POLLUTION

Misba Rehman*1, Monisa Malik² and Adnan Abubakr²

¹Faculty of Fisheries,

Fisheries Resource Management, SKUAST-K, Rangil, Ganderbal 190006, India ² Faculty of Fisheries,

Aquatic Environmental Management, SKUAST-K, Rangil, Ganderbal 190006, India
*Corresponding author E-mail: misbarehman419@gmail.com

Abstract:

Plankton play a vital role in aquatic ecosystems and are increasingly recognized as sensitive indicators of environmental change. Their rapid response to pollution—via shifts in abundance, diversity, and community structure—makes them effective biological monitors of water quality. This chapter critically explores the ecological responses of both phytoplankton and zooplankton to various pollutants such as heavy metals, nutrient enrichment, and industrial effluents. Through global and regional case studies, the study highlights pollution-indicating species, patterns of bioaccumulation, and species-specific sensitivity. Despite certain limitations including seasonal fluctuations and taxonomic challenges, plankton remain vital tools for ecological diagnostics. Integrating plankton-based indicators into long-term monitoring enhances our capacity to detect, assess, and manage aquatic ecosystem health.

Keywords: Plankton, Indicator, Abundance, Pollution, Taxonomic, Ecological.

Introduction:

Aquatic habitats are areas of the Earth's surface that are permanently or periodically covered by water and provide the living space for a diverse array of aquatic organisms, including plants, animals, and microorganisms. They play a crucial role in supporting biodiversity, maintaining water quality, and providing ecosystem services (Dudgeon *et al.*, 2006, Costanza, 2015). However, these ecosystems are under increasing threat from pollution, which can have profound impacts on both the environment and human health. Aquatic pollution primarily results from human-induced activities such as urbanization, industrialization, and agriculture (Bashir *et al.*, 2020). For example, farmers often use a lot of fertilizers and pesticides. When it rains, these chemicals can wash into nearby rivers and lakes. Also, waste from our homes and factories (if not properly treated) gets dumped into water bodies. Over time, all of this pollution builds up and damages the quality of water, harms aquatic life, and throws the whole ecosystem out of balance (Agrawal *et al.*, 2010; Rashmi *et al.*, 2020). Pollutants such as nutrients (nitrogen and phosphorus), heavy metals, pesticides, industrial effluents, and sewage inputs alter the

physicochemical characteristics of water bodies, thereby disrupting biological communities and ecosystem functions (Paerl & Otten, 2013; Smith, 2003). Therefore, it is very important to keep an eye on pollution in water bodies so we can catch problems early enabling timely mitigation and effective management to safeguard ecosystem and human health. One of the best ways to do this is by studying plankton.

Plankton are diverse, primarily microscopic organisms that drift with water currents in aquatic environments (Brierley, 2017). These organisms serve as the foundation of the aquatic food chain and play a vital role in nutrient cycling. Plankton are highly sensitive to changes in water quality, making them effective indicators of pollution (Singh *et al.*, 2013; Nwonumara, 2018; Chandel *et al.*, 2024). The "health" of an aquatic system can be inferred from the presence or absence of plankton, which act as early warning signals (Chandel *et al.*, 2024). Plankton demonstrates water quality through changes in its community composition, distribution and proportion of sensitive species (Gharib *et al.*, 2011). Pollution affects plankton in many ways—one of the most important is by changing the types and number of species present in the water. Normally, in clean water, we find a mix of different plankton species, including many that are sensitive to pollution. But when pollution increases, these sensitive species start to disappear. At the same time, a few pollution-tolerant species (the ones that can survive in poor-quality water) start to take over. This change in the balance of species gives us a clue that the water is under stress, especially during the dry season when pollution levels tend to rise.

Impact of Pollution on:

1. Species Composition and Diversity of plankton

Pollution can lead to shifts in the species composition and diversity of plankton communities. Monitoring changes in the types and relative abundance of plankton species can provide insights into the health of an aquatic ecosystem. For example, an increase in pollution-tolerant species and a decrease in sensitive species may indicate pollution stress. The dominance of pollution-tolerant phytoplankton species like *Ankistrodesmus fractus*, *Microcystis aeruginosa*, *Oscillatoria*, and *Anabaena* indicates nutrient enrichment and pollution stress in the tropical river, especially during the dry season (Nwonumara, 2018).

2. Abundance and Biomass

Pollution can affect the overall abundance and biomass (total mass) of plankton in an ecosystem. The balance of the plankton community changes depending on the type and amount of pollution. When pollution levels are moderate, the nutrients may cause certain plankton, like algae and cyanobacteria, to grow rapidly. When pollution becomes too severe, especially with toxic substances like heavy metals or pesticides, it can kill many plankton or stop them from growing, reducing their diversity and biomass (Reynolds, 2006).

3. Zooplankton Response

Zooplankton are consumers that feed on phytoplankton and other smaller organisms. Pollution affects them in different ways depending on the type and amount of pollution (Gannon & Stemberger, 1978). Mild nutrient pollution (like from fertilizers) can sometimes increase zooplankton numbers because there is more food (algae) available. Heavy pollution (from toxic chemicals, sewage, or metals) usually reduces zooplankton diversity and abundance. Many sensitive species may die, and only pollution-tolerant species like *Brachionus* and *Keratella* survive.

4. Physiological Changes

Plankton can exhibit physiological changes in response to pollution stress. These changes might include damaging of cells, reduced enzyme activity, and interference with growth and reproduction. Heavy metals and organic pollutants can cause deformities or death, while excess nutrients stress their systems. Monitoring these physiological responses can offer a direct understanding of pollution impacts on these organisms.

Plankton as Pollution Indicators

Phytoplankton are particularly responsive to nutrient enrichment, a process known as eutrophication, which often leads to harmful algal blooms (HABs). These blooms are frequently dominated by cyanobacterial species such as *Microcystis aeruginosa*, *Anabaena*, and *Oscillatoria*, all of which are known to thrive under high nutrient and low-oxygen conditions (Paerl & Otten, 2013). Their proliferation not only indicates pollution but also exacerbates it by producing toxins and depleting oxygen, further stressing aquatic biota. In contrast, the reduction or disappearance of more sensitive species such as diatoms and desmids can signal the presence of heavy metals or organic contaminants (Wong *et al.*, 2000). Similarly, zooplankton are affected by pollution through both direct toxicity and changes in food availability. Under moderate nutrient conditions, zooplankton such as *Brachionus* and *Keratella* may increase in number due to algal proliferation. However, in severely polluted environments, species richness often declines, and the community shifts towards dominance by a few tolerant taxa, reflecting ecological degradation (Gannon & Stemberger, 1978). Studies have shown that zooplankton can bioaccumulate heavy metals, which further makes them useful in ecotoxicological assessments (Wong *et al.*, 2000).

Examples:

➤ Research on the "Bizerte City" oil spill revealed significant shifts in coastal phytoplankton community structure over time. Within 1–8 days post-spill, picophytoplankton biomass increased while nano- and microphytoplankton declined. This shift was attributed to differential sensitivity to PAHs. After 18 days, recovery was

- marked by outbreaks of diatoms such as *Chaetoceros* and *Astrionellopsis glacialis*, indicating plankton community structure responds sensitively to oil pollution and can act as a bio-indicator of contamination severity and recovery stages (Grami *et al.*, 2024)
- ➤ In a study conducted across three eastern Canadian lakes, Paquette *et al.* (2022) observed that zooplankton, particularly crustacean cladocerans, were highly sensitive to environmental changes caused by climate variation, primary productivity, and metal contamination. Pollution indicator taxa like cladocerans showed strong sensitivity to increasing concentrations of lead (Pb) and copper (Cu), leading to reduced abundance or complete absence from affected lakes (Gagneten & Paggi, 2009; Leppänen, 2018).
- ➤ Kumar *et al.* (2022) assessed the Dal lake's ecological condition through plankton analysis and found *Cyclotella*, *Melosira*, *Microcystis*, *Achnanthes*, *Nitzschia*, *Euglena*, *Phacus*, and *Oscillatoria* as the prominent pollution-indicator phytoplanktons. Similarly, zooplankton species such as *Keratella*, *Brachionus*, *Chydorus*, and *Cyclops* as the prominent ones to reflect deteriorating water quality.
- ➤ Bashir *et al.* (2021) conducted a study on phytoplankton diversity in Anchar lake by selecting six ecologically distinct sites (Sangam, Zinymar, Centre, SKIMS Hospital, Eidgah, and Jinab Shab Shrine) based on substratum and habitat differences. Findings revealed that Bacillariophyceae>Chlorophyceae>Cyanophycea were the dominant groups at the Sangam site. Euglenophyceae, Dinophyceae, and Cryptophyceae were least represented. The high abundance of phytoplankton, particularly at sites 1 to 4, indicated nutrient-rich conditions and organic pollution, making these communities effective indicators of eutrophication.
- ➤ The occurrence of organic pollution indicators (*Closterium spp.*, *Navicula spp.*, *Nitzschia spp.*, *Synedra spp.*, *Chlamydomonas spp.*, *Cyclotella spp.* and *Anacystis spp.*) is found to be an alarming sign of the degraded health status of the Nasarawa reservoir (Fathan *et al.*, 2020).
- ➤ Ganai & Parveen, (2014) conducted phytoplankton assessment in Wular Lake's Lankrishipora region and revealed reduced species diversity compared to earlier studies, likely due to increased pollution. The dominance of *Navicula spp.*, *Chlorella spp.*, and *Oscillatoria spp.* (all tolerant to organic pollution) indicated significant ecological degradation and organic enrichment of the lake.
- A study conducted in Halali Reservoir, Madhya Pradesh measured concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in plankton samples using ICP-OES. Chromium (Cr) levels were notably high among all sites surveyed, and these levels correlated strongly with metal concentrations found in fish tissues. The study concluded

- that plankton could serve as effective early indicators of heavy metal pollution in freshwater reservoirs (Malik *et al.*, 2013).
- ➤ Rotifers respond rapidly to changes in water quality, and their increased abundance has been linked with elevated turbidity and suspended solids—common consequences of urban runoff and sediment resuspension (Sládeček, 1983).

Plankton indicator species observed in various water bodies are summarized below:

Plankton Class	Indicator Species	Water Body	References
Chlorophyceae (Green	Chlamydomonas spp.,	Nasarawa	Fathan et al., 2020;
Algae)	Closterium spp.,	Reservoir, Salanta	Mohammad & Saminu,
	Spirogyra spp.,	River, Calabar	2012; Ewa et al., 2013;
	Chlorella spp.	River, Wular Lake	Ganai & Parveen, 2014.
Cyanophyceae	Microcystis spp.,	Egbe Reservoir,	Edward & Ugwumba,
(Blue-green Algae)	Anabaena gracilis,	Dal Lake, Wular	2010; Kumar et al.,
	Oscillatoria tenuis,	Lake	2022; Ganai & Parveen,
	Anacystis spp.		2014.
Bacillariophyceae	Navicula spp.,	Nasarawa	Fathan et al., 2020;
(Diatoms)	Nitzschia spp., Synedra	Reservoir, Egbe	Edward & Ugwumba,
	spp., Melosira spp.,	Reservoir, Dal	2010; Kumar et al.,
	Cyclotella spp.,	Lake	2022.
	Achnanthes spp.		
Euglenophyceae	Euglena gracilis,	Egbe Reservoir,	Edward & Ugwumba,
	Phacus spp.,	Dal Lake	2010; Kumar et al.,
	Lepocinclis spp.		2022.
Dinophyceae	Ceratium trichoceros	Nigerian Coastal	Adekunle et al., 2010.
		Waters	
Cladocera	Chydorus sphaericus,	Eastern Canadian	Paquette et al., 2022;
(Zooplankton)	Bosmina longirostris	Lakes	Gagneten & Paggi, 2009;
			Leppänen, 2018.
Rotifera	Keratella cochlearis,	Dal Lake, Urban	Kumar et al., 2022;
(Zooplankton)	Brachionus angularis,	waters	Sládeček, 1983
	Brachionus caudata		

Bhumi Publishing, India September 2025

Case Study: Plankton Indicators for Water Pollution Assessment

Location: The Gulf of Mexico

Background: In the aftermath of the Deepwater Horizon oil spill in 2010, one of the largest environmental disasters in U.S. history, scientists used plankton as indicators to assess the impact of the oil spill on the marine ecosystem

Methodology:

1. Baseline Data: Prior to the oil spill, researchers had collected extensive baseline data on plankton communities in the Gulf of Mexico. This data included information about the diversity, abundance, and composition of various plankton species.

2. Post-Spill Sampling: After the oil spill, researchers conducted intensive sampling of plankton communities in the affected areas. They compared the post-spill data to the baseline data to identify any significant changes.

3. Indicator Species: Certain species of plankton are particularly sensitive to changes in water quality and can serve as indicators of pollution. Researchers focused on these indicator species to detect subtle changes that might indicate pollution impacts.

Results:

The analysis of plankton data revealed several key findings:

1. Shifts in Composition: There were significant shifts in the composition of plankton communities in the spill-affected areas. Some species of plankton that were more tolerant to oil contamination became dominant (*Skeletonema costatum*, *Melosira moniliformis*), while others that were more sensitive declined in abundance (*Ditylum brightwellii*, *Biddulphia mobiliensis*).

2. Reduced Diversity: The diversity of plankton species in the spill-affected areas decreased, indicating a disruption in the overall ecosystem health.

3. Long-Term Impact: While some plankton communities showed signs of recovery within a year after the spill, others continued to exhibit altered composition and reduced diversity for several years.

By analyzing changes in plankton composition, abundance, and diversity, scientists can gain insights into the health of the ecosystem and the effectiveness of recovery efforts.

Case Study: Phytoplankton-Based Assessment of Heavy Metal Pollution in Coastal Egypt

Location: Alexandria Coast, Egypt (2018-19)

Background:

Rapid urbanization and industrial activities along Egypt's Mediterranean coast, especially near the Alexandria region, have raised concerns over coastal pollution, particularly from heavy metals. In response, researchers employed phytoplankton communities as biological indicators to assess the ecological impact of metal contamination.

54

Methodology:

The study focused on two coastal sites; one adjacent to cargo port operations and the other influenced by tourism. Water samples were collected seasonally and analysed for heavy metal concentrations, including copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr). Simultaneously, phytoplankton were sampled to determine species composition, chlorophyll-a concentration, and photosynthetic efficiency. Statistical tools such as Principal Component Analysis (PCA) and factor analysis were used to interpret spatial and temporal patterns in the data.

Key Findings:

- Significant bioaccumulation of heavy metals was observed in dominant phytoplankton taxa.
- The most polluted site exhibited notable declines in phytoplankton diversity and productivity.
- Multivariate analysis revealed station-specific variations in contamination, clearly identifying pollution hotspots.
- The strong correlation between metal concentration and phytoplankton response highlighted their utility as sensitive indicators of ecological stress.

The study demonstrates the effectiveness of phytoplankton community metrics in assessing heavy metal pollution and underscores their value for long-term ecological monitoring and sustainable coastal management.

Limitations of Using Plankton as Pollution Indicators

Despite their proven utility in monitoring aquatic pollution, the use of plankton as bioindicators comes with several notable limitations. Planktonic communities are highly dynamic and influenced by a multitude of environmental factors beyond pollution, such as seasonal variation, predation pressure, and hydrological conditions. In the absence of long-term baseline data, it can be challenging to differentiate between natural ecological variability and anthropogenic disturbances. Furthermore, their sensitivity to multiple overlapping stressors and the requirement for expert taxonomic identification limit their standalone reliability in pollution assessment. Plankton can be heterogeneously distributed in lakes and rivers, leading to inconsistent results if sampling is not standardized across time and space. These constraints underscore the importance of integrating plankton-based evaluations with physicochemical and toxicological analysis for a more robust and comprehensive understanding of water quality.

Conclusion:

Plankton, due to their sensitivity, ecological relevance, and rapid response to environmental changes, serve as effective bioindicators for assessing pollution in aquatic

ecosystems. Shifts in their abundance, diversity, and community composition can reflect specific pollutant types and ecosystem stress. However, for reliable interpretation, their use must be supported by baseline data, seasonal context, and complementary physicochemical analysis. Despite certain limitations, plankton-based monitoring remains a valuable, cost-effective, and ecologically meaningful tool in aquatic environmental assessment and management.

References:

- 1. Adekunle, I.M, Ajijo, M.R, Adeofun, C.O and Omoniyi, I.T. (2010). Response of four phytoplankton species found in some sectors of Nigeria coastal waters to crude oil in controlled ecosystem. *Int. J. Environ. Res.*, 4 (1), 65-74.
- 2. Agrawal, A., Pandey, R. S., & Sharma, B. (2010). Water pollution with special reference to pesticide contamination in India. *Journal of Water Resource and Protection*, 2(5), 432-448.
- 3. Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., & Dar, S. A. (2020). Concerns and threats of contamination on aquatic ecosystems. *Bioremediation and biotechnology:* sustainable approaches to pollution degradation, 1-26.
- 4. Bashir, M., Zaffar, S., Malik, J. A., & Mir, M. F. (2021). Species diversity and richness indices of phytoplankton species in anchar lake of Kashmir-India. *Plant Archives*, 21(1).
- 5. Brierley, A. S. (2017). Plankton. Current Biology, 27(11), R478-R483.
- 6. Chandel, P., Mahajan, D., Thakur, K., Kumar, R., Kumar, S., Brar, B., ... & Sharma, A. K. (2024). A review on plankton as a bioindicator: A promising tool for monitoring water quality. *World Water Policy*, 10(1), 213-232.
- 7. Chashoo, H. F. (2020). *Biomonitoring of Dal Lake using diatoms as indicators of ecological change* (Doctoral dissertation, SKUAST Kashmir).
- 8. Costanza, R. (2015). Ecosystem services in theory and practice. In *Routledge Handbook of Ecosystem Services* (pp. 15-24). Routledge.
- 9. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., ... & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. *Biological reviews*, 81(2), 163-182.
- 10. Edward, J.B and Ugwumba, A.A.A. (2010). Physico-chemical parameters and Plankton community of Egbe Reservoir, Ekiti State, Nigeria. *Journal of Biological Science*, 2 (5) 356-367.
- 11. El-Sikaily, A., Hamza, W., & Anwar, W. (2023). Evaluation of the response of phytoplankton communities to heavy metal stresses using multi-statistical approaches, Alexandria Coast, Egypt. *International Journal of Environmental Science and Technology*.

- 12. Ewa, E.E., Iwara, A.I., Offiong, V.E., Essoka, P. A., and Njar, G.N. (2013). Seasonal variations in heavy metal status of the Calabar River, Cross River State, Nigeria. *Journal of Natural Sciences Research*, 3 (11),78-82.
- 13. Fathan, M. R. R. N., Hasan, Z., Apriliani, I. M., & Herawati, H. (2020). Phytoplankton community structure as bioindicator of water quality in floating net cage area with different density at Cirata Reservoir. *Asian J. Fish. Aquat.* Res, 19-30.
- Gagneten, A. M., & Paggi, J. C. (2009). Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the lower basin of the Salado River (Argentina).
 Water, air, and soil pollution, 198, 317-334.
- 15. Ganai, A. H., & Parveen, S. (2014). Effect of physico-chemical conditions on the structure and composition of the phytoplankton community in Wular Lake at Lankrishipora, Kashmir. *International Journal of Biodiversity and Conservation*, 6(1), 71-84.
- 16. Gannon, J. E., & Stemberger, R. S. (1978). Zooplankton (especially crustaceans and rotifers) as indicators of water quality. *Transactions of the American Microscopical Society*, 16-35.
- 17. Gharib, S. M., El-Sherif, Z. M., Abdel-Halim, A. M., & Radwan, A. A. (2011). Phytoplankton and environmental variables as a water quality indicator for the beaches at Matrouh, south-eastern Mediterranean Sea, Egypt: an assessment. *Oceanologia*, 53(3), 819-836.
- 18. Grami, B., Chkili, O., Melliti Ben Garali, S., Mejri Kousri, K., Meddeb, M., Chouba, L., Niquil, N., & Sakka Hlaili, A. (2024). Field study on natural phytoplankton throughout "Bizerte City" oil spill on the south-western coast of the Mediterranean Sea. *Aquatic Sciences*, 86(4), Article 93.
- 19. Gulzar, B., Balkhi, M. H., Abubakr, A., Bhat, F., Asimi, A. O., & Bhat, B. A. (2020). Distributional pattern of algal/plankton groups in relation with water quality of Himalayan Dal Lake, Kashmir, India. *Journal of Pharmacognosy and Phytochemistry*, 9(5S), 736-740.
- 20. Kennicutt, M. C. (2017). Water quality of the Gulf of Mexico. Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill: Volume 1: Water Quality, Sediments, Sediment Contaminants, Oil and Gas Seeps, Coastal Habitats, Offshore Plankton and Benthos, and Shellfish, 55-164.
- 21. Kumar, R., Parvaze, S., Huda, M. B., & Allaie, S. P. (2022). The changing water quality of lakes—a case study of Dal Lake, Kashmir Valley. *Environmental monitoring and assessment*, 194(3), 228.
- 22. Leppänen, J. J. (2018). An overview of Cladoceran studies conducted in mine water impacted lakes. *International Aquatic Research*, 10(3), 207-221.

- 23. Malik, N., Biswas, A.K. & Raju, C.B. Plankton as an Indicator of Heavy Metal Pollution in a Freshwater Reservoir of Madhya Pradesh, India. *Bull Environ Contam Toxicol* 90, 725–729 (2013). https://doi.org/10.1007/s00128-013-0985-8
- 24. Marshall, H. G., Lacouture, R. V., Buchanan, C., & Johnson, J. M. (2006). Phytoplankton assemblages associated with water quality and salinity regions in Chesapeake Bay, USA. *Estuarine, Coastal and Shelf Science*, 69(1-2), 10-18.
- 25. Mohammad, M.A and Saminu M.Y. (2012). A water quality and phytoplankton of Salanta River Kano, Nigeria. *Journal of Biological Science and Bioconservation*, 4, 65-70.
- 26. Nwonumara, G. N. (2018). Water quality and phytoplankton as indicators of pollution in a tropical river. *In Proceedings of 6th NSCB Biodiversity Conference Uniuvo* (pp. 83-89).
- 27. Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. *Microbial ecology*, 65, 995-1010.
- 28. Paquette, C., Griffiths, K., Gregory-Eaves, I., & Beisner, B. E. (2022). Zooplankton assemblage structure and diversity since pre-industrial times in relation to land use. *Global Ecology and Biogeography*, 31(11), 2337-2352.
- 29. Rashmi, I., Roy, T., Kartika, K. S., Pal, R., Coumar, V., Kala, S., & Shinoji, K. C. (2020). Organic and inorganic fertilizer contaminants in agriculture: Impact on soil and water resources. *Contaminants in Agriculture: Sources, Impacts and Management*, 3-41.
- 30. Reynolds, C. S. (2006). *The ecology of phytoplankton*. Cambridge University Press.
- 31. Singh, U. B., Ahluwalia, A. S., Sharma, C., Jindal, R., & Thakur, R. K. (2013). Planktonic indicators: A promising tool for monitoring water quality (early-warning signals). *Ecology, Environment and Conservation*, 19(3), 793-800.
- 32. Sládeček, V. (1983). Rotifers as indicators of water quality. *Hydrobiologia*, 100(1), 169-201.

RIPARIAN ECOSYSTEMS UNDER PRESSURE: IMPACTS AND CONSERVATION GUIDELINES

Misba Rehman*, Tasaduq Hussain Shah and Syed Talia Mushtaq

Faculty of Fisheries,

Fisheries Resource Management, SKUAST-K, Rangil, Ganderbal 190006, India
*Corresponding author E-mail: misbarehman419@gmail.com

Abstract:

Riparian zones, integral to Fisheries Sensitive Zones (FSZs), provide essential ecological services including food supply, temperature regulation, pollution buffering, habitat provision, and streambank stabilization. Human activities such as vegetation removal, construction, machinery operation, and agrochemical runoff disrupt these functions, causing sedimentation, thermal stress, water-quality degradation, and habitat loss, with cascading impacts on aquatic biodiversity and ecosystem resilience. Conservation through buffer zones or "leave strips," guided by land-use type and waterbody characteristics, is critical to maintaining riparian integrity. Effective management requires restricted access, native vegetation restoration, and adherence to regulatory guidelines. Integrating policy support, community engagement, monitoring, and climate-adaptive strategies ensures the long-term sustainability of riparian ecosystems, safeguarding fisheries productivity and overall aquatic ecosystem health.

Keywords: Riparian Zone, Temperature, Sedimentation, Agrochemical, Cascading, Buffer Zone **Introduction:**

Riparian zones are areas next to rivers, streams, lakes, and wetlands (Fig. 1). These zones include the streambanks, nearby side channels, and upland areas that don't usually flood (Pusey & Arthington, 2003; Anbumozhi *et al.*, 2005). Riparian zone vegetation and geomorphic features help control water flow, reinforce stream banks, capture sediments, regulate water temperature, and provide organic matter that supports aquatic food webs (Tabacchi *et al.*, 2000; Brennan & Culverwell, 2005). These processes support a variety of ecosystem services, such as maintaining biodiversity, improving water quality, reducing flood risks, storing carbon, and offering cultural and recreational benefits, all of which are crucial for human well-being and the health of aquatic ecosystems (Dinca *et al.*, 2025). However, human-induced disturbances such as construction, mechanized activities, deforestation, and agrochemical runoff can severely compromise these functions, leading to sedimentation, habitat loss, altered thermal regimes, and disrupted water chemistry (Albertson *et al.*, 2018; Trimmel *et al.*, 2018; Yearsley *et al.*, 2019; Zaimes *et al.*, 2019). To protect riparian ecosystems, the establishment of buffer zones or "leave strips" is crucial. These vegetated strips, with widths determined by waterbody type and surrounding land

use, safeguard riparian vegetation, maintain habitat connectivity, and minimize erosion and pollutant inflow (Fischer & Fischenich, 2000; Wang et al., 2020). Construction within these zones must follow strict guidelines (DFO, 2020). Effective riparian management relies on community engagement, regular monitoring, native vegetation restoration, and climate-adaptive strategies to enhance resilience against hydrological changes and human pressures. These integrated measures are essential for protecting aquatic ecosystems, sustaining fisheries, and preserving the ecological services of riparian zones.

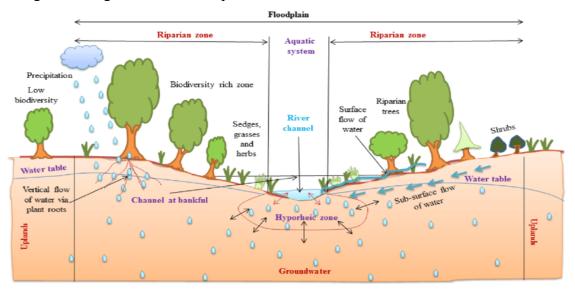


Figure 1: Hydro-ecological interactions in riverine riparian landscapes (Image source: Singh *et al.*, 2021)

Ecological Functions of Riparian Zone:

Riparian zones, which are part of the Fisheries Sensitive Zone (FSZ), play a crucial role in maintaining healthy stream ecosystems (DFO, 2020). They offer a range of ecological benefits essential for sustaining aquatic habitats and fish populations.

- **1. Food Supply:** Riparian areas contribute significantly to the aquatic food web. Terrestrial insects that live in riparian vegetation often fall into the water, becoming a direct food source for fish (Nakamura & Yamada, 2005). Additionally, organic matter such as leaves enrich the stream, supporting aquatic insects that are vital prey for many fish species (Webster *et al.*, 1999; Nisbet *et al.*, 2015).
- **2. Water Temperature Regulation:** The height and density of riparian vegetation help control the amount of sunlight reaching the stream, which in turn influences water temperature and oxygen levels. A shaded canopy creates a stable thermal environment, reducing stress on fish and enhancing overall habitat quality (Nakamura & Yamada, 2005; Garner *et al.*, 2017).
- **3. Buffer Against Pollution:** Vegetation along streambanks acts as a natural barrier, trapping sediments and filtering out pollutants from surface runoff before they enter the water body (Collison *et al.*, 2022). This helps in maintaining cleaner, healthier aquatic environments.

- **4. Shelter and Cover:** Riparian vegetation offers critical shelter for both juvenile and adult fish, particularly salmonids. The cover helps reduce exposure to predators and creates safe resting areas, thereby increasing survival rates (Pusey & Arthington, 2003).
- **5. Streambank and Channel Stability:** Root systems and vegetation provide a natural form of erosion control, often referred to as "living riprap." These features stabilize streambanks, prevent erosion, and maintain channel integrity, which is essential for preserving the ecological value of productive stream sections (Vigiak *et al.*, 2016; Simon & Collison, 2002; Wilson *et al.*, 2005).

Human-Induced Disruptions in Riparian Zones

Human land-use practices in areas surrounding rivers and streams are key determinants of aquatic ecosystem health, functioning, and biodiversity (Albertson *et al.*, 2018; Kanno & Beazley, 2004; Stoffyn-Egli & Duinker, 2013). Because aquatic habitats are closely interconnected with adjacent terrestrial environments, disturbances in riparian zones can trigger cascading effects that directly or indirectly influence aquatic systems and their resident species (Yearsley *et al.*, 2019; Caskenette *et al.*, 2020). Activities such as the operation of motorized equipment and the application of agrochemicals exemplify human interventions that initiate a chain of ecological disruptions, ultimately degrading the vital functions of riparian ecosystems (Fig 2).

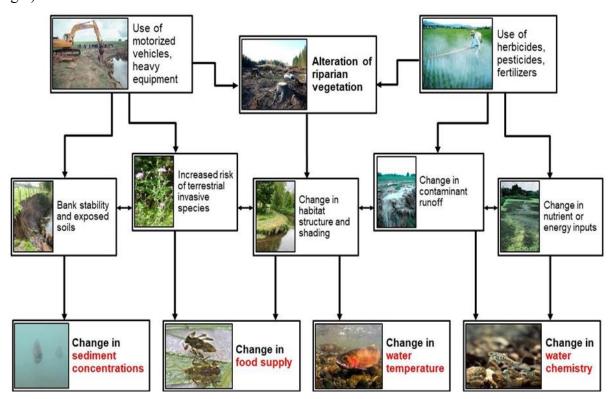


Figure 2: Conceptual framework illustrating the cascade of human-induced impacts on riparian ecosystems (Image source: Collison *et al.*, 2022)

1) Mechanical Disturbance and Vegetation Alteration

The operation of heavy machinery such as motorized vehicles and construction equipment destroys vegetation and compacts soils in riparian zones. This degradation destabilizes stream banks, exposes soils, and disrupts root networks that normally bind sediments in place. It consequently increases bank erosion and sediment delivery into watercourses (Zaimes *et al.*, 2019; National Research Council, 2002).

2) Sediment Load Increase and Habitat Disruption

As banks erode, sediments wash into streams, elevating turbidity and sediment concentrations. This sediment accumulation smothers interstitial spaces (critical habitats for macroinvertebrates and spawning fish) and lowers overall water quality, with cascading effects on the food web (Rosenau & Angelo, 2000). The removal of indigenous vegetation opens niches for invasive terrestrial species, further dominating and altering riparian structure.

3) Temperature Shifts and Ecological Impacts

Reduced canopy cover diminishes stream shading, leading to greater solar heating and disrupted thermal regimes (Yearsley *et al.*, 2019). Riparian vegetation is therefore critical for moderating water temperature, and its removal can result in increases of up to 4°C, along with amplified daily temperature fluctuations (Trimmel *et al.*, 2018). Such shifts often surpass the thermal tolerance of cold-water species, placing their survival at significant risk.

4) Agrochemical Inputs Alter Water Chemistry

Parallel to structural changes, the use of herbicides, pesticides, and fertilizers in riparian zones increases runoff of nutrients and pollutants into water bodies. All of which alter the chemistry of the water and affect the food supply for aquatic organisms.

These disturbances often create a domino effect where one small disturbance like clearing trees or using machinery can cascade through the ecosystem, leading to higher sediment levels, increased water temperatures, loss of food sources and toxic changes in water chemistry. This is why riparian zone protection is critical — not just for the riverbank, but for the entire aquatic system that depends on it.

Riparian Zone Protection

Riparian zones, along with the water habitats they border, are part of what's known as the Fisheries Sensitive Zone (FSZ). To protect these areas, "leave strips" are used. These are sections of land with natural vegetation that must stay untouched during and after any development. Leave strips should be established along all water bodies that support or drain into fish habitats. This includes not only permanent water bodies like lakes and streams but also seasonally or intermittently wet areas such as ponds, swamps, small streams, side channels, and ditches.

Table 1: Recommended buffer width for different types of land area and waterbody

S.	Land area type/ waterbody	Minimum
No.		buffer width
1	Residential or low-density areas	15 m
2	Commercial or high-density areas	30 m
3	Steep slope areas	15-30 m
4	All rivers with width >100m	50 m
5	Large lakes	30 m
6	Small lakes	25 m
7	Streams	15-25 m
8	Dal Lake (Dalgate to Nehru Park)	50 m
9	Dal Lake (Nishat Park to Nehru Junction; Naseem Bagh to Ashai Bagh Bridge)	100 m
10	Western Dal Lake (Saidakadal to Dalgate)	50 m
11	Telbal Nallah, Nallah Amir Khan, other tributary Nallahs	20 m
12	Khushalsar, Gilsar, Phashakun (Pampore), Sukhnag Nallah, Drangbal Nambal, Budsar, Rakhi Rabitaar, Sind Nallah, Mirgund Jheel	50 m
13	Anchar Lake, Shalbugh Nambal, Haran Forest (South/North/West)	200 m
14	Anchar Lake, Shalbugh Nambal, Haran Forest (Eastern side from Soura to Pandach)	30 m
15	Hokarsar Wetland (Shariefabad to Narbal)	200 m
16	Nambal Narkur	100 m

The central purpose of these leave strips is to preserve the riparian zone, which is essential for sustaining healthy aquatic ecosystems (Fischer & Fischenich, 2000). The width of a leave strip depends on how close the watercourse is to the development site, as well as the type of watercourse and the surrounding land use (Wang *et al.*, 2020; Lan & Rui-Hong, 2020). For the first time, the Government of Jammu and Kashmir has introduced officially designated green belt areas or buffer zones around major water bodies in the Srinagar Master Plan to prevent illegal encroachments and support long-term ecological management. These riparian buffers serve as ecotones (zones of transition between aquatic and terrestrial ecosystems) where vegetation is preserved, and construction is restricted. A judicial order (July 2002) banned any construction/material movement within 200 m from the centre of foreshore road around Dal Lake. Recommended width of leave strips by "Department of Fisheries and Oceans (DFO), Integrated Management Branch of the Ministry of Environment, Lands and Parks (MOELP); Lee

et al. (2004), Kujanová et al. (2018) and The Master Plan (2019)" is shown in table 1. For rivers with width less than 100 m, entire floodplain is considered as riparian zone.

Guidelines for Construction Practices Within the Fisheries Sensitive Zones (FSZs)

Disturbance or destruction of the riparian zone can have serious impacts to both the short and long-term viability and productivity of fish and fish habitat. To ensure the protection of riparian zones and maintain the health of aquatic habitats, specific construction guidelines must be followed within Fisheries Sensitive Zones (FSZs). These guidelines were collaboratively developed by the Habitat Management Division of the Department of Fisheries and Oceans (DFO) and the Integrated Management Branch of the Ministry of Environment, Lands and Parks (MOELP). The primary intent of these guidelines is to ensure that land development activities do not compromise the ecological integrity of aquatic ecosystems, especially in Fisheries Sensitive Zones (FSZs).

These are:

- Any land development near streams, rivers, or wetlands should begin with proper planning that considers the natural vegetation and streambank conditions.
- ➤ Unauthorized activities within the FSZ are strictly prohibited.
- ➤ If access or construction within a leave strip is absolutely necessary—such as for bridges, utility lines, or stormwater outlets—detailed plans must be prepared and approved by relevant authorities like DFO or MOELP. These plans should include the area of disturbance, timing of work, water control methods, and site restoration measures.
- ➤ Developers must minimize access points to the streambank, reduce the disturbance area, and avoid damaging vegetation.
- Machinery use near watercourses should be limited to prevent erosion.
- ➤ Where banks are already eroded, stabilization techniques should be applied using durable materials, and loose debris that may disrupt flow or harm fish should be removed.
- ➤ Disturbed areas must be quickly replanted using native species like willow, alder, cottonwood, and red osier dogwood to prevent erosion and promote long-term riparian health. Large trees should also be planted to provide future sources of natural stream cover and habitat.

Way Forward

To strengthen the protection of riparian zones and FSZs, a multi-faceted approach is needed:

1. **Policy Integration**: Governments should integrate riparian protection into broader landuse and urban planning frameworks, ensuring consistency across jurisdictions.

- 2. Community Engagement: Educating local communities about the ecological importance of riparian zones can foster support for conservation efforts and reduce illegal encroachments.
- **3. Monitoring and Enforcement**: Regular monitoring of buffer zones and strict enforcement of regulations are essential to prevent violations and ensure compliance.
- **4. Research and Innovation**: Continued research into optimal buffer widths, native species restoration, and erosion control techniques can enhance the effectiveness of riparian management strategies.
- **5.** Climate Resilience: Riparian zones should be managed with climate change in mind, incorporating adaptive measures to address shifting hydrological patterns and increased erosion risks.

By adopting these strategies, stakeholders can ensure the long-term sustainability of riparian zones and the aquatic ecosystems they support.

Conclusion:

Riparian zones are critical ecotones that sustain aquatic ecosystem functionality, supporting biodiversity, water quality, and geomorphic stability. Anthropogenic pressures, including development and pollution, jeopardize these vital systems, necessitating stringent protective measures. Implementing regulated buffer zones, sustainable land-use practices, and adaptive management strategies is imperative to mitigate degradation. Through integrated policy frameworks, rigorous monitoring, and research-driven restoration, the ecological integrity of riparian zones can be preserved, ensuring their continued provision of essential ecosystem services for future generations.

References:

- 1. Albertson, L. K., Ouellet, V., & Daniels, M. D. (2018). Impacts of stream riparian buffer land use on water temperature and food availability for fish. *Journal of Freshwater Ecology*, 33(1): 195-210.
- 2. Anbumozhi, V., Radhakrishnan, J., & Yamaji, E. (2005). Impact of riparian buffer zones on water quality and associated management considerations. *Ecological Engineering*, 24(5): 517-523.
- 3. Brennan, J. S., & Culverwell, H. (2005). Marine Riparian: An assessment of riparian functions in marine ecosystems.
- 4. Caskenette, A. L., Durhack, T. C., & Enders, E. C. (2020). Review of information to guide the identification of critical habitat in the riparian zone for listed freshwater fishes and mussels. Canadian Science Advisory Secretariat (CSAS).
- 5. Collison, B. R., Gromack, A. G., & Branch, A. E. (2022). Importance of riparian zone management for freshwater fish and fish habitat protection: analysis and recommendations

- in Nova Scotia, Canada. Fisheries and Oceans Canada, Maritimes Region, Bedford Institute of Oceanography.
- 6. DFO. (2020). Guidance on the identification of Critical Habitat in the riparian zone for freshwater species at risk. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2020/040. 26pp.
- 7. Dinca, L., Murariu, G., & Lupoae, M. (2025). Understanding the ecosystem services of riparian forests: Patterns, gaps, and global trends. *Forests*, 16(6): 947.
- 8. Fischer, R. A., & Fischenich, J. C. (2000). Design recommendations for riparian corridors and vegetated buffer strips. *Army engineer waterways experiment station vicksburg ms engineer research and development center*.
- 9. Garner G, Malcolm IA, Sadler JP, Hannah DM (2017). The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics. *Hydrol*, 553:471–485
- 10. Kanno, Y., & Beazley, K. (2004). Freshwater fish considerations for aquatic conservation systems planning in Nova Scotia. Proceedings of the Nova Scotian Institute of Science (NSIS), 42(2).
- 11. Kujanová K, Matoušková M, Hošek Z (2018) The relationship between river types and land cover in riparian zones. *Limno logica*, 71:29–43
- 12. Lan, D., & Rui-Hong, Y. (2020). New grassland riparian zone delineation method for calculating ecological water demand to guide management goals. *River Research and Applications*, 36(9): 1838-1851.
- 13. Lee, P., Smyth, C., & Boutin, S. (2004). Quantitative review of riparian buffer width guidelines from Canada and the United States. *Journal of Environmental Management*, 70(2): 165-180.
- 14. Nakamura F, Yamada H (2005). Effects of pasture development on the ecological functions of riparian forests in Hokkaido in northern Japan. *Ecol Eng*, 24(5):539–550
- 15. National Research Council, Division on Earth, Board on Environmental Studies, Water Science, Technology Board, Committee on Riparian Zone Functioning, & Strategies for Management. (2002). *Riparian areas: functions and strategies for management*. National Academies Press.
- 16. Nisbet D, Kreutzweiser D, Sibley P, Scarr T (2015). Ecological risks posed by emerald ash borer to riparian forest habitats: a review and problem formulation with management implications. *Ecol Manag*, 358:165–173
- 17. Pusey, B. J., & Arthington, A. H. (2003). Importance of the riparian zone to the conservation and management of freshwater fish: a review. *Marine and freshwater Research*, 54(1): 1-16.

- 18. Rosenau, M. L., & Angelo, M. (2000). Sand and gravel management and fish-habitat protection in British Columbia salmon and steelhead streams. Pacific Fisheries Resource Conservation Council.
- 19. Simon A, Collison AJ (2002). Quantifying the mechanical and hydro logic effects of riparian vegetation on streambank stability. *Earth Surf Proc Land*, 27(5): 527–546.
- 20. Singh, R., Tiwari, A. K., & Singh, G. S. (2021). Managing riparian zones for river health improvement: an integrated approach. *Landscape and ecological engineering*, 17(2): 195-223.
- 21. Stoffyn-Egli, P., & Duinker, P. N. (2013). An ecological approach to riparian-buffer definition, and implications for timber harvests in Nova Scotia, Canada. *Journal of sustainable development*, 6(12): 111.
- 22. Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A. M., Muller, E., & Decamps, H. (2000). Impacts of riparian vegetation on hydrological processes. *Hydrological processes*, 14(16-17): 2959-2976.
- 23. Trimmel, H., Weihs, P., Leidinger, D., Formayer, H., Kalny, G., & Melcher, A. (2018). Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river? *Hydrology and Earth System Sciences*, 22(1): 437-461.
- 24. Vigiak O, Malagó A, Bouraoui F, Grizzetti B, Weissteiner CJ, Pastori M (2016). Impact of current riparian land on sediment retention in the Danube River Basin. *Sustain Water Qual Ecol* 8:30–49.
- 25. Wang, M., Duan, L., Wang, J., Peng, J., & Zheng, B. (2020). Determining the width of lake riparian buffer zones for improving water quality base on adjustment of land use structure. *Ecological Engineering*, 158: 106001.
- 26. Webster JR, Benfield EF, Ehrman TP, Schaeffer MA, Tank JL, D'Angelo HJJDJ (1999). What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. *Freshwater Biology*, 41:687–705.
- 27. Wilson CAME, Stoesser T, Bates PD (2005). Modelling of open channel flow through vegetation. In: Bates PD, Lane SN, Ferguson RI (eds) In *Computational fluid dynamics:* applications in environ mental hydraulics. Wiley, Chichester, 395–428.
- 28. Yearsley, J. R., Sun, N., Baptiste, M., & Nijssen, B. (2019). Assessing the impacts of hydrologic and land use alterations on water temperature in the Farmington River basin in Connecticut. *Hydrology and Earth System Sciences*, 23(11): 4491-4508.
- 29. Zaimes, G. N., Tufekcioglu, M., & Schultz, R. C. (2019). Riparian land-use impacts on stream bank and gully erosion in agricultural watersheds: What we have learned. *Water*, 11(7): 1343.

THE FUSION OF ARTIFICIAL INTELLIGENCE AND REMOTE SENSING WITH THE CURRENT ECOLOGICAL STUDIES

Yogita Shinde*1 and Rashmi Rajeghorpade2

¹Department of Pharmacy, Vishwakarma University, Pune, Maharashtra, India- 411048

²Pioneer Pharmacy College, Sayajipura, Vadodara, Gujarat-19

*Corresponding author E-mail: galandeyogita@gmail.com

Abstract:

Ecology experienced a methodological shift due to two converging trends: the exponential increase in remotely sensed environmental information (satellites, aircraft and drones, etc.) and the brisk maturation of artificial intelligence (AI) practices, in particular, machine learning (ML) and deep learning (DL). Together the technologies can achieve the measurement and interpretation of ecological patterns and processes (whether distribution of species and community composition or change in habitat) and carbon stocks and disturbance dynamics in a format which is scalable, repeatable, and in many cases near real time. This paper summarizes existing trends, approaches, processes, case studies, tools, problems and best practices of applying AI and remote sensing in ecological studies. We consider sources of data (satellites, airborne LiDAR, UAV imagery, proximal sensors), machine learning/deep learning models frequently applied in ecology (random forests, MaxEnt, convolutional neural networks, U-Net, object detection models), and cloud computing and toolchains (Google Earth Engine, open-source geospatial libraries). Best practices advice is given on study design, training-data generation, model testing and reproducibility. We also outline some of the major limitations, including bias of data, scale-incompatibility, model readability and ethical issues and indicate promising futures, such as combining multi-source data, automated biodiversity surveillance, near real-time ecosystem early-warnings, and democratization and cloud-based ecological analytics. Lastly, we provide resources and at least 20 references to inform researchers who would like to implement such methods.

Keywords: Remote Sensing, Machine Learning, Deep Learning, Google Earth Engine, Species Distribution Modeling, UAV, LiDAR, Biodiversity Monitoring, Reproducibility, Ecological Forecasting

1. Introduction:

Contemporary ecology is aiming at answering questions that go further than a single organism in a way of level all the way to landscape and earth. Field-based sampling is always essential, although it may be restricted to space and time. Remote sensing (RS) offers spatially-

explicit data over large regions and temporal scales, whereas AI can transform such data into ecological information e.g. to classify land cover, localize animals in aerial data, predict species distribution/abundance, or estimate ecosystem variables e.g. biomass or primary productivity. Combination of AI and RS is hence transforming the collection, analysis and application of data in conservation, management and basic science among ecologists. This swift growth is reflected in the reviews and syntheses of recent years, where the potential of the AI-enabled remote sensing to revolutionize biodiversity and ecosystem monitoring is mentioned.

2. Types of Remote Sensing Data and Their Application in Ecology:

One of the key actions to be taken in the design of an AI–RS ecology study is a choice of data sources. Common categories:

- 2.1. Spaceborne Multispectral and Hyperspectral Imagery (e.g., Landsat, Sentinel-2, Commercial Constellations): Multispectral bands with moderate-to-high revisit rates provide the possibility to map land cover, vegetation indices (NDVI, EVI), phenology and certain habitat properties. Landsat offers decades-old history of long-term change research and Sentinel-2 has greater revisit rate and finer spectral resolution.
- **2.2. Synthetic Aperture Radar (SAR):** Pierces through clouds and provides structural/roughness and moisture data, which would be useful in wetland monitoring, disturbance monitoring, and biomass measurements.
- **2.3. Airborne LiDAR and Photogrammetry (Drone/UAV or Manned Aircraft):** Are necessary to provide fine-scale 3D structure (canopy height, stem density, vertical heterogeneity) that is important during forest structure, habitat complexity, and biomass estimation. Recent investigations have focused on close range sensors and UAV-mounted sensors to scan the structure of vegetation at ecologically important scales.
- 2.4. High-Resolution Aerial and Satellite Imagery (Commercial Sensors, Planet, WorldView): Can be used to detect objects (individual trees, nests, colonies), map habitats in fine detail and survey animals when coupled with AI to do automated object recognition. It has been reviewed that the use of deep learning has been on the rise to detect animals in aerial images.
- **2.5. Proximal Sensors and Internet of Things (IoT):** Ground sensors, spectral cameras, acoustic recorders and environmental loggers are used to help in terms of providing complementary and more precise local data, which can be combined with remote measurements. The selection of the data source will be determined by ecological variable of interest, spatial/temporal scale and by resources (cost, compute, and ground-truth capacity).

3. Machine Learning Techniques Used in Ecological Remote Sensing:

- **3.1 Classical Machine Learning:** The use of algorithms such as the Random Forests (RF) and gradient-boosted trees, the support vector machines (SVM), and MaxEnt (presence-only species distribution modeling) continue to be popular. RF is resistant to noisy predictors and has variable importance scores which are useful in ecological inference whereas MaxEnt is a conventional on presence-only habitat suitability modeling.
- 3.2 Convolutional Neural Network (CNNs) and Deep Learning: Image analysis was transformed by Deep CNNs following their disclosure of massive image classification (e.g., AlexNet). CNNs and their variants are applied to ecological studies in all of the following ways: pixel-wise classification, semantic segmentation (map vegetation type), object detection (animals, nests, buildings), and time-series (recurrent or transformer) classification. Segmentation architectures (e.g., U-Net) are very popular to outline continuous features (e.g., canopy vs. non-canopy or water bodies).
- **3.3 Object Detection and Instance Segmentation:** The Faster R-CNN, YOLO and Mask R-CNN techniques are used to count and locate individuals (e.g., seals on ice, nests) and to subdivide objects to make abundance measurements. Animal detection based on aerial images with the help of modern DL object detectors has been demonstrated to be increasing in success.
- **3.4 Time-Series, Phenological and Forecasting Models:** RS time series + ML/DL (e.g., LSTMs, temporal convolutional network, transformers) are known as temporal models, which facilitate phenological study, disturbance/recovery dynamics prediction, and also predictive forecasting of ecosystem variables.
- **3.5 Explainable and Causal ML:** New developments emphasize the importance of interpretability (feature attribution, SHAP values) and causal inference models when the objective is to get a mechanistic understanding as opposed to pure prediction. Responsible AI is outlined in reviews: the transparency of the model and quantifying uncertainty is gaining more and more popularity in ecology.

4. Integration Processes: Raw Data to Ecological Awareness

An AI+RS workflow can be reproduced, and the workflow usually follows the following steps:

- **4.1 Problem Formulation and Scale Definition:** Be clear about the ecological question (e.g., map tree species, estimate biomass, detect pests) and the spatial-temporal scale. A pitfall is the mismatch of scales between field observations and RS data.
- **4.2 Data Acquisition/Pre-Processing:** Obtain RS data (Landsat/Sentinel archives, UAV imagery, LiDAR) and preprocess (atmospheric correction, orthorectification, radiometric

normalization). Google Earth Engine (and similar other cloud-based platform) can access and process big archives.

- **4.3 Ground Truth** / **Labeled Data Collection:** Quality labeled data must be needed. In supervised ML/DL, annotations (bounding boxes, segmentation masks, point locations) can be obtained using either field surveys, camera traps, citizen science (e.g., GBIF, iNaturalist), or by manually labeling images.
- **4.4 End-to-End Learning or Engineering:** Classical ML employs engineered features (spectral indices, texture metrics, LiDAR-derived structure). DL tends to learn features in a more direct way, that is, directly out of raw pixels, and fewer labeled data are needed.
- **4.5 Model Selection and Training:** Select algorithms that are suitable to data size and task. Data augmentation and transfer learning (pretrained CNNs) have the potential to decrease the size of labeled-data particularly with UAV or very-high-resolution imagery.
- **4.6 Validation and Uncertainty Estimation:** It should use spatially independent validation sets, cross-validation methods that take into account spatial autocorrelation, and provide measures of uncertainty (confidence intervals, calibration).
- **4.7 Deployment and Monitoring:** Develop models that can be deployed into active pipelines on cloud platforms and used to monitor data in near-real-time (e.g., deforestation alerts, phenology trackers). The artifacts of code and models are open and documented and enhance reproducibility.

5. Applied Case and Case Studies:

- **5.1 Extraction of Species and Communities of Imagery:** With deep learning on the high-resolution aerial and satellite images, the plant species or plant functional types can be detected and, in some instances, differentiated in the landscape scales. A new PNAS study showed the ability to map thousands of species of vegetation change over satellite/aerial imagery with deep-learning maps of change over citizen-science training data- indicating the potential to scale-up monitoring of compositional changes.
- **5.2 UAVs and Satellites Detection and Census of Animals:** Counting animals (seabirds, seals, large ungulates) in orthomosaics of UAVs or very-high-resolution satellites is a topic of numerous studies which use CNN-based object detectors. Systematic reviews demonstrate high returns with DL but also point to the shortcomings in the case of small animals, camouflaged animals or increased background clutter which is generating false positive results.
- **5.3 Forest Structure and Estimation of Biomass:** The 3D structure is obtained with the help of LiDAR and combined with multispectral imagery and ML regressors (RF, gradient boosting), which can be used to provide strong estimates of biomass and carbon stocks. Close-range

LiDAR and UAV LiDAR are making fine-scale structural assessment open at operational costs, which had not been possible before.

5.4 Monitoring the Condition and Change in Land-Use and Ecosystem: Change in land-cover, deforestation, urban growth and wetland dynamics can be observed with help of cloud platforms and long-term archives (Landsat, Sentinel). The Early-warning systems of disturbance is facilitated through integration with the ML trend detection and the time-series decomposition.

6. Tools, Platforms and Open Resource:

- **6.1 Google Earth Engine (GEE):** The cloud platform, which allows access to RS archives along with petabytes of parallel processing APIs; popular with extensive ecological monitoring and mapping.
- **6.2 Open Satellite Archives:** Landsat (USGS/NASA), Sentinel (ESA) are free and provide a continuous global data that is ideal in detecting changes and long-term trends.
- **6.3 Open Biodiversity Data:** GBIF, iNaturalist and other citizen-science portals offer occurrence data acting as training tags or validation.
- **6.4 Software Libraries and Ecosystems** Python geospatial stack (rasterio, GDAL, geopandas, scikit-learn, PyTorch, TensorFlow), R packages (raster, terra, caret) and ML tooling to deploy geospatial models. They are often used as part of many workflows with GEE or cloud compute (AWS, Google Cloud).
- **6.5 Pretrained Models and Codebases:** ImageNet-pretrained backbone transfer learning, U-Net and Mask R-CNN variants of segmentation/object detection on ecological imagery can help imminently.

7. Obstacles, Traps and Professional Ethics:

- **7.1 Data Quality, Transferability and Bias:** Bias in training data (spatial, taxonomic, temporal) may result in models that do not work when used in other geographical areas or seasons. The apparent accuracy can be inflated due to the uncontrolled use of spatial autocorrelation during validation. Ecologists have to create sampling and validation strategies representing how the models are supposed to be used.
- **7.2 Labeling Costs and Annotation Costs:** Labeled datasets (particularly segmentation masks or individual-level annotations) particularly of high quality are costly. Examples of strategies are active learning, semi-supervised learning, data augmentation and using citizen-science labels, although they all come with trade-offs.
- **7.3 Scale Mismatches:** Field measurements (e.g., biomass plots) can frequently be significantly smaller than pixels of a RS; scale to pixel aggregation, making use of higher-resolution data (UAV, LiDAR), or scale-aware hierarchical models, can all be used to scale up.

Ecology Research: Trends and Techniques

(ISBN: 978-81-993182-0-5)

7.4 Model Inference and Ecological Inference: Model interpretability and ecological inference is a subtopic of model inference. Although ML/DL are very successful in prediction, the interpretation of drivers (causal understanding) must be taken into consideration. To preserve scientific rigor explainable AI tools (feature importance, SHAP) and the correlation of ML predictions with mechanistic models can be used.

7.5 Reproducibility and Computer Transparency: DL studies (data/weights/code sharing, random seeds, compute environments) have a significant problem with reproducibility. There is an increasing demand by the ecological community to have open code, data and transparent reporting standards to get credible science.

7.6 Ethical Considerations: Automated surveillance systems have the potential to expand surveillance potentials - potentially damaging the sensitive species sites (poaching risk) or to communities (privacy concerns). There should be ethical systems and cautious data management (access permits, aggregated results).

8. Best Practices and Recommendations:

- **8.1 Question and Data:** Start with an appropriate question or optimal data are related to the ecological question. It is not advisable to inflict techniques upon questions that are not remote measurement types.
- **8.2 Training and Validation Datasets Design representative.** Sample spatially stratified and independent holdouts to prevent inflated accuracy. Report on the selection of validation partitions.
- **8.3** Will be more favorable to clear and documented workflows. Code of the share and (where applicable) information. Reproductive: use containerization (Docker) or environment capture.
- **8.4 Measure Uncertainty, Limitations.** Present uncertainty maps and predictions, as well as describe failure modes.
- **8.5** Considerably Use Cloud Platforms. Cloud GPUs and GEE offer data provenance and costs in order to offer scalable processing.
- **8.6 Combine Approaches.** Fuse RS, proximal model when possible-hybrid models provide more information than black box models.

9. Future Directions:

- **9.1 Multisource Data Fusion Scale:** X Fusion of SAR, hyperspectral, LiDAR and optical time series with ML will refine species and trait-level mapping.
- **9.2 Cloaking Near-Real-Time Ecological Intelligence:** Better automation and cloud compute will increase the work of operational pipelines that consume satellite data and generate alerts (deforestation, algal blooms).

- **9.3 Automated Biodiversity Observation Networks:** Combined camera-trap, acoustic and aerial imaging networks examined using DL have the potential to produce continuous biodiversity indicators.
- **9.4 Accountable and Understandable AI to Ecology:** Causal ML will be developed, uncertainty-representative models and reporting norms will increase.
- **9.5 Democratization and Capacity Building:** Prebuilt model apps (e.g. GEE Apps), user friendly platforms and training resources will expand access to AI+RS technique in conservation and resource management.

Conclusion:

Combining AI and remote sensing has revolutionized the ecological investigation with the ability to conduct the required analyses that were once not possible due to the scale and complexity. Already the technology is providing real benefits that come in the form of automated animal counts, species-level vegetation mapping, estimating carbon stock, and near-real-time disturbance detection. However, to achieve this possible, it is essential to have a rigorous study design, consider data quality, bias, and explicitly quantify uncertainty and use transparent and reproducible workflows. AI-enabled remote sensing can form a foundation of the ecological science of the 21st century when combined with a judicious approach of field-based ecology and conservation priorities.

References:

- 1. Pichler, M., & Hartig, F. (2023). Machine learning and deep learning—A review for ecologists. *Ecological Informatics*, 73, 101918.
- 2. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. *Remote Sensing of Environment*, 202, 18–27.
- 3. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In *Proceedings of the 25th International Conference on Neural Information Processing Systems (NeurIPS 2012)* (pp. 1097–1105). Curran Associates, Inc.
- 4. Breiman, L. (2001). Random forests. *Machine Learning*, 45(1), 5–32.
- 5. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In *Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015)* (pp. 234–241). Springer.
- 6. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, 190(3–4), 231–259.

- 7. U.S. Geological Survey. (n.d.). *Landsat missions*. U.S. Department of the Interior. https://landsat.gsfc.nasa.gov
- 8. European Space Agency. (n.d.). *Sentinel-2 mission overview*. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
- 9. Zhang, X. (2022). Deep learning for processing and analysis of remote sensing data: A review. *International Journal of Remote Sensing*, 43(8), 2680–2720.
- 10. Xu, Z. (2024). A review of deep learning techniques for detecting animals in aerial and satellite images. *Ecological Informatics*, 79, 102424.
- 11. Kacic, P. (2022). Forest biodiversity monitoring based on remotely sensed spectral diversity. *Remote Sensing*, 14(18), 4561.
- 12. Kerry, R. G. (2022). An overview of remote monitoring methods in biodiversity conservation. *Biodiversity and Conservation*, 31(12), 2931–2950.
- 13. Zhao, Q., Liu, S., Wang, S., Chen, Y., & Xu, Y. (2021). Progress and trends in the application of Google Earth Engine. *Remote Sensing*, 13(18), 3778.
- 14. Finizio, M., Rossi, F., & Bianchi, L. (2024). Remote sensing for urban biodiversity: A review. *Urban Ecosystems*, 27(2), 341–358.
- 15. Ahmed, W., Patel, A., & Khan, R. (2025). Evaluating the method reproducibility of deep learning approaches in biodiversity research. *Ecological Modelling*, 492, 110188.
- 16. Salas, E. A. L., Torres, J., & Kim, H. (2025). Integration of Google Earth Engine, Sentinel-2 images, and machine learning for water quality mapping. *Remote Sensing Applications:* Society and Environment, 30, 100995.
- 17. Feigl, J., Meier, H., & Braun, C. (2025). Close-range remote sensing of forest structure for biodiversity applications. *Remote Sensing*, 17(4), 812.
- 18. Yan, K., Li, H., Zhou, Y., & Fang, S. (2025). A global systematic review of vegetation index-related remote sensing literature. *Remote Sensing of Environment*, 305, 114839.
- 19. ResearchGate. (2024–2025). Deep learning and satellite remote sensing for biodiversity monitoring and conservation: Perspectives. Retrieved from https://www.researchgate.net
- 20. Proceedings of the National Academy of Sciences (PNAS). (2024). Deep learning models map rapid plant species changes from imagery using citizen science data. *PNAS*, *121*(34), e2401234.
- 21. Pérez-Cutillas, P., Martínez-Sánchez, J., & López-Benítez, R. (2023). What is going on within Google Earth Engine? A systematic perspective. *Remote Sensing*, 15(3), 755.
- 22. Zhang, X., Li, Y., & Chen, Z. (2024). Deep learning and satellite remote sensing for biodiversity monitoring: A review. *Remote Sensing*, 16(6), 1290.
- 23. Lyu, H. (2024). Systematic reviews on remote sensing technology for grassland biodiversity and other ecosystems. *Ecological Indicators*, *160*, 111541.

THE ROLE OF REMOTE SENSING IN SUSTAINABLE FISHERIES DEVELOPMENT

Aditya J. Chavan*1 and Asmita B. Daspute2

¹Shri Datta College of Science, Hadgaon, Nanded, Maharashtra ²SBES College of Science, Aurangabad, Maharashtra *Corresponding author E-mail: chavan.aditya84@gmail.com

Abstract:

Fisheries play a vital role in global food security and livelihoods, especially in coastal and island communities. The sustainable management of fisheries is increasingly challenged by environmental factors such as climate change, habitat degradation, and pollution. Remote sensing technologies, including satellites and drones, offer powerful tools for monitoring and managing aquatic ecosystems. These technologies provide real-time and long-term data on key oceanographic parameters, such as sea surface temperature (SST), chlorophyll concentration, and ocean currents, which are critical for understanding fish distribution, migration, and breeding patterns. Additionally, remote sensing aids in detecting harmful algal blooms (HABs), monitoring habitat degradation, and tracking pollution, all of which significantly impact fisheries. The integration of advanced technologies like Artificial Intelligence (AI) and machine learning with remote sensing is enhancing data analysis capabilities, enabling predictive modeling, and improving decision-making tools. As a result, real-time monitoring and adaptive management strategies are becoming more feasible, allowing for better-informed decisions to ensure the sustainability of global fisheries. This article explores the current and future roles of remote sensing in fisheries development, focusing on technological advancements and the potential for real-time monitoring systems to support sustainable fisheries management.

Keywords: Harmful Algal Blooms (HABs), Sea Surface Temperature (SST), Artificial Intelligence (AI), Marine Protected Areas (MPAs), VIIRS (Visible Infrared Imaging Radiometer Suite).

Introduction:

Fisheries development refers to the strategic and sustainable management, enhancement, and utilization of aquatic resources to maximize their potential for economic growth, food security, and social welfare. It encompasses activities such as improving fishing practices, aquaculture development, habitat conservation, policy-making, and the adoption of advanced technologies for efficient resource management.

- Food Security: Fisheries contribute significantly to global food security by providing a vital source of protein, omega-3 fatty acids, and essential micronutrients. Approximately 3.3 billion people rely on fish as a primary source of animal protein. Sustainable fisheries ensure a steady supply of seafood, minimizing the risk of overfishing and habitat destruction.
- Economic Livelihoods: Fisheries provide employment and income for millions of people
 worldwide, particularly in coastal and rural communities. The sector supports diverse
 livelihoods, from small-scale artisanal fishers to large-scale commercial operations. In
 developing countries, fisheries are often a cornerstone of economic resilience, offering
 opportunities for trade and export.
- Cultural and Social Value: Fishing practices are deeply embedded in the traditions and lifestyles of many coastal communities. Development of fisheries helps preserve these cultural practices while introducing modern techniques for sustainability.
- Sustainability and Resilience: By investing in fisheries development, nations can reduce the impact of climate change, pollution, and overfishing on aquatic ecosystems. Ensuring sustainable practices strengthens the resilience of fisheries, protecting both resources and the livelihoods dependent on them.

Remote sensing is a powerful technology that involves the collection and analysis of data about the Earth's surface without direct contact. It uses sensors mounted on satellites, aircraft, or drones to capture information in the form of images or spectral data. These sensors detect electromagnetic radiation reflected or emitted from the Earth, enabling the observation of physical, chemical, and biological properties over vast areas.

- Wide-Area Monitoring: Remote sensing allows continuous monitoring of large and
 often inaccessible water bodies, including oceans, seas, rivers, and lakes. It helps identify
 productive fishing zones, reducing the time and effort spent on traditional exploratory
 fishing.
- Environmental Parameter Observation: Remote sensing provides critical data on sea surface temperature (SST), chlorophyll concentration, turbidity, and ocean currents. These parameters are essential for understanding fish behavior, breeding patterns, and migration routes.
- Early Warning Systems: Satellite-based observation systems can detect harmful algal blooms (HABs), oil spills, and other environmental threats, enabling timely intervention. Remote sensing helps predict and mitigate the impacts of climate events like cyclones, which can disrupt fisheries.

- Sustainable Resource Management: By analyzing changes in aquatic habitats and overfishing trends, remote sensing supports conservation strategies and the establishment of marine protected areas (MPAs). Long-term data series from satellites enable the study of climate change effects on fisheries, ensuring adaptive management practices.
- **Cost and Efficiency:** Compared to traditional *In-situ* surveys, remote sensing offers a cost-effective and efficient way to gather data over extensive areas, making it invaluable for fisheries in both developed and developing nations.

Applications of Remote Sensing in Fisheries Development:

The health of marine and freshwater ecosystems is crucial for sustainable fisheries. Remote sensing offers a powerful means to detect harmful algal blooms (HABs), monitor habitat degradation, and identify pollution, all of which significantly affect fisheries and aquatic ecosystems.

Detecting Harmful Algal Blooms (HABs):

HABs occur when certain algae species proliferate excessively, often releasing toxins that harm fish, shellfish, and even humans. These blooms can deplete oxygen levels, disrupt ecosystems, and result in significant economic losses for fisheries.

➤ Role of Remote Sensing: Satellite sensors can detect changes in water color caused by high concentrations of chlorophyll and other pigments associated with HABs. Remote sensing data, combined with algorithms, differentiate HABs from non-toxic phytoplankton blooms. Early detection enables timely interventions, such as issuing warnings to fishers and aquaculture farms.

Key Tools and Sensors:

- MODIS (Moderate Resolution Imaging Spectroradiometer): Monitors chlorophylla levels and surface temperature changes that often precede HABs.
- Sentinel-2 and Sentinel-3: Provide high-resolution multispectral imagery for detailed analysis of coastal and inland water bodies.
- VIIRS (Visible Infrared Imaging Radiometer Suite): Captures ocean color data, essential for identifying HABs.

Monitoring Habitat Degradation:

Aquatic habitats such as coral reefs, mangroves, and seagrass beds are critical for fisheries. Degradation of these habitats, caused by activities like deforestation, coastal development, and sedimentation, directly impacts fish breeding and nursery grounds.

➤ Role of Remote Sensing: Detects changes in habitat structure and extent over time through multispectral and hyperspectral imagery. Monitors vegetation health in mangroves and seagrasses using indices like NDVI (Normalized Difference Vegetation

Index). Tracks sedimentation and erosion in coastal zones, which can bury habitats critical for fisheries.

Key Tools and Sensors:

- Landsat Series: Offers long-term data for analyzing changes in coastal and wetland habitats.
- Sentinel-2: Provides high-resolution imagery to monitor mangroves and seagrasses.
- SAR (Synthetic Aperture Radar): Effective for monitoring submerged habitats and detecting changes in sedimentation.

Monitoring Pollution:

Pollution from agricultural runoff, industrial discharge, and oil spills poses a significant threat to aquatic ecosystems and fisheries.

➤ Role of Remote Sensing: Identifies polluted zones by analyzing changes in water color, turbidity, and thermal properties. Tracks the extent and movement of oil spills and algal blooms caused by nutrient pollution. Monitors plastic waste accumulation in oceans through advanced imaging techniques.

Key Tools and Sensors:

- MODIS and VIIRS: Detect water turbidity and suspended sediments from pollution sources.
- Sentinel-1 (SAR): Maps oil spills, even under cloudy conditions or at night.
- **Hyperspectral Sensors:** Distinguish between different pollutants based on spectral signatures.

Impact of Climate Change on Fish Migration and Breeding Patterns

Climate change profoundly affects marine and freshwater ecosystems, altering fish migration routes, breeding patterns, and population dynamics. Remote sensing plays a critical role in monitoring these changes and providing the data necessary for informed fisheries management and conservation.

Fish Migration Patterns:

Fish migration is influenced by environmental cues like temperature, salinity, and ocean currents. Climate change-induced alterations in these factors disrupt traditional migration routes, affecting the availability of fish stocks.

Role of Remote Sensing:

• Sea Surface Temperature (SST): Changes in SST monitored by sensors such as MODIS and VIIRS reveal how warming waters drive species to migrate toward cooler regions.

- Ocean Currents: Satellite data from missions like Sentinel-3 and Jason series track shifts in ocean currents, which affect fish migration and nutrient transport.
- Salinity Patterns: Remote sensing of salinity, using sensors like SMOS (Soil Moisture and Ocean Salinity), helps identify areas suitable for fish migration.

Breeding Patterns:

Fish breeding is closely tied to environmental conditions, such as temperature, photoperiod, and nutrient availability. Changes in these parameters due to climate change can shift spawning seasons and locations.

Role of Remote Sensing:

- Chlorophyll Concentration: Satellites like MODIS and VIIRS monitor phytoplankton blooms, which are primary food sources for larval fish. This data helps identify changes in breeding grounds.
- **Thermal Stratification:** SST data from remote sensing can indicate thermal layers in water bodies, influencing where fish choose to spawn.
- **Habitat Monitoring:** Remote sensing tracks the degradation or expansion of critical breeding habitats like mangroves, coral reefs, and seagrass beds.
- Long-Term Studies Using Remote Sensing Data: Long-term datasets from remote sensing enable researchers to study historical trends and predict future impacts of climate change on fisheries.
- **Significance:** Provides insights into multi-decadal changes in environmental parameters affecting fisheries. Supports modeling and forecasting to assess the resilience of fish stocks under various climate scenarios. Enables the design of adaptive management strategies to mitigate climate change impacts on fisheries.

Data Sources:

- Landsat Series: Offers decades of data for analyzing coastal habitat changes.
- MODIS and VIIRS: Provide consistent data on SST, chlorophyll, and other oceanographic parameters over long periods.
- **Sentinel Missions:** High-resolution data for detailed monitoring of localized climate impacts.

Future Perspectives in Remote Sensing for Fisheries Development

As technology advances, the integration of cutting-edge tools such as Artificial Intelligence (AI), machine learning, and real-time monitoring systems is transforming remote sensing into a more powerful and adaptive solution for fisheries management. These

developments promise to enhance sustainability, efficiency, and precision in managing aquatic resources.

Advances in Technology:

AI and Machine Learning with Remote Sensing

- Enhanced Data Processing and Analysis: AI and machine learning algorithms can process vast amounts of remote sensing data quickly and accurately, identifying patterns and anomalies that are difficult to detect manually.
 - Example: Identifying potential fishing zones by correlating sea surface temperature, chlorophyll concentration, and ocean currents with historical fish distribution data.
- **Predictive Modeling:** Machine learning models trained on historical and real-time data can predict future trends in fish migration, breeding, and habitat changes due to environmental factors.
 - Example: Predicting the occurrence of harmful algal blooms (HABs) and their likely impact on fisheries.
- Automation of Monitoring: AI-powered systems can automatically classify satellite images, detect pollution, monitor habitat degradation, and track changes in aquatic ecosystems with minimal human intervention.

Example: Automating the detection of oil spills or plastic waste accumulation in oceans.

Potential for Real-Time Monitoring and Decision-Making Tools

- Real-Time Data Acquisition: With the growing number of satellites equipped with advanced sensors, remote sensing now provides near real-time data on key parameters such as sea surface temperature, ocean currents, and chlorophyll concentration.
 - Example: Satellites like Sentinel-3 and VIIRS enable real-time updates on fishing conditions, allowing fishers to make informed decisions.
- Interactive Decision Support Systems (DSS): The integration of remote sensing data with GIS (Geographic Information Systems) and AI enables the creation of DSS for fisheries management. These tools provide actionable insights to stakeholders, including government agencies, fishers, and conservationists.
 - Example: Mobile apps that deliver real-time alerts on potential fishing zones, weather conditions, or environmental hazards.
- **Dynamic Marine Protected Areas (MPAs):** Real-time data allows dynamic adjustments to MPAs based on the movement of fish stocks, ensuring effective conservation while supporting sustainable fisheries.

• Early Warning Systems: Real-time monitoring can detect environmental threats such as HABs, oil spills, or extreme weather events, enabling rapid response and minimizing impacts on fisheries.

Opportunities for Future Research and Development

- Integration of Multisource Data: Combining data from satellites, drones, and underwater sensors for a comprehensive understanding of aquatic ecosystems.
- Example: Using drones to monitor coastal pollution while satellites track larger oceanic trends.
- Cloud Computing and Big Data Analytics: The use of cloud-based platforms like Google Earth Engine (GEE) to analyze massive datasets quickly and collaboratively.
- Advancements in Sensors: Development of hyperspectral and thermal sensors with higher resolution and improved capabilities to monitor specific parameters such as water quality and micro plastic distribution.

References:

- 1. FAO (Food and Agriculture Organization). (2020). *The State of World Fisheries and Aquaculture 2020*. FAO, Rome. https://www.fao.org
- 2. IOCCG (International Ocean Colour Coordinating Group). (2019). Synergy Between Ocean Colour and Biogeochemical/Ecosystem Models. IOCCG Report Series, No.19 http://www.ioccg.org
- 3. Lehner, B., Verdin, K., & Jarvis, A. (2008). *HydroSHEDS Technical Documentation*. World Wildlife Fund US, Washington, DC.
- 4. Traganos, D., & Reinartz, P. (2018). Mapping seagrass meadows in shallow waters on a global scale using Sentinel-2 data. *Remote Sensing*, 10(8), 1227.
- 5. Raitos, T., Ioannou, I., & Daskalakis, A. (2021). Advancing fisheries management with remote sensing and AI: Current trends and future perspectives. *Marine Policy*, 129, 104544.
- 6. Shanmugam, P. (2011). New models for retrieving and forecasting the dynamics of harmful algal blooms in coastal waters. *Current Science*, 101(9), 1160-1170. https://www.currentscience.ac.in
- 7. NASA's Ocean Biology Processing Group. https://oceancolor.gsfc.nasa.gov
- 8. ESA (European Space Agency): Sentinel Missions.https://www.esa.int
- 9. Google Earth Engine Documentation. https://developers.google.com/earth-engine
- 10. NOAA (National Oceanic and Atmospheric Administration): Fisheries and Remote Sensing. https://www.noaa.gov

VALUING NATURE:

ECONOMIC PERSPECTIVES ON ECOSYSTEM SERVICES

G. Hannah Jebamalar

Department of Economics, Lady Doak College, Madurai, Tamil Nadu

Corresponding author E-mail: hannahjebamalar@ldc.edu.in

Abstract:

Ecosystem services represent the diverse benefits that natural systems provide to human societies, ranging from provisioning goods such as food and water to regulating, cultural, and supporting services. In recent decades, the valuation of these services has emerged as a crucial bridge between ecology and economics, enabling policymakers and researchers to quantify the hidden contributions of ecosystems to economic prosperity and human well-being. This chapter examines the conceptual foundations and evolution of ecosystem service valuation, reviews key valuation techniques, and illustrates their application through global case studies. It also explores the methodological, ethical, and institutional challenges that limit valuation's effectiveness and addresses the policy implications for environmental governance, sustainable development, and climate resilience. Finally, the chapter highlights emerging research directions, including advances in ecological–economic modeling, remote sensing, non-monetary valuation approaches, and equity considerations. By integrating ecological knowledge with economic tools, ecosystem service valuation provides not only an analytical framework but also a practical pathway for embedding sustainability into decision-making processes at local, national, and global scales.

Keywords: Ecosystem Services, Environmental Valuation, Natural Capital and Sustainable Development

Introduction:

The natural environment underpins every aspect of human existence; from the food we eat and the air we breathe to the cultural and spiritual values that shape our societies. Yet, despite its foundational role, nature has often been treated as an inexhaustible backdrop to economic activity rather than as a critical form of capital in its own right. Over the past few decades, the concept of ecosystem services has emerged as a transformative framework to recognize and articulate the diverse benefits that ecosystems provide to people. This perspective moves beyond seeing nature only as a stock of resources to be extracted, and instead highlights the flows of

goods and services both tangible and intangible that sustain life, well-being, and economic prosperity.

The growing recognition of ecosystem services has coincided with a parallel shift in economics, particularly within the field of ecological economics, toward acknowledging the interdependence between ecological systems and human economies. Traditional economics has tended to treat environmental factors as externalities—costs or benefits that are not reflected in market transactions. However, as pressures on ecosystems intensify due to climate change, biodiversity loss, urbanization, and unsustainable consumption patterns, it has become increasingly clear that the externalization of environmental costs is neither scientifically valid nor economically sustainable. Valuing nature in economic terms is not about reducing its worth to mere monetary figures; rather, it is about making the invisible visible, integrating ecological contributions into decision-making processes where they have long been neglected.

In this context, the economic valuation of ecosystem services plays a dual role. First, it provides a means to measure and communicate the significance of ecosystems in units that policymakers, businesses, and societies readily understand. Second, it offers practical tools for designing more effective policies, from payments for ecosystem services (PES) and conservation financing to green national accounting frameworks that adjust gross domestic product (GDP) for environmental depletion and degradation. By quantifying the economic value of clean water from wetlands, pollination from insects, or carbon sequestration by forests, valuation methods help shift policy discussions from abstract ideals of "sustainability" to actionable frameworks grounded in measurable trade-offs and tangible outcomes.

Despite its growing influence, the valuation of ecosystem services is not without controversy. Critics argue that assigning monetary values to nature risks commodifying it, reducing its intrinsic worth to market transactions and potentially undermining ethical or cultural values. Furthermore, methodological challenges remain significant: ecosystems are complex, dynamic, and interlinked, while economic valuation often requires simplifications that may not fully capture ecological realities. Nevertheless, proponents maintain that without economic valuation, ecosystem services are systematically undervalued in comparison to market-based goods and services, a bias that has contributed to widespread environmental degradation.

The global research community has responded to these challenges with increasingly sophisticated approaches to valuation. Techniques such as contingent valuation, hedonic pricing, travel cost analysis, and production function models have been adapted and refined to capture both market and non-market aspects of ecosystem services. Advances in remote sensing, big data analytics, and ecological modeling are also creating new opportunities to bridge gaps between ecological complexity and economic representation. Importantly, valuation is no longer confined

to academic debates; it is being integrated into real-world policies. For example, Costa Rica's pioneering PES programs, the European Union's natural capital accounting initiatives, and the global Economics of Ecosystems and Biodiversity (TEEB) project illustrate how valuation can guide conservation, development, and climate strategies at multiple scales.

For economists, engaging with ecosystem services represents both an intellectual challenge and a practical necessity. Unlike traditional goods and services that are traded in markets with relatively transparent prices, ecosystem services often lack direct market signals. Their benefits are diffuse, public in nature, and extend across temporal and spatial scales, making them particularly prone to neglect in short-term decision-making. By developing and applying valuation methods, economists contribute to correcting this systemic bias, helping societies align economic incentives with ecological realities. At the same time, ecological insights are essential to ensure that valuation efforts are grounded in scientific understanding of how ecosystems function and sustain resilience.

It aims to provide a comprehensive overview of how ecosystem services are conceptualized, classified, and valued in economic terms, while also reflecting on the methodological, ethical, and policy challenges involved. The chapter begins with a conceptual discussion of ecosystem services, highlighting key frameworks and classifications. It then explores the economic rationale for valuing ecosystem services, emphasizing the role of natural capital in sustaining human welfare. A detailed examination of valuation techniques follows, ranging from market-based to stated-preference approaches, with attention to their applications, strengths, and limitations.

It also incorporates case studies that illustrate how valuation has been applied in practice, shedding light on successes and pitfalls. Attention is given to the critiques of valuation, particularly around issues of commodification, equity, and ecological complexity. Finally, the chapter discusses the policy implications of ecosystem service valuation, including its role in environmental governance, sustainable development, and climate change strategies, before concluding with directions for future research and interdisciplinary collaboration.

By framing ecosystem services within an economic lens, this chapter does not suggest that nature's value can be fully captured in monetary terms. Rather, it argues that economic perspectives, when carefully and transparently applied, are powerful tools to complement ecological knowledge, inform better decision-making, and highlight the hidden contributions of ecosystems to human prosperity. The study underscores the urgency of integrating ecological and economic thinking in the pursuit of sustainability for current and future generations.

Ecosystem Services: Concepts and Classification

The notion of ecosystem services can be traced back to early ecological economics debates in the 1960s and 1970s, when scholars such as Kenneth Boulding and Herman Daly emphasized the finite nature of ecological resources and the need to integrate them into economic thinking. The term "ecosystem services" began to gain prominence in the 1980s and 1990s, with contributions from ecologists and economists such as Gretchen Daily (1997), who argued that ecosystems provide essential life-support functions that underpin all human economies.

A landmark development came with the Millennium Ecosystem Assessment (MEA, 2005), which classified ecosystem services into four broad categories—provisioning, regulating, cultural, and supporting services. This framework provided a common language for policymakers, scientists, and economists to discuss the contributions of ecosystems to human well-being. More recently, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019) has further refined this conceptualization, emphasizing the relational values of nature and the importance of indigenous and local knowledge systems.

The MEA classification remains widely used and forms the foundation for most economic valuation studies:

- Provisioning services: Tangible goods such as food, water, timber, and fiber.
- Regulating services: Benefits obtained from ecosystem regulation, including climate regulation, flood control, and disease mitigation.
- Cultural services: Non-material benefits such as recreation, aesthetic values, and spiritual significance.
- Supporting services: Underlying processes such as nutrient cycling, soil formation, and primary production that enable the other services.

This classification has been instrumental in organizing valuation research, though debates persist over overlaps, double-counting, and the distinction between intermediate and final services. Economists have increasingly focused on final ecosystem services—those directly linked to human welfare—because they are more amenable to valuation without risking duplication.

Economic theory provides a clear rationale for valuing ecosystem services: they often generate positive externalities that are not priced by markets. For example, a wetland's flood protection benefits extend to downstream communities who do not directly pay for its preservation. Without valuation, such services are undervalued and vulnerable to degradation or conversion to alternative land uses.

The field of ecological economics has advanced the argument that ecosystems represent a form of natural capital, analogous to physical or human capital, that produces flows of goods and services essential for economic activity. Works such as Costanza *et al.* (1997), which estimated the global value of ecosystem services at \$33 trillion annually (later updated in 2014 to \$125 trillion), brought international attention to the magnitude of ecological contributions in economic terms.

In parallel, initiatives like The Economics of Ecosystems and Biodiversity (TEEB, 2010) have emphasized the need to mainstream ecosystem service valuation into development planning, business strategies, and national accounting. This movement reflects a growing consensus that integrating ecological values into economic systems is not optional but essential for sustainability.

While the ecosystem services framework has gained wide acceptance, several debates continue within the academic community:

- Methodological pluralism: Should monetary valuation dominate, or should non-monetary and participatory approaches play a greater role?
- Intrinsic vs. instrumental values: Can nature's value truly be reduced to economic terms, or does this risk overlooking ethical and cultural dimensions?
- Equity and justice: Who benefits from valuation exercises, and who bears the costs? Critics note that market-based approaches sometimes privilege wealthier stakeholders.
- Policy uptake: Despite advances, translating valuation research into effective governance remains inconsistent across countries and sectors.

Recent scholarship reflects growing interdisciplinarity, combining ecology, economics, geography, and data science. Remote sensing and GIS tools are increasingly used to map and model ecosystem services, while behavioral economics provides insights into how people perceive and value nature. Global frameworks such as the UN Sustainable Development Goals (SDGs) and the Paris Climate Agreement have also heightened demand for robust valuation methods that can inform international commitments.

Valuation Techniques for Ecosystem Services

The economic valuation of ecosystem services seeks to assign measurable values to the benefits humans derive from nature. These values can then inform cost-benefit analyses, policy design, and conservation strategies. Valuation methods fall into four broad categories: market-based approaches, revealed preference methods, stated preference methods, and cost-based approaches. Each has unique applications, assumptions, and limitations.

- **1. Market-Based Approaches:** Market-based methods rely on existing prices of goods and services that are traded in formal markets.
 - Direct Market Pricing: Provisioning services such as timber, fish, or agricultural products can often be valued using observed market prices.
 - Production Function Approach: This method assesses how ecosystem inputs (e.g., pollination, water filtration) contribute to the production of marketed goods, thereby inferring their value.

Advantages:

- Straightforward and data-driven.
- Less prone to subjective bias since it uses observed market behavior.

Limitations:

- Only applicable to goods and services that have established markets.
- Does not capture non-market benefits such as cultural or regulating services.
- **2. Revealed Preference Methods:** Revealed preference approaches infer values from related market behavior, even if the service itself is not directly traded.
 - Travel Cost Method (TCM): Estimates the value of recreational services (e.g., national parks) by analyzing how much people spend on travel to access them.
 - Hedonic Pricing (HP): Values environmental attributes (e.g., clean air, scenic views) by examining their influence on housing or wage differentials.

Advantages:

- Based on actual behavior rather than hypothetical scenarios.
- Useful for cultural and recreational services.

Limitations:

- Limited to services that influence observable market behavior.
- Cannot capture non-use values (e.g., existence or bequest values of biodiversity).
- Data-intensive and often requires sophisticated econometric modeling.
- **3. Stated Preference Methods:** These methods use surveys to elicit individuals' willingness to pay (WTP) for ecosystem services that lack market representation.
 - Contingent Valuation Method (CVM): Respondents are asked directly how much they would pay (or accept as compensation) for specific environmental changes.
 - Choice Experiments (CE): Participants choose between alternative scenarios with different attributes and costs, allowing estimation of trade-offs and marginal values.

Advantages:

• Capable of capturing both use and non-use values (e.g., the value people place on protecting endangered species they may never see).

• Flexible and applicable to a wide range of services.

Limitations:

- Subject to hypothetical bias, strategic bias, and survey design flaws.
- Responses may not reflect actual behavior in real-world settings.
- Requires careful framing to avoid misinterpretation by respondents.
- **4. Cost-Based Approaches:** These methods approximate ecosystem service values based on the costs that would be incurred if the service were lost.
 - Replacement Cost: Estimates value by calculating the cost of replacing ecosystem services with human-made alternatives (e.g., the cost of building water treatment plants to replace wetland filtration).
 - Avoided Cost: Measures the cost avoided by maintaining ecosystem services (e.g., storm protection from mangroves reducing the need for artificial sea defenses).
 - Mitigation/Restoration Cost: Calculates expenditures required to restore or mitigate degraded ecosystems.

Advantages:

- Relatively easy to apply when replacement technologies exist.
- Provides conservative estimates useful for policy-making.

Limitations:

- Assumes replacement costs reflect actual benefits, which may not be accurate.
- Cannot capture intangible or cultural benefits.
- Risk of underestimation if ecological functions cannot be fully replicated.
- **5. Multi-Method Approach**: A multi-method approach is increasingly common, combining different techniques to triangulate more robust valuations. For instance, a study on wetlands may use market prices for fish, travel cost for recreation, and contingent valuation for non-use values.

Emerging Tools and Innovations

Advances in technology are expanding valuation possibilities:

- Remote sensing and GIS enable spatial mapping of ecosystem services.
- Big data and machine learning help identify behavioral patterns relevant to valuation.
- Integrated ecological-economic models (e.g., InVEST, ARIES) simulate service flows under different land-use scenarios.

These innovations hold promise for reducing uncertainty, enhancing accuracy, and supporting policy integration.

Case Studies and Applications

The valuation of ecosystem services has moved from academic theory to practical applications in policy, conservation, and development planning. Case studies from around the world highlight both the potential and limitations of economic valuation in guiding sustainable decisions.

Forest Ecosystems:

Forests provide multiple ecosystem services, from timber and fuelwood (provisioning) to carbon sequestration and watershed regulation (regulating).

- Global Valuation: The TEEB (2010) study estimated that deforestation costs the global economy between US\$2–5 trillion annually in lost ecosystem services.
- India Example: In Himachal Pradesh, valuation of watershed services provided by forests showed that investments in forest conservation could significantly reduce downstream costs of irrigation and hydropower sedimentation.
- Policy Impact: Such valuations have informed policies like REDD+ (Reducing Emissions from Deforestation and Forest Degradation), which compensates countries for conserving carbon-sequestering forests.

Wetlands and Water Regulation:

Wetlands are often undervalued despite their critical role in water purification, flood control, and biodiversity support.

- United States: A study of wetlands in Massachusetts found that their flood protection services avoided millions of dollars in property damage annually.
- Asia: The East Kolkata Wetlands in India provide natural sewage treatment for the city, saving significant infrastructure costs while also supporting fisheries and agriculture.
- Global Policy Influence: The Ramsar Convention on Wetlands has incorporated valuation studies into its guidelines for sustainable management.

Coastal and Marine Ecosystems:

Mangroves, coral reefs, and seagrass beds provide shoreline protection, fisheries, and tourism services.

- Mangroves in Southeast Asia: Valuation studies show that intact mangroves can reduce storm surge damage by up to 50%, offering protection equivalent to millions of dollars in man-made infrastructure.
- Caribbean Coral Reefs: Estimated to provide US\$3.1–4.6 billion annually in fisheries, tourism, and shoreline protection.
- Policy Uptake: Countries like Belize have integrated reef valuation into coastal zone management plans.

Agricultural Landscapes and Pollination Services:

Pollinators are critical for global food production, yet their contributions are often invisible in markets.

- Global Valuation: Gallai *et al.* (2009) estimated the global economic value of insect pollination at €153 billion annually, about 9.5% of the world's agricultural production.
- Local Case: In California, almond production—entirely dependent on bee pollination—demonstrates the economic stakes of pollinator decline, leading to policy discussions on pollinator protection and habitat restoration.

Urban Ecosystem Services:

Cities increasingly recognize the economic value of green spaces and urban forests.

- Europe: A study in Berlin valued urban trees for their role in reducing air pollution, mitigating heat, and enhancing property values.
- United States: In New York City, a cost-benefit analysis showed that investing US\$1.5 billion in watershed protection in the Catskills avoided the need for a US\$6-8 billion water treatment plant, highlighting the cost-effectiveness of ecosystem-based solutions.

Payments for Ecosystem Services (PES):

Costa Rica Case: Costa Rica pioneered PES programs in the 1990s, compensating landowners for reforestation, forest conservation, and watershed protection.

- Funded through a fossil fuel tax and international contributions, the scheme demonstrated how valuation can underpin financial mechanisms for conservation.
- Results include a significant increase in national forest cover and enhanced ecosystem service flows.
- The Costa Rican model has been widely studied and adapted in other countries, including Mexico, Vietnam, and China.

Challenges and Critiques

Methodological Challenges:

Valuing ecosystem services requires simplifying complex ecological processes into quantifiable metrics, which inevitably introduces uncertainty.

- Ecological Complexity: Ecosystems are dynamic, non-linear, and interdependent.
 Reducing them to single monetary values can obscure ecological thresholds or tipping points.
- Data Limitations: Many regions, especially in the Global South, lack reliable data to support valuation exercises. This creates risks of underestimation or reliance on broad assumptions.

- Double Counting: Overlapping categories of services (e.g., water regulation vs. flood prevention) can inflate valuations if not carefully distinguished.
- Transferability Issues: Values estimated in one geographic or cultural context may not be directly applicable elsewhere. Benefit transfer methods often risk oversimplification.

Ethical Concerns:

A major critique is that monetizing nature risks commodifying it, reducing its intrinsic worth to a price tag.

- Intrinsic vs. Instrumental Value: Many philosophers and ecologists argue that nature has value beyond human utility, which cannot be captured by economics.
- Cultural and Spiritual Dimensions: Indigenous and local communities often hold values of nature that are relational and spiritual, defying monetary translation.
- Moral Hazard: Assigning a price may legitimize destruction if the "willingness to pay" is deemed sufficient to offset losses, leading to trade-offs that undermine long-term sustainability.

Distributional and Equity Issues:

Economic valuation does not occur in a social vacuum. Questions of who benefits and who pays are central.

- Equity in PES Schemes: Programs such as Costa Rica's PES have been criticized for favoring wealthier landowners, leaving marginalized groups excluded.
- Intergenerational Justice: Valuation often reflects current preferences, potentially undervaluing long-term ecosystem resilience and future generations' needs.
- Power Dynamics: Wealthy actors may capture most benefits from valuation-based policies, while vulnerable groups bear ecological costs.

Policy and Practical Limitations:

Even when valuation studies are robust, translating them into policy is challenging.

- Political Will: Governments may prioritize short-term economic growth over long-term ecological benefits, ignoring valuation findings.
- Integration into Planning: Many countries lack institutional capacity to incorporate ecosystem service valuation into national accounts, budgets, or land-use planning.
- Uncertainty in Decision-Making: Policymakers may distrust or misinterpret valuation studies due to the inherent uncertainty and diversity of methods.

Policy Implications

Environmental Policy and Regulation

Valuation informs the design of regulations that aim to internalize environmental externalities.

• Pollution Control: Cost-benefit analyses based on ecosystem service valuation can justify stricter air and water quality standards.

- Land-Use Planning: Valuation helps compare alternative land uses, e.g., conserving wetlands versus converting them to agriculture.
- Biodiversity Protection: Monetary estimates of species and habitat value strengthen the case for protected areas and conservation investments.

Payments for Ecosystem Services (PES)

PES schemes directly link valuation to financial incentives, compensating stakeholders for maintaining ecosystem services.

- Design Principles: Successful PES requires clear property rights, reliable monitoring, and equitable distribution of benefits.
- Examples: Costa Rica's pioneering PES program, Mexico's hydrological services payments, and China's "Grain for Green" project all demonstrate valuation-driven policy in action.
- Challenges: Ensuring inclusivity, preventing elite capture, and maintaining long-term funding remain ongoing concerns.

Integration into National Accounting

Traditional GDP accounting ignores environmental degradation, creating misleading signals about economic progress.

- Green GDP: Adjusts national accounts to reflect resource depletion and environmental damage.
- System of Environmental-Economic Accounting (SEEA): Adopted by the United Nations, SEEA integrates natural capital into economic statistics.
- Policy Relevance: Countries like China, India, and the EU have piloted natural capital accounting to guide planning and assess sustainability performance.

Climate Change and International Commitments

Ecosystem service valuation supports global climate and biodiversity goals.

- Carbon Markets: Valuation underpins the pricing of carbon credits in emissions trading schemes.
- Nature-Based Solutions (NbS): Cost-benefit studies often show that investing in forests, mangroves, and peatlands for carbon sequestration is more cost-effective than technological alternatives.
- Global Agreements: Initiatives like the Paris Agreement and Kunming-Montreal Global Biodiversity Framework emphasize the role of ecosystem service valuation in achieving targets.

Sustainable Development and Poverty Alleviation

Valuation can highlight how ecosystem services contribute to livelihoods, especially for rural and marginalized populations.

- Pro-Poor Strategies: Incorporating ecosystem service values into development projects ensures that conservation and poverty reduction are not treated as competing goals.
- Agricultural Policy: Valuation of soil fertility, pollination, and water regulation informs sustainable agriculture policies that benefit smallholder farmers.
- Urban Development: Economic assessments of urban green infrastructure support investments in climate resilience and public health.

Toward Transformative Governance

For valuation to drive meaningful change, it must be embedded within broader governance reforms.

- Mainstreaming: Ecosystem service valuation should be integrated into ministries of finance, planning, and infrastructure—not confined to environmental agencies.
- Inclusive Governance: Valuation exercises must engage diverse stakeholders, ensuring representation of marginalized communities.
- Beyond Economics: Valuation should complement, not replace, ecological thresholds, ethical principles, and cultural values in policy-making.

Future Research Directions

1. Advancing Ecological-Economic Modeling

Traditional valuation approaches often simplify ecological processes, but future research must better integrate ecological science with economic analysis.

- Dynamic Models: Incorporating feedback loops, non-linear ecosystem dynamics, and tipping points into valuation models can improve predictive accuracy.
- Integrated Assessment Models (IAMs): Linking ecosystem services with climate and economic models will help policymakers assess trade-offs under different scenarios.
- Ecosystem-Based Accounting: Developing fine-scale models to track changes in natural capital stocks and service flows will strengthen national and global accounting systems.

2. Harnessing Big Data and Remote Sensing

Technological advances are reshaping how ecosystem services are mapped, measured, and valued.

- Remote Sensing: Satellites and drones can provide real-time data on land use, vegetation cover, and hydrological cycles.
- Geographic Information Systems (GIS): Spatial analysis tools enable researchers to identify hotspots of ecosystem service supply and demand.

• Machine Learning and AI: Algorithms can detect patterns in large datasets, improving the accuracy of benefit transfer and predictive valuation.

3. Expanding Non-Market and Non-Monetary Approaches

Monetary valuation will remain important, but it should be complemented by pluralist approaches that capture cultural, spiritual, and relational values of ecosystems.

- Participatory Valuation: Engaging local communities and indigenous groups in coproducing knowledge ensures legitimacy and inclusivity.
- Well-being Indicators: Linking ecosystem services to health, happiness, and social cohesion can broaden the scope of valuation beyond monetary terms.
- Deliberative Methods: Combining economic surveys with focus groups, citizen juries, and scenario workshops allows for more democratic valuation processes.

4. Addressing Equity and Justice in Valuation

Future research must move beyond aggregate values to examine how benefits and costs are distributed across different groups.

- Distributional Analysis: Identifying winners and losers of ecosystem service changes enhances policy fairness.
- Gender and Social Dimensions: Incorporating gender-sensitive and culturally grounded valuation frameworks can improve inclusivity.
- Intergenerational Equity: Developing valuation methods that account for long-term sustainability and future generations' needs remains a key challenge.

5. Strengthening Policy Uptake and Governance

Research must bridge the gap between academic valuation exercises and real-world decision-making.

- Policy Experimentation: Pilot programs that test valuation in local contexts can generate evidence for scaling up.
- Institutional Integration: Research on embedding valuation in national budgets, corporate accounting, and investment decisions is essential.
- Global Frameworks: Linking valuation research to the UN Sustainable Development Goals, Paris Agreement, and post-2020 biodiversity framework will increase its policy relevance.

6. Innovations in Valuation Tools

Emerging frameworks are pushing the boundaries of traditional valuation.

• Natural Capital Protocols: Corporate frameworks are helping businesses measure and disclose ecosystem dependencies.

- Blockchain and Digital Platforms: New technologies may facilitate transparent payments for ecosystem services and carbon credits.
- Scenario Analysis: Valuation linked to futures thinking (e.g., climate projections, demographic change) can help societies prepare for uncertainty.

7. Interdisciplinary and Transdisciplinary Research

Finally, the future of ecosystem service valuation lies in crossing disciplinary boundaries.

- Ecology + Economics + Social Science: Collaborations can capture ecological functions, economic trade-offs, and human perceptions together.
- Science–Policy Interfaces: Strengthening platforms like IPBES will enhance dialogue between researchers and decision-makers.
- Transdisciplinary Co-Creation: Joint research with stakeholders ensures outcomes are not only scientifically rigorous but also socially actionable.

Conclusion:

The valuation of ecosystem services has transformed how we understand the link between ecology and economics. By assigning measurable values to the goods and services provided by nature, it highlights the hidden contributions ecosystems make to human well-being and economic prosperity. Case studies from forests, wetlands, coasts, agriculture, and cities show that conserving ecosystems is often more cost-effective than built alternatives, while policies such as payments for ecosystem services and natural capital accounting demonstrate how valuation can shape decision-making. At the same time, debates around ecological complexity, ethical concerns, and equity issues remind us that valuation must be applied with care, transparency, and humility.

Looking ahead, ecosystem service valuation is moving toward greater integration, innovation, and inclusivity. Advances in modeling, remote sensing, and data science are enhancing accuracy, while participatory and non-monetary approaches are making valuation more socially legitimate. For policymakers, researchers, and communities alike, the challenge is not simply to price nature but to embed its value in governance, development, and culture. Done thoughtfully, valuation provides a bridge between ecological science and economic policy—one that is essential for navigating today's climate, biodiversity, and sustainability crises.

References:

- 1. Barbier, E. B. (2011). *Capitalizing on nature: Ecosystems as natural assets*. Cambridge University Press.
- 2. Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. *Ecological Economics*, 29(2), 293–301. https://doi.org/10.1016/S0921-8009(99)00013-0

- 3. Boulding, K. E. (1966). *The economics of the coming spaceship earth*. In H. Jarrett (Ed.), *Environmental quality in a growing economy* (pp. 3–14). Johns Hopkins University Press.
- 4. Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., ... & van den Belt, M. (1997). The value of the world's ecosystem services and natural capital. *Nature*, 387(6630), 253–260. https://doi.org/10.1038/387253a0
- 5. Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., ... & Turner, R. K. (2014). Changes in the global value of ecosystem services. *Global Environmental Change*, 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002
- 6. Daily, G. C. (Ed.). (1997). *Nature's services: Societal dependence on natural ecosystems*. Island Press.
- 7. Daly, H. E. (1990). Toward some operational principles of sustainable development. *Ecological Economics*, 2(1), 1–6. https://doi.org/10.1016/0921-8009(90)90010-R
- 8. Gallai, N., Salles, J. M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. *Ecological Economics*, 68(3), 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014
- 9. Hanley, N., & Barbier, E. B. (2009). *Pricing nature: Cost–benefit analysis and environmental policy*. Edward Elgar.
- 10. Millennium Ecosystem Assessment (MEA). (2005). *Ecosystems and human well-being: Synthesis*. Island Press.
- 11. Pagiola, S. (2008). Payments for environmental services in Costa Rica. *Ecological Economics*, 65(4), 712–724. https://doi.org/10.1016/j.ecolecon.2007.07.033
- 12. Spash, C. L. (2008). Deliberative monetary valuation and the evidence for a new value theory. *Land Economics*, 84(3), 469–488. https://doi.org/10.3368/le.84.3.469
- 13. The Economics of Ecosystems and Biodiversity (TEEB). (2010). *The economics of ecosystems and biodiversity: Mainstreaming the economics of nature*. Earthscan.
- United Nations (UN), European Commission, Food and Agriculture Organization, International Monetary Fund, Organisation for Economic Co-operation and Development, & World Bank. (2014). System of Environmental-Economic Accounting 2012: Central framework. United Nations.
- 15. United Nations Environment Programme (UNEP). (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). UNEP.

FACTORS AFFECTING DEVELOPMENT OF FORENSICALLY IMPORTANT BLOW FLIES (DIPTERA: CALLIPHORIDAE)

Gajanan M. Deshmukh*1 and Haribhau M. Pawar2

¹Smt. Sindhutai Jadhao Arts & Science Mahavidyalaya,
Mehkar, Dist: Buldana-443301 (M.S.) India

²M. J. P. V. Arts Commerce & Shri V.K.K. Science College, Dhadgaon, Dist: Nandurbar-425414 (M.S.) India

*Corresponding author E-mail: gmdeshmukh16@gmail.com

The blow flies breed mostly on corpse, human faces, fish and meat. The female fly may lay 200 to 300 eggs on breeding place. The life cycle includes egg, larvae (first, second and third instar), pupa (pre-pupa and pupa) and adult. Blow flies (Calliphorids) are especially important for deciding postmortem interval (PMI) because of their close association with corpse soon after death. The development of blow flies depends on surrounding temperature and humidity. The life cycle of blow flies is also affected by drugs and toxicants present in the corpse.

Life Cycle of Blow Fly

Blow flies start their life cycle by laying a mass of eggs in wounded area or dead bodies or on decaying tissues. The eggs hatch out in 8-10 hours in warm moist environment; it will take three days in cooler environment. The pale yellow or greyish larvae of moderate size 10 to 14 millimeters long hatch out from egg. The larvae feed on dead tissues from 3 to 10 days it depends on temperature. The larvae pass through 3 larval instars they develop according to environmental temperature. At cooler temperature (16°C) the first instar, second instar and third instar larvae will take more time, at warmer environment (27°C) the first instar, second instar and third instar larvae will take less time to complete their life cycle. The third instar larvae enter in the soil where it pupates up to 6 to 14 days. After the pupa transforms into adult it will comes out from soil and feed on dead tissues. Adult blow fly lay eggs in about 2 weeks after they comes out from pupa. For the identification of flies the sample of eggs/maggots/pupae collected from dead body and is reared in the laboratory until adult comes out from pupa which can be identified by using keys of adult flies (Smith 1986; McAlpine 1987).

Importance in Forensic Science

Blow flies are considered as one of most important species in forensic science, because of their wide geographical distribution, high fecundity and that are the first species appear on the corpse. Post mortem interval (PMI) can be calculated from larvae of blow flies because of their abundance on corpse because of this blow flies are used in forensic science to solve criminal

cases around the world. Dipteran family flies of Calliphoridae, Sarcophagidae and Muscidae are useful in deciding postmortem interval (PMI).

Use in Research Other Than Forensics

Besides the use in forensic investigations blow flies are the source of pollination for mango in different parts of world. Taiwan farmers enhance the population of *Chrysomya megacephala* so that more pollination will be takes place (Gabre *et al.*, 2005).

Veterinary Importance

Many blow flies impact on veterinary field, *Lucilia sericata* is no host-specific but it affects mainly to sheep. The fly lay eggs in sheep wool, the larvae then migrate down and feeds directly on the skin surface, this can cause large lesions and bacterial infection. In this way *Lucilia sericata* affect millions of the sheeps every year.

Medical Importance

Lucilia sericata has medical importance their larval secretions have been revealed to help in tissue regeneration. In vitro studies have been shown that larval secretion useful in increasing fibroblast migration to wound site, it positively impacts on wound closure (Horobin et al., 2003). The larvae of Lucilia cuprina have been used in debridement therapy by doctors for slowly healing wounds (Marsi and Nazni, 2005). The larvae eat dead and infectious tissue by eating and prevent it from gangrene and further infection.

Public Health Importance and Management Control

Although this fly can help in pollination but can cause many problems, *Chrysomya megacephala* are known for accidental myasis in humans, these flies invade an open wound but do not pierce the skin (Bunchu *et al.*, 2007). It causes huge economic problem in different parts of the world. *Chrysomya megacephala* lands on the feces and also on human food in this way it spreads disease and carrier of pathogens such as bacteria, protozoan cysts and helminth eggs. The adult blow flies are vector for different pathogens of diseases such as cholera, dysentery and various viral and bacterial diseases.

Insecticides can be used to control the problem of *Chrysomya megacephala*, but sometimes resistance develop in these flies (Sripakdee *et al.*, 2005). Another technique to handle these flies is using an odor the flies are attracted and then it can be trapped.

Factors Affecting Development of Blow Flies

i) Reproduction and Survival Rates

The factors affect on reproduction and survival rates are amount of food and other competing larvae available at that place. The competition from larvae of *C. rufifacies* affect on reproduction and survival rate of *C. megacephala* (Bunchoo *et al.*, 2007).

ii) Temperature and Humidity

Arthropods are poikilothermic organisms. Surrounding temperature and humidity are the most important factors in development of blow flies. Developmental time from egg to adult emerge out from papa is depends on many environmental factors. The growth rate of blow fly mainly depends on surrounding temperature.

The development of immature stages is affected by wound and environmental temperatures; growth is slower at low temperature. The blow fly completes their life cycle in 18 days in tropical condition at 29°C (Thomas and Pruett, 1992), it will complete in 24 days in temperate conditions of air temperature 22°C (James, 1947), the life cycle of blow fly may complete in 2-3 months in cold environment (Parman, 1945). Despins (1992) was found that low surrounding humidity has an inhibiting effect on development of egg of the tropical horse tick, *Dermacentor nitens*. Minimum and maximum development rates of five forensically important Calliphoridae species (*Phormia regina, Lucilia sericata, Calliphora vicina, Eucalliphora latifrons* and *Lucilia illustris*) at different temperature was studies by Anderson (2000). Development rate is mostly dependent on surrounding temperature the larvae will develop faster at higher temperature and it will develop slower at lower temperature (Piangjai *et al.*, 2008).

Blow flies have ability to smell dead animal from up to 16 Km generally they are the first insect to come in contact with dead body. After reaching to corpse female deposit eggs in the dead animal and develop into adult blow fly in sufficient environmental temperature. The growth and development of every organism depend on temperature; larger organisms can maintain their constant body temperature through generation of metabolic heat but this cannot be possible in insects because they are poikilothermic animals. Development of blow flies depends on temperature because biochemical reactions are temperature dependent. The insect development at different stages of life cycle also depends on humidity percentage.

iii) Sedative Drugs

Insect development is also affected by drugs at higher doses of drugs can cause unconsciousness and even death. Alcohol (Weir, 2001), GHB, temazepam (Restoril), Flunitrazepam (Rohypnol) and midazolam (Versed) are used as sedatives (Negrusz, *et al.*, 2003). In crime cases criminals taking Rohypnol before they commit for crimes due to this loss of inhibitions from the drug may enhance their confidence for doing offence, if they caught it is difficult for police to interrogate them because amnesia produced by drugs. The presence of sedative drugs in dead tissues of animals effect on life stages of blow flies of forensic importance.

Forensic entomology is related to death investigations, to find out time of infliction of wound, to detect poisons and drugs and determine the location of an incident. In some cases

where forensic entomology helpful to identify evidence of torture, postmortem movement and drugging. It is useful in identification of toxic compounds, genocide and mass graves movement (Albert, 2006). Blow flies are forensically important to find out accurate post mortem interval (PMI) hence it is important to study the developmental stages of these flies and effect of factors affecting development rate of blow flies.

References:

- 1. Cruz, A. M. (2006). *Crime scene intelligence: An experiment in forensic entomology*. The Forensic Science eBook Collection.
- 2. Anderson, G. S. (2000). Minimum and maximum development rates of some forensically important Calliphoridae (Diptera). *Journal of Forensic Sciences*, *45*, 824–832.
- 3. Bunchoo, M., Khantawa, B., Piangjai, S., Rongsiyam, Y., Sukontason, K. L., & Sukontason, K. (2007). Comparison between *Musca domestica* and *Chrysomya megacephala* as carriers of bacteria in northern Thailand. *Southeast Asian Journal of Tropical Medicine and Public Health*.
- 4. Bunchu, N. (2007). Behavioral responses of *Chrysomya megacephala* to natural products. *Parasitology Research*, 102(3), 419.
- 5. Despins, J. L. (1992). Effects of temperature and humidity on ovipositional biology and egg development of the tropical horse tick, *Dermacentor nitens*.
- 6. Gabre, R. M., et al. (2005). Life table of *Chrysomya megacephala*. Acta Oecologica, 27, 179.
- 7. Horobin, A., *et al.* (2003). Maggots and wound healing: The effects of *Lucilia sericata* larval secretions upon human dermal fibroblasts. *European Cells and Materials*, 6(Suppl. 2), 3.
- 8. James, M. T. (1947). *The flies that cause myiasis in man*. Miscellaneous Publication of the U.S. Department of Agriculture, 631, 1–175. Washington, DC.
- 9. Mohd Marsi, S., & Nanzi, W. A. (2005). Sterilisation of *Lucilia cuprina* Wiedemann maggot used in therapy of intractable wounds. *Tropical Biomedicine*, 22, 185–189.
- 10. McAlpine, J. F. (Ed.). (1987). *Manual of Nearctic Diptera* (Vols. 1–2). Biosystematics Research Centre, Ottawa, Ontario.
- 11. Negrusz, A., & Gaensslen, R. E. (2003). Analytical developments in toxicological investigation of drug-facilitated sexual assault. *Analytical and Bioanalytical Chemistry*, 376(8), 1192–1197.
- 12. Parman, D. C. (1945). Effect of weather on *Cochliomyia americana* and a review of methods and economic applications of the study. *Journal of Economic Entomology*, 38, 66–76.

- 13. Piangjai, S., Siriwattanarungsee, S., Sukontason, K. L., & Sukontason, K. (2008). Morphology and developmental rate of blowflies *Chrysomya megacephala* and *Chrysomya rufifacies* in Thailand: Application in forensic entomology. *Parasitology Research*, 102(6), 1207–1216.
- 14. Smith, K. G. V. (1986). *A manual of forensic entomology*. Trustees of the British Museum (Natural History) and Cornell University Press.
- 15. Sripakdee, D. (2005). Effect of microwave irradiation on the blowfly *Chrysomya megacephala*. Chiang Mai University Research Note, 36(4), 893.
- 16. Thomas, D. B., & Pruett, J. H. (1992). Kinetic development and decline of antiscrewworm (Diptera: Calliphoridae) antibodies in serum of infested sheep. *Journal of Medical Entomology*, 29, 870–873.
- 17. Weir, E. (2001). Drug-facilitated date rape. Canadian Medical Association Journal, 165(1), 80.

CONSERVATION STRATEGIES FOR ALPINE PLANTS: A REVIEW

Shivangi Dobhal, Babita Patni and Vijaykant Purohit

High Altitude Plant Physiology Research Centre,

Hemvati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand 246174

Corresponding author E-mail: shivangidobhal47@gmail.com,

babita28paatni@gmail.com, vijaykantpurohit@rediffmail.com

Abstract:

Alpine plants, critical indicators of global environmental change, face unprecedented threats from warming temperatures, invasive species, and human activities such as overgrazing and infrastructure development. These high-elevation species play an essential role in maintaining ecosystem stability by supporting biodiversity, regulating hydrology, and preventing soil erosion, while their unique adaptations contribute to global plant diversity. However, rapid climate shifts and habitat fragmentation challenge their survival, particularly in regions like the Himalayas where warming exceeds global averages. This chapter explores the multifaceted threats to alpine flora and evaluates conservation strategies, emphasizing *In-situ* approaches like protected areas and community-based management, alongside *Ex-situ* methods such as seed banking and tissue culture. Case studies from Colorado, Kashmir, and Nepal highlight successful interventions, while future perspectives advocate for adaptive management, technological innovations, and sustainable practices. By integrating ecological modeling and community engagement, this chapter underscores the urgent need to preserve alpine ecosystems for biodiversity and resilience against climate change.

Keywords: Alpine Plants, Climate Change, Conservation Strategies, Ecological Corridors, Sustainable Harvesting.

1. Introduction:

Plants are vital for ecosystem stability, supporting specialized fauna, sequestering carbon, regulating water flow, and preventing soil erosion, which benefits both local and downstream communities (Verrall *et al.*, 2020). Despite their isolated nature, alpine zones host remarkable biodiversity, fostering unique evolutionary adaptations, as seen in the distinct species of the Himalayas and Alps (Korner, 2021). However, climate change threatens their survival by altering growing seasons, reducing snow cover, and increasing competition from lower-elevation species (Dolezal *et al.*, 2020). Interestingly, alpine plants may be less vulnerable than taller trees due to their ability to thrive in small-scale, protective microclimates (Scherrer & Korner, 2011). Research shows these ecosystems are warming faster than the global average, with significant

impacts already evident (Gottfried *et al.*, 2012). Preserving alpine flora is critical not only for biodiversity but also for potential innovations in climate-resilient agriculture or technology (Lozano *et al.*, 2020).

Threats to Alpine Plants

Rapid warming at higher elevations due to climate change poses a significant threat to Himalayan alpine flora, with temperature increases of 5–6°C projected in some areas (Salick *et al.*, 2014). Elevational ranges upward, reducing habitat for species unable to adapt or migrate, favoring warm-adapted species at higher elevations while cold-adapted ones decline at lower levels (Telwala *et al.*, 2013; Dolezal *et al.*, 2020). Anthropogenic pressures such as deforestation, overgrazing, and infrastructure development fragment these ecosystems, with overgrazing diminishing plant diversity and cover in alpine meadows (Verrall *et al.*, 2020) and tourism-related construction reducing suitable habitats (Pandey *et al.*, 2019). Unsustainable harvesting of medicinal herbs, a key income source, further threatens rare and endemic species (Shrestha *et al.*, 2009; Butola *et al.*, 2010). Invasive species like *Lantana camara* and *Ageratum conyzoides* outcompete native flora (Sekar, 2012), while extreme weather events, such as the 2010 heavy snowfall in the Northwest Himalayas, alter plant cover and favor moisture-tolerant species (Dolezal *et al.*, 2016). Soil erosion from overgrazing and land expansion also hinders plant survival, particularly for species reliant on specific soil conditions (Manzoor *et al.*, 2024).

2. Challenges in Alpine Plant Conservation

Alpine plant conservation in the Himalayas faces significant challenges due to climate change and human activities. In Sikkim, 87% of 124 native plant species have shifted their elevational ranges by 23-998 meters over the past century, driven by temperature increases of 0.76°C in maximums and 3.65°C in minimums, leading to higher species diversity at upper elevations but risking habitat loss and extinctions (Telwala et al., 2013). The Kashmir Himalaya has warmed by 0.8°C over 50 years, accelerating these shifts (Hamid et al., 2020). Humaninduced fragmentation from road construction and infrastructure, such as in Himachal Pradesh, reduces species richness and diversity near disturbed sites, hindering dispersal and increasing extinction risks (Sharma et al., 2023; Kardol & Wardle, 2010). Overharvesting of economically and medicinally valuable plants, like Neopicrorhiza scrophulariiflora and Aconitum naviculare in Nepal, and Gentiana kurroo in Kashmir, threatens populations, necessitating sustainable cultivation (Shrestha et al., 2009; Mir et al., 2020). Conservation efforts are hampered by inadequate monitoring and ecological knowledge, with only 26.73% of potential habitats protected in the Pan-Himalayan region and significant research gaps in areas like the Near Eastern Himalayas (Ali et al., 2024; Basnet et al., 2019). Anthropogenic pressures, including grazing and tourism, further degrade ecosystems, with road building and adventure tourism in the Kanchenjunga Conservation Area and overgrazing in Uttarakhand's alpine meadows reducing forest cover, medicinal plants, and biodiversity (Byers *et al.*, 2024; Bisht *et al.*, 2022).

3. Conservation Strategies for Alpine Plants:

In-situ Conservation

In-situ conservation involves protecting alpine plants within their natural habitats while preserving ecological interactions and evolutionary processes (Chettri, 2014; Iriondo et al., 2008). Key strategies include establishing protected areas such as national parks and biosphere reserves, which provide secure habitats for endangered species like Nardostachys jatamansi and Aconitum heterophyllum (Kotru et al., 2020). Connectivity through ecological corridors supports species migration and gene flow, particularly under climate change (Chettri et al., 2010). Community-based approaches integrate traditional knowledge with sustainable management, reducing threats like overgrazing on species such as Rheum australe (Khan et al., 2013). Controlling invasive species (Lantana camara) and promoting sustainable harvesting of medicinal plants (Podophyllum hexandrum) are also crucial (Pathak et al., 2019; Goraya & Ved, 2017). Long-term monitoring and habitat modeling aid in prioritizing conservation for sensitive species like Meconopsis aculeata (Pandey, 2012; Sharma et al., 2021).

Alpine flora including *Gentiana acaulis* and *Saxifraga* spp. are conserved in varied microclimates across the Himalayas, Swiss Alps, and Rocky Mountains, while transboundary initiatives like the Kangchenjunga Landscape enhance ecological integrity (Heywood, 2014; Kandel *et al.*, 2016). Benefits include preservation of entire ecosystems, maintenance of genetic diversity, and support for climate adaptation through natural or assisted migration (Iriondo *et al.*, 2008; Maxted *et al.*, 2012; Telwala *et al.*, 2013). Challenges remain in eastern Himalaya coverage gaps, climate change impacts, and pressures from overexploitation, tourism, and habitat degradation, necessitating adaptive strategies such as afforestation and soil carbon management (Kotru *et al.*, 2020; Lamsal *et al.*, 2018; Salick *et al.*, 2014).

Ex-situ conservation

Ex-situ conservation protects alpine plants outside their natural habitats, using controlled environments like seed banks, botanical gardens, or biotechnological methods such as tissue culture, aiming for research, education, and future reintroduction (Volis & Blecher, 2010). Seed banking preserves genetic material, especially for species with orthodox seeds, often using cryopreservation, with institutions like the Millennium Seed Bank storing Himalayan germplasm (Walters et al., 2013; Rossi et al., 2014). Botanical gardens, such as the University of British Columbia's Alpine Garden, maintain living collections for study and reintroduction, while tissue culture allows mass propagation of medicinal species to meet commercial and conservation

needs (Sharma, 2024). Clone maintenance preserves specific genotypes for future planting and selection of resilient strains (Tewari *et al.*, 2017).

Examples include seed banking of Himalayan species for habitat restoration (UNEP, 2002) and tissue culture programs enhancing conservation and sustainable production of medicinal plants (Sharma, 2024). Benefits encompass providing a safety net against extinction, supporting research and education, developing resilient clones, and meeting commercial demands while reducing pressure on wild populations (Walters *et al.*, 2013; Tewari *et al.*, 2017). Challenges involve maintaining adaptive genetic diversity, low reintroduction success due to environmental mismatches, and high costs of infrastructure, particularly in developing countries, requiring international collaboration (Volis & Blecher, 2010; Rossi *et al.*, 2014).

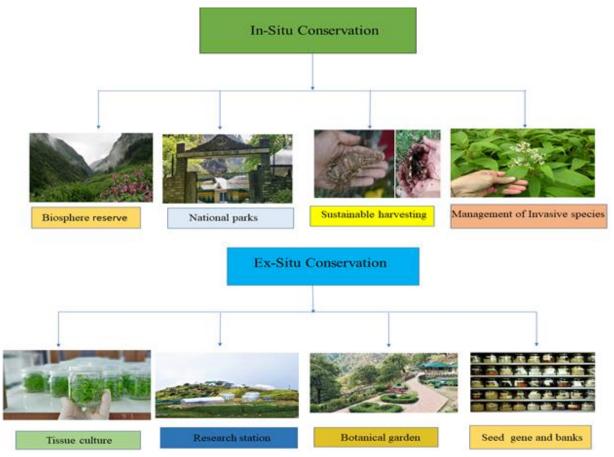


Figure 1: This diagram illustrates the two main strategies for conserving plant biodiversity

*In-situ Conservation and Ex-situ Conservation.

• **Betty Ford Alpine Gardens, USA:** Established in 1985 in Colorado, the gardens conserve alpine plants using both *In-situ* and *Ex-situ* strategies, including seed banking and habitat monitoring. In 2020, it partnered with the Denver Botanic Gardens to launch the North American Botanic Garden Strategy for Alpine Plant Conservation, promoting continent-wide protection and sustainable tourism through education and waste reduction (Ripley, 2018).

- *Meconopsis aculeata*, Kashmir, India: A 2025 study on this critically endangered alpine species (3,700–4,100 m) identified fire, grazing, and overharvesting as major threats. Conservation recommendations included community involvement, sustainable harvesting, and habitat restoration to support long-term survival (Manzoor *et al.*, 2025).
- **Himalayan Seed Bank Project, Nepal:** Launched in 2010, this *Ex-situ* initiative preserves seeds of vulnerable high-altitude species, addressing threats from deforestation, climate change, and land-use shifts to enhance alpine plant survival under changing environmental conditions (Rossi *et al.*, 2014).

4. Research Gaps in Alpine Plant Conservation:

Current conservation efforts face multiple gaps across the Pan-Himalayan region. Only about 27% of potential habitats are protected, leaving significant areas, particularly in the eastern Himalayas, under-conserved (Ali *et al.*, 2024; Basnet *et al.*, 2019). Long-term monitoring and ecological data remain insufficient, limiting understanding of species-specific responses to environmental changes. Conservation strategies often overlook the biological needs of individual species, such as those with recalcitrant seeds that cannot be preserved *Ex-situ* (Volis, 2019).

The impacts of climate change are not fully understood due to the limited application of refined, species-specific models, while human activities like overgrazing, tourism, and infrastructure development lack detailed, long-term impact studies (Sharma *et al.*, 2023; Byers *et al.*, 2024). Certain species, such as *Neopicrorhiza scrophulariiflora* and *Aconitum naviculare*, and regions like the eastern Himalayas, remain understudied, with gaps in population and distribution data (Basnet *et al.*, 2019; Shrestha *et al.*, 2009).

Ex-situ conservation methods face challenges in maintaining adaptive genetic diversity and achieving successful reintroduction, requiring further research to improve outcomes (Volis & Blecher, 2010). Additionally, systematic integration of traditional ecological knowledge with modern scientific approaches is limited (Abdullah & Khan, 2023). Funding and infrastructure constraints restrict advanced research, while transboundary collaboration remains inadequate despite initiatives like the Kangchenjunga Landscape (Rossi et al., 2014; Kotru et al., 2020).

5. Future Perspectives and Recommendations:

Conservation of alpine plants can be strengthened through adaptive management, technological innovations, and species-specific strategies. Gene editing and cryopreservation improve *Ex-situ* conservation by preserving genetic diversity and aiding reintroduction, while artificial intelligence and remote sensing support real-time ecosystem monitoring to address environmental changes effectively (Schwartz *et al.*, 2017). Conservation strategies should align with species' biological needs, such as seed banking for orthodox-seeded species and *In-situ* protection for recalcitrant-seeded species (Volis, 2019).

Ecological modeling, includingcohe Species Distribution Models (SDMs) and Dynamic Global Vegetation Models (DGVMs), is crucial for predicting climate impacts, identifying vulnerable habitats, and prioritizing conservation interventions (Thuiller *et al.*, 2005; Sitch *et al.*, 2008). These models also inform mitigation measures, such as designing wildlife corridors and optimizing protected areas under future climate scenarios, while ensemble modeling improves predictive accuracy (Hannah *et al.*, 2007; Araujo *et al.*, 2011).

Strengthening funding and research, including citizen science initiatives, enhances data quality and informs evidence-based conservation, as demonstrated by coral reef management in the Great Barrier Reef (Sullivan *et al.*, 2014; Hughes *et al.*, 2017). Eco-friendly tourism and community engagement help preserve cultural heritage while providing alternative livelihoods, with standards like GSTC guiding sustainable practices (Buckley, 2012; Font & Harris, 2004). Promoting sustainable agriculture through integrated pest management, crop rotation, and cover crops reduces environmental pressures while maintaining productivity (Pretty *et al.*, 2018).

Conclusion:

Alpine plants are vital to high-altitude ecosystems, contributing to soil stabilization, water regulation, and biodiversity. They face increasing threats from climate change, habitat loss, and human activities, making comprehensive conservation essential. Effective strategies combine *In-situ* approaches, preserving species within natural habitats, and *Ex-situ* methods, safeguarding genetic resources through seed banking, tissue culture, and botanical gardens. Successes in community-based conservation and seed bank networks highlight the value of targeted interventions. Future efforts should emphasize species-specific management, advanced technologies like ecological modeling and cryopreservation, and collaboration among researchers, communities, and policymakers. Conserving alpine flora is crucial not only for ecosystem health but also as a model for addressing biodiversity loss and climate adaptation.

Acknowledgement:

The authors express their gratitude to the Director for the invaluable support and guidance provided during the study.

References:

- 1. Abdullah, A., & Khan, S. M. (2023). Traditional ecological knowledge sustains due to poverty and lack of choices rather than thinking about the environment. *Journal of Ethnobiology and Ethnomedicine*, 19(1), 65.
- 2. Ali, M., Huang, Z., Bai, Y., Tng, D. Y., Qin, F., & Fang, Z. (2024). A multifaceted approach to expanding conservation efforts in the Pan-Himalayan landscape. *Journal of Cleaner Production*, 476, 143783.

- 3. Anthelme, F., Cavieres, L. A., & Dangles, O. (2014). Facilitation among plants in alpine environments in the face of climate change. *Frontiers in Plant Science*, *5*, 387.
- 4. Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D., & Thuiller, W. (2011). Climate change threatens European conservation areas. *Ecology Letters*, *14*(5), 484–492.
- 5. Basnet, D., Kandel, P., Chettri, N., Yang, Y., Lodhi, M. S., Htun, N. Z., ... & Sharma, E. (2019). Biodiversity research trends and gaps from the confluence of three global biodiversity hotspots in the Far-Eastern Himalaya. *International Journal of Ecology*, 2019(1), 1323419.
- 6. Bisht, M., Chandra Sekar, K., Mukherjee, S., Thapliyal, N., Bahukhandi, A., Singh, D., ... & Dey, D. (2022). Influence of anthropogenic pressure on the plant species richness and diversity along the elevation gradients of Indian Himalayan high-altitude protected areas. *Frontiers in Ecology and Evolution*, 10, 751989.
- 7. Buckley, R. (2012). Sustainable tourism: Research and reality. *Annals of Tourism Research*, 39(2), 528–546.
- 8. Butola, J. S., & Samant, S. S. (2010). Saussurea species in Indian Himalayan Region: Diversity, distribution and indigenous uses. *International Journal of Plant Biology, 1*(1), e9.
- Byers, A. C., Shrestha, M., Zackary, A., Byers, E. A., Coburn, B., Watanabe, T., & Chand, M. B. (2024). The changing ecology of a high Himalayan valley: Challenges to the sustainable development of the Kanchenjunga Conservation Area, Eastern Nepal. Sustainability, 16(6), 2434.
- 10. Chettri, N. (2014). Reconciling mountain biodiversity conservation in a changing climate: A Hindu Kush-Himalayan perspective. *Conservation Science*, *2*(1), 17–27.
- 11. Dolezal, J., Dvorsky, M., & Kopecky, M. (2016). Vegetation dynamics at the upper elevational limits of vascular plants in Himalaya. *Scientific Reports*, 6, 24881.
- 12. Dolezal, J., Kurnotova, M., Stastna, P., & Klimesova, J. (2020). Alpine plant growth and reproduction dynamics in a warmer world. *New Phytologist*, 228(4), 1295–1305.
- 13. Font, X., & Harris, C. (2004). Rethinking standards from green to sustainable. *Annals of Tourism Research*, 31(4), 986–1007.
- 14. Goraya, G. S., & Ved, D. K. (2017). *Medicinal plants in India: An assessment of their demand and supply.* National Medicinal Plants Board, Ministry of AYUSH, Government of India, New Delhi and Indian Council of Forestry Research & Education, Dehradun.
- 15. Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J. L., ... & Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. *Nature Climate Change*, 2(2), 111–115.

- Hamid, M., Khuroo, A. A., Malik, A. H., Ahmad, R., Singh, C. P., Dolezal, J., & Haq, S. M. (2020). Early evidence of shifts in alpine summit vegetation: A case study from Kashmir Himalaya. Frontiers in Plant Science, 11, 421.
- 17. Heywood, V. H. (2014). In situ conservation of plant species An unattainable goal? *Israel Journal of Plant Sciences*, 62(4), 211–223.
- 18. Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B., ... & Scheffer, M. (2017). Coral reefs in the Anthropocene. *Nature*, *546*(7656), 82–90.
- 19. Iriondo, J. M., Maxted, N., & Dulloo, M. E. (2008). Conserving plant genetic diversity in protected areas: Population management of crop wild relatives (pp. vii+–202).
- 20. Kardol, P., & Wardle, D. A. (2010). How understanding aboveground–belowground linkages can assist restoration ecology. *Trends in Ecology & Evolution*, 25(11), 670–679.
- 21. Khan, S. M., Page, S. E., Ahmad, H., & Harper, D. M. (2013). Sustainable utilization and conservation of plant biodiversity in montane ecosystems: The western Himalayas as a case study. *Annals of Botany*, 112(3), 479–501.
- 22. Korner, C., & Hiltbrunner, E. (2021). Why is the alpine flora comparatively robust against climatic warming? *Diversity*, 13(8), 383.
- 23. Kotru, R. K., Shakya, B., Joshi, S., Gurung, J., Ali, G., Amatya, S., & Pant, B. (2020). Biodiversity conservation and management in the Hindu Kush Himalayan Region: Are transboundary landscapes a promising solution? *Mountain Research and Development*, 40(2), A15.
- 24. Lamsal, P., Kumar, L., Atreya, K., & Pant, K. P. (2018). Forest ecosystem services in Nepal: A retrospective synthesis, research gaps and implications in the context of climate change. *International Forestry Review*, 20(4), 506–537.
- 25. Lozano, P., Cabrera, O., Peyre, G., Cleef, A., & Toulkeridis, T. (2020). Plant diversity and composition changes along an altitudinal gradient in the isolated volcano Sumaco in the Ecuadorian Amazon. *Diversity*, 12(6), 229.
- 26. Manzoor, M., Ahmad, M., Gillani, S. W., Shaheen, H., Waheed, M., Sultana, S., ... & Fahad, S. (2024). Assessment of long-term climate change impact on alpine vegetation of Western Himalaya. In *Environment, climate, plant and vegetation growth* (pp. 523–542). Springer Nature Switzerland.
- Manzoor, M., Ahmad, M., Gillani, S. W., Waheed, M., Shaheen, H., Mehmood, A. B., ...
 & Al-Andal, A. (2025). Population dynamics, threat assessment, and conservation strategies for critically endangered *Meconopsis aculeata* in alpine zone. *BMC Plant Biology*, 25(1), 358.

- 28. Maxted, N., Ehsan Dulloo, M., Ford-Lloyd, B. V., Frese, L., Iriondo, J. M., & Pinheiro de Carvalho, M. A. A. (Eds.). (2012). *Agrobiodiversity conservation: Securing the diversity of crop wild relatives and landraces*. CABI.
- 29. Michalet, R., Schöb, C., Lortie, C. J., Brooker, R. W., & Callaway, R. M. (2014). Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change. *Functional Ecology*, 28(1), 75–86.
- 30. Mir, A. H., Tyub, S., & Kamili, A. N. (2020). Ecology, distribution mapping and conservation implications of four critically endangered endemic plants of Kashmir Himalaya. *Saudi Journal of Biological Sciences*, *27*(9), 2380–2389.
- 31. Mishra, A. P., Kumar, A., & Yadav, S. N. (2023). Ecology and conservation of threatened medicinal plants in the Trans-Himalayan region of Nanda Devi Biosphere Reserve, Western Himalaya. *Trees, Forests and People, 14,* 100451.
- 32. Pandey, A., Chandra Sekar, K., Joshi, B., & Rawal, R. S. (2019). Threat assessment of high-value medicinal plants of cold desert areas in Johar valley, Kailash Sacred Landscape, India. *Plant Biosystems An International Journal Dealing with all Aspects of Plant Biology*, 153(1), 39–47.
- 33. Pandey, R. (2012). Base paper for the Committee to Study Development in Hill States arising from Management of Forest Lands.
- 34. Pathak, R., Negi, V. S., Rawal, R. S., & Bhatt, I. D. (2019). Alien plant invasion in the Indian Himalayan Region: State of knowledge and research priorities. *Biodiversity and Conservation*, 28(12), 3073–3102.
- 35. Paul, S., & Samant, S. S. (2024). Population ecology and habitat suitability modelling of an endangered and endemic medicinal plant *Meconopsis aculeata* Royle under projected climate change in the Himalaya. *Environmental and Experimental Botany*, 225, 105837.
- 36. Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., ... & Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. *Nature Sustainability*, 1(8), 441–446.
- 37. Ripley, N. (2018). SDG 15: Target 15.4: Alpine plant conservation at Betty Ford Alpine Gardens. *BGjournal*, 15(2), 23–27.
- 38. Rossi, G., Orsenigo, S., Dhital, D., Shrestha, S., Shrestha, B. B., Maharjan, S. R., ... & Mondoni, A. (2014). Ex situ plant conservation initiative in developing country: Nepal as a case study. *Plant Biosystems An International Journal Dealing with all Aspects of Plant Biology*, 148(3), 565–569.
- 39. Salick, J., Ghimire, S. K., Fang, Z., Dema, S., Konchar, K. M., & Collaborating authors (who have taken active part in data collection from 2005–2011): Denmark:. (2014).

- Himalayan alpine vegetation, climate change and mitigation. *Journal of Ethnobiology*, 34(3), 276–293.
- 40. Saqib, S., Ullah, F., Omollo, W. O., Liu, Y., Tao, H. Y., Zaman, W., ... & Xiong, Y. C. (2025). Identifying hotspots and climate drivers of alien plant species for conservation prioritization across the Pan-Himalaya. *Biological Conservation*, 302, 110994.
- 41. Scherrer, D., & Körner, C. (2011). Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. *Journal of Biogeography*, 38(2), 406–416.
- 42. Schwartz, K. R., Parsons, E. C. M., Rockwood, L., & Wood, T. C. (2017). Integrating insitu and ex-situ data management processes for biodiversity conservation. *Frontiers in Ecology and Evolution*, *5*, 120.
- 43. Sekar, K. C. (2012). Invasive alien plants of Indian Himalayan region—diversity and implication. *American Journal of Plant Sciences*, 3(2), 177–184.
- 44. Sharma, M., & Sharma, M. (2024). Assessment of current status and conservation strategies of some high valued medicinal plants from Himalayan regions. *Annali Di Botanica*, 14(1).
- 45. Sharma, R., Kaur, S., & Uniyal, S. K. (2022). Population and vulnerability assessment of high value medicinal plants in the Alpine regions of western Himalaya. *Journal of Applied Research on Medicinal and Aromatic Plants*, 26, 100353.
- 46. Shrestha, B. B., & Jha, P. K. (2009). Habitat range of two alpine medicinal plants in a trans-Himalayan dry valley, Central Nepal. *Journal of Mountain Science*, *6*, 66–77.
- 47. Shrestha, B. B., & Jha, P. K. (2009). Habitat range of two alpine medicinal plants in a trans-Himalayan dry valley, Central Nepal. *Journal of Mountain Science*, *6*, 66–77.
- 48. Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., ... & Woodward, F. I. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). *Global Change Biology*, 14(9), 2015–2039.
- 49. Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., ... & Kelling, S. (2014). The eBird enterprise: An integrated approach to development and application of citizen science. *Biological Conservation*, 169, 31–40.
- 50. Telwala, Y., Brook, B. W., Manish, K., & Pandit, M. K. (2013). Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. *PLoS ONE*, 8(2), e57103.

- 51. Tewari, V. P., Verma, R. K., & Von Gadow, K. (2017). Climate change effects in the Western Himalayan ecosystems of India: Evidence and strategies. *Forest Ecosystems*, 4(1), 1–9.
- 52. Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. *Proceedings of the National Academy of Sciences*, 102(23), 8245–8250.
- 53. UNEP. (2002). *Global strategy for plant conservation*. Montreal: The Secretariat of the Convention on Biological Diversity.
- 54. Verrall, B., & Pickering, C. M. (2020). Alpine vegetation in the context of climate change: A global review of past research and future directions. *Science of the Total Environment*, 748, 141344.
- 55. Volis, S. (2019). Complementarities of two existing intermediate conservation approaches. *Plant Diversity*, *39*(6), 379–382.
- 56. Volis, S., & Blecher, M. (2010). Quasi in situ: A bridge between ex situ and in situ conservation of plants. *Biodiversity and Conservation*, 19, 2441–2454.
- 57. Walters, C., Berjak, P., Pammenter, N., Kennedy, K., & Raven, P. (2013). Preservation of recalcitrant seeds. *Science*, *339*(6122), 915–916.

STUDY OF VARIETY OF CENTIPEDES (CHILOPODA: SCOLOPENDROMORPHA) IN SATARA REGION, DISTRICT SATARA, MAHARASHTRA, INDIA

N. A. Shaikh*1, K. A. Yadav1, P. S. Shinde1 and M. R. Abdar2

¹Yashwantrao Chavan College of Science, Karad, M.S., India ²Krantisinh Nana Patil College, Walwa, M.S., India

*Corresponding author E-mail: nilofar26shaikh@gmail.com

Abstract:

The name 'centipede' is derived from the words 'centi' meaning hundred and 'pes' meaning foot.' Centipedes are classified as destructive arthropods under the class Chilopoda of the subphylum Myriapoda. The present paper deals with the diversity of Centipedes fauna in satara region, by visiting different habitats of satara region. Samples were collected by using different collection methods such as hand collection method by using forceps and species were identified with the help of standard taxonomic literature. Total 04 species of Centipedes belongings to 03 genera namely *Scolopendra*, *Rhysida* and *Cormocephalus* under family Scolopendridae were identified from the study area.

Keywords: Centipedes, Diversity, Scolopendridae, Chilopoda, Species.

Introduction:

Centipedes are multi-segmented, nocturnal, poisonous, predatory and economically important soil arthropods belonging to Class Chilopoda of Phylum Arthropoda, under Subphylum Myriapoda which also includes millipedes and other multi-legged arthropods. The word "Centipede" derives from the Latin root which means "hundred legs". It is not necessary that centipede has exactly 100 legs; centipedes are different in presence of number of legs, ranging from 30 to 382 (Shelley, 1999) and they always have an odd number of pairs of legs (Arthur, 2002). About 8,000 species of centipedes are distributed globally, of which approximately 3,000 have been described (Adis and Harvey, 2000). Their bodies are described as extended and segmented, with a single pair of legs current on every segment. Venom is influenced by all centipedes and is inserted through specialized pincer-like structures known as forcipules or toxicognaths, which are actually modified legs slightly than fangs. Despite the name, accurately one hundred legs are never found in centipedes; in its place, the number of leg pairs remains odd, ranging from 15 to 191.

Centipedes are observed as generalist carnivores, with prey being hunted and subdued in various forms. Centipedes are soil insects occupying diverse habitats but commonly prefer wet

and moist places and are often found in bark of trees, under stones, in leaf litter, dead woods or other damp areas. Body of centipedes is elongated, worm-like, frequently flattened and multi-segmented having one pair of legs for each body segment. A broad geographical distribution is showed by them, as they inhabit terrestrial regions ranging from deserts to tropical rainforests. Moist microhabitats are essential since the absence of a waxy cuticle, unlike that of insects and arachnids, results in rapid water loss. For this reason, direct sunlight is avoided, and shelter is sought or nocturnal activity is adopted. They show variation in body colour and size. The colour vary from brown to grey to red to greenish-blue, the smallest centipede (*Nannarrup hoffmani*) grows up to 10 mm in length (Stewart, 2002), while the longest (*Scolopendra gigantea*) may reach over 12 inches (30cm) long, know to eat frogs, lizards, birds and small mammals (Molinari *et al.*, 2005).

They are primarily carnivorous (Lewis, 2007). They also benefit soil microorganisms, that work together to turn any debris into nutrient-enriched soil. Mostly all the centipedes are active predators in the soil ecosystem, and generally feeding on small invertebrates, sometimes even larger than them thus, plays a major role in terrestrial food chains, regulate herbivores and act as a decomposers, litter transformers, micro regulators and ecosystem engineers (Moreira *et al.*, 2012). Few species of centipedes are able to prey on some small aquatic invertebrates, hence considered to be amphibious (Sho, 2021). Centipedes also feed on many insects and helps to controls pests population in terrestrial ecosystem (Yadav, 1994).

Taxonomically Class Chilopoda divided in to five orders namely Scolopendromorpha, Lithobiomorpha, Scutigeromorpha, Geophilomorpha and Craterostigmomorpha (which is not found in India), of which Order Scolopendromoprha is comparatively well described from India than other orders. The centipedes belong to this order possess 21 to 23 pair of legs and the same number of body segments. Order Scolopendromoprha divided in to five families namely Scolopendridae,

Cryptopidae, Mimopidae, Scolocryptopidae and Plutoniumidae out of which only the families Scolopendridae and Cryptopidae are found in India. Globally 700 species of Scolopendrid Centipedes under 34 genera and 05 families have been reported (Bonato *et al.*, 2016), while India is represented by 90 valid species under 11 genera belonging to 02 families viz., Scolopendridae and Cryptopidae (Khanna, 2008; Balan *et al.*, 2012), and 42 species are found in Maharashtra (Yadav, 2012). Perusal of literature shows no consolidated account published on Centipede fauna is known from satara region. So, the main objective of current study is to exploring the diversity and distribution of Centipede fauna of this area and prepares the checklist of centipede species found in satara region of Maharashtra, India.

Connected Work

In Taxonomy and distribution of Centipedes is less studied globally as compare to other arthropods, except few monographic accounts given by Attems (1930). With respect to India, Jangi (1955, 1959) did a pioneered work on the centipedes of Nagpur. The checklist of Indian Centipedes is given by Khanna (2001) which include 102 species belonging to 11 genera under 02 families. Khanna (2008) further updated the total 92 species from India and also first reupdated the names of Indian species of Centipedes.

With reference to Maharashtra State, Yadav (1993) first reported 41 species centipedes from Western Ghats which includes 3 species of centipedes from districts of Maharashtra State. Yadav (2004, 2005 and 2006) further reported different species of centipedes under conservation area series. Yadav and Sureshan (2006 and 2008) further reported 8 and 5 species of centipedes occur in Sanjay Gandhi National Park and Fauna of Lonar Wildlife Sanctuary respectively. Recently Yadav (2012) reports the list of total 42 species of Scolopendrid Centipedes belongs to 07 genera under 02 Subfamilies and a single large Family Scolopendridae from Maharashtra State under State Fauna Series published by Zoological Survey of India.

Materials and Methods:

Study Area

Biodiversity of Satara tehsil is rich. So many new records and new species of plants and animals have been described from the Satara region. The Satara district is divided into the hilly range, tableland, plateau, and plain area. Satara is located at 17.68°N and 73.98°E in Satara district. Satara is a Tehsil place located in Satara district, Maharashtra State of India. Satara lies at the junction of the Western Ghats (Sahyadri ranges) and the Deccan plateau. The tehsil has hilly terrain, plateaus, and fertile valleys. The total geographical area of Satara tehsil is about 910-911 square kilometres. Soils are mainly black cotton soil and lateritic soil, suited for crops like sugarcane, wheat, rice, and groundnut. Western hilly regions have moist deciduous and evergreen forests. Dry deciduous vegetation is found in the eastern plateau areas. The average temperature here is approximately 27.8°C and the average yearly rainfall is about 762mm.

Collection of Samples

Before sampling field surveys were carried out in the different areas of Satara region. The collection method involves active sampling including hand collection using forceps. Samples were collected randomly from rotten wood, under stone, bark of trees, flower pots, leaf litter, damp and other ground areas. Pit fall traps were used for collecting ground dwelling centipedes. Photographs were taken to sample and then released them in their natural habitat. After meticulously carefully washing the adult species with tap water, we placed them in a petri dish and sorted out all materials, preserving them in 70-75% alcohol. The researchers observed

centipedes, focusing on specific body parts for detailed examination. We identified the centipedes based on their specific morphological and taxonomical characteristics; they carefully assessed the characteristics of each part to determine the final identity consulting available literature references, books, and identification keys.

Identification of Centipede Species

The identification of collected species made with the help of taxonomic keys provided by Jangi and Dass (1984), Lewis (2010) and illustrated key given by Sureshan *et al.*, (2006), Sureshan and Balan (2018).

Figure 1: Collection of Species from Study area

Results and Discussion:

During present study total 4 species of centipedes under sub-family Scolopendridae have been collected from the different habitats of study area. All the collected species of Centipedes e.g., *Rhysida trispinosa* (Jangi & Dass, 1984), *Scolopendra morsitans* (Linnaeus, 1758), *Scolopendra indiae* (Chamberlin, 1914), *Cormocephalus pilosus* (Jangi, 1955) of which 5 species are identified under genus *Scolopendra* (Table 1).

Table 1: List of Centipedes species collected from the study area

Phylum	Class	Order	Family	Species
Arthropoda	Chilopoda	Scolopendro-	Scolopend-	Cormocephalus pilosus (Jangi, 1955)
		morpha	ridae	Rhysida trispinosa (Jangi & Dass, 1984)
				Scolopendra morsitans (Linnaeus, 1758)
				Scolopendra indiae (Chamberlin, 1914)

1. Cormocephalus pilosus (Jangi, 1955):

The species Cormocephalus pilosus (Jangi, 1955) belongs to the kingdom Animalia, phylum Arthropoda, subphylum Myriapoda, class Chilopoda, order Scolopendromorpha, family Scolopendridae, and genus Cormocephalus. First described by Jangi in 1955, it holds significance within the scolopendrid fauna of the Indian subcontinent. The body of *C. pilosus* is elongated, segmented, and dorsoventrally flattened, with each segment carrying a single pair of legs. Its head is distinctly formed, bearing strong forcipules modified from the first leg pair, which serves as venomous appendages for capturing prey. Sensory functions are aided by well-developed antennae and ocelli that respond to light stimuli. The species is further characterized by broad tergites and elongated terminal legs, which may contribute to both defence and locomotion. These morphological traits emphasize its role as an efficient predator and an active component of soil ecosystems.

2. Rhysida trispinosa (Jangi & Dass, 1984):

The centipede Rhysida trispinosa (Jangi & Dass, 1984) is classified under the kingdom Animalia, Arthropoda, subphylum Myriapoda, phylum class Chilopoda, order Scolopendromorpha, family Scolopendridae, and genus Rhysida. Described by Jangi and Dass in 1984, it represents an important member of India's scolopendrid fauna. The body of R. trispinosa is extended, segmented, and dorsoventrally flattened, with each segment supporting a single pair of legs. Its head capsule is well-defined and bears long, sensitive antennae, while the first leg pair is adapted into forcipules that inoculate venom to calm prey. A distinguishing feature of this species is the presence of three protuberant spines, a distinctive that stimulated its name. The tergites are comparatively narrow, and the terminal legs are long, helping defensive as well as locomotory functions. Such structural features reflect its adaptation as a soil-dwelling predator and highlight its ecological importance within terrestrial habitats. Its body colour typically varies from bluish to greenish, with paler-colour legs that enhance its distinctive appearance. The head is broad and carries long, multi-segmented antennae, serving as primary sensory organs. The first pair of legs is modified into strong forcipules armed with venom, specialized for seizing and subduing prey. The hind legs are elongated and spiny, primarily used for defense and environmental sensing rather than locomotion. Collectively, these morphological traits highlight the species' adaptations for fast mobility, predation, and survival in diverse habitats.

3. Scolopendra morsitans (Linnaeus, 1758):

It is also known as red-headed centipede or Tanzanian blue ring-leg. It desires deep places and usually found under the bark, leaves and other ground areas. It grows up to 10-15 cm in length though some individuals may grow larger. The body is elongated and somewhat flattened, consisting of 21 segments, with each segment (except the last) carrying a single pair of

long, jointed legs that aid in swift movement. This species of centipede measured to be destructive predator which feeds on arthropods and other small invertebrates. It is a very common multicultural species and usually found in all the tropical and temperate zones of the world, and also throughout the India. This species favours warm places and commonly found below the bark, leaves and other ground areas (Cupul-Magana, 2020). Its coloration is quite variable, ranging from brown to reddish or yellow shades, often with legs of a contrasting colour, which provides camouflage in natural surroundings. The head is broad and bears a pair of long, segmented antennae that function as the main sensory structures. The first pair of legs is modified into strong, venom-bearing forcipules that are specialized for capturing prey and defense. The dorsal plates (tergites) are smooth and slightly convex, giving the centipede a streamlined shape. The terminal legs are long and spiny, used more for defense and sensing than for walking. Overall, the structural features of this species make it well adapted for predation, rapid locomotion, and survival in a variety of habitats.

4. Scolopendra indiae (Chamberlin, 1914):

The species Scolopendra indiae (Chamberlin, 1914) belongs to the kingdom Animalia, phylum Arthropoda, subphylum Myriapoda, class Chilopoda, order Scolopendromorpha, family Scolopendridae, and genus Scolopendra. It was described by Chamberlin in 1914 and represents an important scolopendrid species reported from India. Its head region is prominent and bears long, multi-segmented antennae functioning as sensory organs, while the first pair of legs is transformed into venom-bearing forcipules that aid in prey capture and immobilization. The tergites are relatively broad, providing structural support, and the terminal legs are elongated, serving roles in defense and anchorage. These morphological adaptations highlight its efficiency as a predator and emphasize its ecological significance as an active soil-dwelling arthropod in tropical and subtropical environments. Scolopendra indiae is a centipede of moderate size and dorsoventrally flattened body made up of around 21-23 distinct segments. The species usually shows a yellowish-brown to reddish body coloration, often with darker bands or patches that help it blend into its surroundings. Similar to other members of its genus, this centipede has a hardened chitinous exoskeleton, movable joints, and spiracles distributed along its body, all of which care its active predatory lifestyle in habitats such as soil, litter, and beneath stones.

Forcipules

Forcipules are measured a single feature of centipedes. They are shaped through modifications of the first pair of legs (maxillipeds) into pincer-like appendages located just behind the head. Though they do not function as true mouthparts, prey is subdued by them through gripping and the injection of venom. Venom glands are connected by tubes that extend from within the head to the tips of the forcipules.

Sensory Organs

In many centipede species, eyes are absent, while in others a single eye or a varying number of ocelli may be present, sometimes grouped to form compound-like eyes. Only the distinction between light and darkness can be noticed by these eyes, as true vision is not provided. In certain species, the first pair of legs is used as sensory structures, functioning in a manner similar to antennae, though they are directed backward unlike the forward-pointing antennae of most invertebrates. An unusual sensory adaptation in some centipedes is the organ of Tomosvary, located at the base of the antennae. This organ is composed of a disc-shaped structure with a central pore surrounded by sensitive cells. Vibrations are believed to be detected through these organs, possibly granting a limited sense of hearing.

Conclusion:

The Western Ghats, known by UNESCO as a World Heritage Place, make Maharashtra one of the greatest biodiversity areas in the world. An extensive variety of flora and fauna thrives in the state. Up till now, groups like centipedes frequently obtain minute deliberation because of threatening identification keys and limited reference material. In this study, we report to the centipede fauna of Maharashtra. This record increases information of the region's centipede diversity. Constant study will help discover extra centipede species from the India. Through present study total 04 species of centipedes are recorded from the study area. Past current works on Indian fauna exposes that systematic studies on diversity and distribution of centipedes have so far been limited to certain areas and it is relatively less studied group than other arthropods. Centipedes play significant role in soil ecology as they turn any debris into nutrient-enriched soil and conserve the strong ecosystem. But due to deforestation, soil destruction, use biological nourishment, pesticides etc. are the causes of reduction of centipede fauna in bionetwork.

The result of present study indicates the necessity of further research on diversity and distribution of Centipede fauna, because study area is rich in biodiversity, so it will be the chance to get more species of centipedes from this region. On the other hand, it should be necessary to control soil pollution and controls the other factors which are responsible for decreasing the population of centipedes in an ecosystem for conserving these economically important arthropods.

References:

- 1. Adis, J., & Harvey, M. S. (2000). Short communication: How many Arachnida and Myriapoda are there world-wide and in Amazonia? *Studies on Neotropical Fauna and Environment*, 35(2), 139–141.
- 2. Arthur, W. (2002). The interaction between developmental bias and natural selection: From centipede segments to a general hypothesis. *Heredity*, 89(4), 239–246.

- 3. Attems, C. G. (1930). Scolopendromorpha. Dass Tierr, 54(2), 1–30 B.
- 4. Balan, D., Sureshan, P. M., & Khanna, V. (2012). A new species of centipede of the genus Cryptops Leach (Scolopendromorpha: Cryptopidae) from southern Western Ghats with a key to the species of *Cryptops* in India. *Journal of Threatened Taxa*, 4(4), 2510–2514.
- 5. Bonato, L., Chagas Jr, A., Edgecombe, G. D., Lewis, J. G. E., Minelli, A., Pereira, L. A., Shelley, R. M., Stoev, P., & Zapparoli, M. (2016). ChiloBase 2.0 A world catalogue of centipedes (Chilopoda). Available online at http://chilobase.biologia.unipd.it [Accessed: 09/04/2016].
- 6. Cupul-Magaña, F. G. (2020). Cuidados parentales en el ciempiés *Scolopendra morsitans 1*. *Southwestern Entomologist*, 45(1), 309–312.
- 7. Jangi, B. S. (1955). On the chilopod fauna (Scolopendromorpha) of Nagpur, India. *Annals and Magazine of Natural History*, 8(85), 69–80.
- 8. Jangi, B. S. (1959). A further note on taxonomy of the centipede *Scolopendra morsitans* Linn. *Entomological News*, 70, 253–257.
- 9. Jangi, B. S., & Dass, C. M. S. (1984). Scolopendridae of the Deccan. *Journal of Scientific* and *Industrial Research*, 43(1), 27–54.
- 10. Khanna, V. (2001). A check-list of the Indian species of the centipedes (Chilopoda: Scolopendromorpha). *Annals of Forestry*, 9(2), 199–219.
- 11. Khanna, V. (2008). National register of the valid species of Scolopendrid centipedes (Chiropody: Scolopendromorpha) in India. *Biosystematica*, 1(2), 33–45.
- 12. Lewis, J. G. E. (2007). The biology of centipedes. Cambridge University Press.
- 13. Lewis, J. G. (2010). A revision of the rugulosus group of *Otostigmus* subgenus *Otostigmus* Porat, 1876 (Chilopoda: Scolopendromorpha: Scolopendridae). *Zootaxa*, 2579(1), 1–29.
- 14. Molinari, J., Gutiérrez, E. E., Ascenção, A. A., Nassar, J. M., Arends, A., & Márquez, R. J. (2005). Predation by giant centipedes, *Scolopendra gigantea*, on three species of bats in a Venezuelan cave. *Caribbean Journal of Science*, 41(2), 340–346.
- 15. Moreira, F. M., Huising, E. J., & Bignell, D. E. (2012). *A handbook of tropical soil biology: Sampling and characterization of below-ground biodiversity*. Earthscan, London, UK, 218 pp.
- 16. Shelley, R. M. (1999). Centipedes and millipedes with emphasis on North American fauna. *The Kansas School Naturalist*, 45(3), 1–16. (Archived from the original on 2016-11-12. Retrieved 2013-10-14)
- 17. Sho, T. (2021, April 12). A new amphibious species of the genus *Scolopendra* Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) from the Ryukyu Archipelago and Taiwan. *Biotaxa*. Retrieved 2022-01-10.

- 18. Stewart, B. (2002). A new kind of New Yorker, one with 82 legs. NY Times A, 1.
- 19. Sureshan, P. M., Khanna, V., & Radhakrishnan, C. (2006). Additional distributional records of scolopendrid centipedes (Chilopoda: Scolopendromorpha) from Kerala. *Zoos' Print Journal*, 21(6), 2285–2291.
- Sureshan, P. M., & Balan, D. (2018). Myriapoda: Chilopoda: Scolopendromorpha. In Faunal Diversity of Indian Himalaya (pp. 769–773). Director, Zoological Survey of India, Kolkata.
- 21. Yadav, B. E. (1993). Scolopendridae (Chilopoda) of Western Ghat with some first records from the State of Maharashtra, India. *Records of the Zoological Survey of India*, 93(3–4), 321–328.
- 22. Yadav, B. E. (1994). Scolopendrid centipedes. Science and Culture, 60(6–12), 77–79.
- 23. Yadav, B. E. (2004). Scolopendridae (Chilopoda). In *Fauna of Pench National Park, Maharashtra, Conservation Area Series, 20*, 275–283. Director, Zoological Survey of India.
- 24. Yadav, B. E. (2005). Scolopendridae (Chilopoda). In *Fauna of Melghat Tiger Reserve, Maharashtra, Conservation Area Series, 24*, 231–296. Director, Zoological Survey of India.
- 25. Yadav, B. E. (2006). Scolopendrid (Chilopoda). In *Fauna of Tadoba Andhari National Park, Maharashtra, Conservation Area Series, 25*, 279–282. Director, Zoological Survey of India.
- 26. Yadav, B. E., & Sureshan, P. M. (2006). Chilopoda: Scolopendromorpha. In *Fauna of Sanjay Gandhi National Park, Maharashtra, Conservation Area Series*, 26, 125–129. Director, Zoological Survey of India.
- 27. Yadav, B. E., & Sureshan, P. M. (2008). Chilopoda: Scolopendromorpha. In *Fauna of Lonar Wildlife Sanctuary, Maharashtra, Conservation Area Series*, *37*, 155–158. Director, Zoological Survey of India.
- 28. Yadav, B. E. (2012). Chilopoda: Scolopendromorpha: Scolopendridae. In *Fauna of Maharashtra, State Fauna Series, 20 (Part-II)*, 659. Director, Zoological Survey of India, Kolkata.

ETHNOBOTANY: TRADITIONAL USES OF PLANTS IN HEALTHCARE

Baig MumtazDepartment of Botany,

Dr. Rafiq Zakaria College for Women, Chh. Sambhajinagar, M. S. 431 001 Corresponding author E-mail: mumtazfarhan.mirza@gmail.com

1. Introduction:

Ethnobotany is the scientific study of the relationships between people and plants, focusing on how different cultures use plants for food, medicine, rituals, shelter, and other aspects of daily life. In the context of healthcare, ethnobotany explores the traditional knowledge and practices related to the medicinal use of plants. Ethnobotany serves as a bridge between traditional knowledge and modern science. It not only documents and preserves the valuable plant knowledge of indigenous and local communities but also explores how this knowledge can be integrated into modern medicine, agriculture, and conservation efforts. Additionally, it promotes the understanding and respect of cultural diversity and biodiversity, emphasizing the need to protect both. Plants have always been an integral part of healthcare systems across the globe. According to the World Health Organization (WHO), nearly 80% of the world's population relies on traditional medicine, which is largely plant-based, for primary healthcare. The significance of ethnobotany lies in its ability to bridge the gap between traditional knowledge and modern science. This field plays a crucial role in identifying potential sources of new drugs, preserving indigenous knowledge, and promoting sustainable use of plant resources.

2. Historical Background

The use of plants for healing dates back thousands of years. Early humans relied on observation and experimentation to discover which plants were beneficial and which were harmful. Ancient texts such as the Charaka Samhita and Sushruta Samhita in India, the Ebers Papyrus in Egypt, and writings from Chinese medicine describe hundreds of medicinal plants and their applications.

Indian Tradition: Ayurveda, meaning "science of life," is one of the oldest healthcare systems. It documents over 1,200 plants with medicinal value, many of which are still used today.

- Chinese Medicine: Traditional Chinese Medicine (TCM) uses plant-based formulas for balancing energy (Qi) and treating disorders.
- Unani and Siddha Systems: These systems of medicine emphasize holistic health and make use of various herbal formulations.
- Tribal Knowledge: Indigenous communities worldwide possess unique knowledge of local flora, which has been transmitted orally for generations.

3. Concept of Traditional Healthcare

Traditional healthcare systems view health holistically, considering physical, mental, and spiritual well-being. Unlike synthetic drugs that often target a single symptom, traditional plant-based medicines usually involve complex mixtures of phytochemicals that work synergistically.

Advantages:

- These plants are Readily available and affordable
- Having Fewer side effects compared to synthetic drugs
- It Supports local culture and economy

Limitations:

- Showing lack of standardization
- Having the risk of misidentification or adulteration
- Having the limited clinical validation

4. Classification of Medicinal Plants

Based on Plant Parts Used:

- Roots: Withania somnifera (Ashwagandha), Rauvolfia serpentina (Sarpagandha)
- Leaves: Azadirachta indica (Neem), Ocimum sanctum (Tulsi)
- Bark: Cinchona officinalis (source of quinine)
- Flowers: Calendula officinalis (skin healing)
- Seeds: Nigella sativa (Kalonji)
- Fruits: *Phyllanthus emblica* (Amla)

Based on Therapeutic Action:

- Antimicrobial: Neem, Garlic
- Anti-inflammatory: Turmeric
- Antipyretic: Giloy (*Tinospora cordifolia*)
- Immunomodulatory: Tulsi
- Anticancer: Vinca (Catharanthus roseus) alkaloids

5. Methods of Ethnobotanical Study

Ethnobotanists adopt a very old and systematic approaches to document and validate traditional knowledge:

- a. Field Surveys: Visiting tribal and rural communities to collect firsthand information.
- b. Interviews and Questionnaires: Engaging with traditional healers and elderly members to gather details about plant use.
- c. Herbarium Preparation: Collection, identification, and preservation of plant specimens for reference.
- d. Phytochemical Screening: Laboratory analysis to identify active compounds.
- e. Ethical Considerations: Ensuring community consent, benefit-sharing, and protection of intellectual property rights.

6. Case Studies of Common Ethnomedicinal Plants

Plant Name	Scientific Name	Part Used	Traditional Use
Neem	Azadirachta indica	Leaves, bark,	Antiseptic, insect repellent, skin
		seeds	disorders
Tulsi	Ocimum sanctum	Leaves	Treats cold, cough, fever; boosts
			immunity
Ashwagandha	Withania somnifera	Roots	Stress relief, rejuvenation,
			aphrodisiac
Turmeric	Curcuma longa	Rhizome	Wound healing, anti-inflammatory,
			liver tonic
Amla	Phyllanthus emblica	Fruit	Improves digestion, rich source of
			Vitamin C
Giloy	Tinospora cordifolia	Stem	Immunity booster, antipyretic
Aloe vera	Aloe barbadensis	Leaf gel	Burns, skin care, digestive aid

7. Role in Modern Medicine

Ethnobotanical research has led to the discovery of numerous life-saving drugs:

- Quinine from Cinchona bark, used to treat malaria
- Aspirin derived from Salix alba (Willow bark)
- Vincristine & Vinblastine from *Catharanthus roseus*, used in cancer treatment
- Morphine from *Papaver somniferum* (Opium poppy), used as a painkiller Such discoveries highlight the importance of ethnobotany as a foundation for drug

discovery and pharmaceutical research. 8. Conservation and Sustainable Use

With increasing demand for medicinal plants, many species face the threat of extinction due to overharvesting, habitat destruction, and climate change.

Conservation Strategies:

- *In-situ* Conservation: For preserving plants in their natural habitat (biosphere reserves, sacred groves).
- *Ex-situ* Conservation: For Cultivation in botanical gardens, seed banks, and tissue culture techniques.
- Community Participation: For educating local people about sustainable harvesting.
- Government Policies: National Medicinal Plant Board (NMPB) initiatives, WHO guidelines for herbal medicine.

9. Challenges and Future Prospects

Challenges:

- Erosion of traditional knowledge due to modernization
- Lack of proper documentation

- Intellectual property rights (biopiracy concerns)
- Variable quality of herbal medicines

Future Prospects:

- Integration of ethnomedicine with primary healthcare
- Development of standardized herbal formulations
- Opportunities in nutraceuticals and functional foods
- Use of AI and data analytics for mapping ethnobotanical knowledge

Conclusion:

Ethnobotany plays a pivotal role in preserving the traditional knowledge of plant-based healthcare and offering sustainable solutions for modern medicine. It not only helps in drug discovery but also emphasizes the cultural and ecological significance of plants. By promoting research, documentation, and conservation, ethnobotany contributes to building a bridge between traditional wisdom and scientific innovation—ensuring that this invaluable heritage is passed on to future generations.

References:

- 1. Jain, S. K. (2010). Manual of ethnobotany. Scientific Publishers.
- 2. World Health Organization. (2013). *Traditional medicine strategy 2014–2023*. World Health Organization.
- 3. Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. *Environmental Health Perspectives*, 109(Suppl. 1), 69–75.
- 4. Heinrich, M., Jäger, A. K., Gibbons, S., & Williamson, E. M. (2018). *Ethnopharmacology: A reader*. Wiley-Blackwell.
- 5. Ram, J., Kumar, A., & Bhatt, J. (2004). Plant diversity in six forest types of Uttaranchal, Central Himalaya, India. *Current Science*, 86(7), 975–978.
- 6. Martin, G. J. (1995). *Ethnobotany: A people and plants conservation manual*. Chapman and Hall / Royal Botanic Gardens, Kew.
- 7. World Health Organization. (2019). Global report on traditional and complementary medicine 2019. World Health Organization.
- 8. Hunde, D., Asfaw, Z., & Kelbessa, E. (2006). Use of traditional medicinal plants by people of 'Boosat' sub-district, central Eastern Ethiopia. *Ethiopian Journal of Health Sciences*, 16(2), 141–155.
- 9. Hamilton, A. C. (2003). *Medicinal plants and conservation: Issues and approaches*. WWF International Plants Conservation Unit.
- 10. Abera, B. (2014). Medicinal plants used in traditional medicine by Oromo people, Ghimbi district, southwest Ethiopia. *Journal of Ethnobiology and Ethnomedicine*, 10(1), 40.

QUANTUM ENTANGLEMENT AND RADICAL PAIR MECHANISM IN AVIAN MIGRATION: A QUANTUM BIOLOGICAL PERSPECTIVE

Ranjana

Department of Zoology,

Patna Science College, Patna University, Patna, Bihar, India
Corresponding author E-mail: ranjana.prakash81@gmail.com

Abstract:

Avian migration is one of the most remarkable biological phenomena, with billions of birds navigating thousands of kilometers across diverse environments each year. While traditional sensory cues such as celestial navigation, olfaction, and topographical features contribute to orientation, growing evidence suggests that the geomagnetic field plays a central role in guiding migratory behavior. The radical pair mechanism, mediated by retinal cryptochromes, has emerged as the leading hypothesis for magnetoreception. This process relies on quantum spin dynamics within light-excited radical pairs, potentially stabilized by quantum entanglement, allowing birds to detect weak geomagnetic fields with remarkable sensitivity.

Recent advances in quantum biology demonstrate that radical pairs in cryptochromes may retain coherence long enough to influence neural processing, linking molecular-level interactions with large-scale migratory patterns. Experimental evidence, including behavioral disruptions under radiofrequency fields and genetic studies of cryptochromes, supports this view. Neurobiological studies have further identified specialized brain regions, such as Cluster N, involved in processing geomagnetic cues.

This chapter provides a comprehensive review of quantum entanglement and the radical pair mechanism in avian magnetoreception from a biological and ecological perspective. We explore the molecular underpinnings of cryptochrome function, the integration of magnetic cues into avian sensory systems, and the evolutionary significance of this adaptation. The discussion also highlights the ecological implications of anthropogenic electromagnetic interference and considers future research directions, including bio-inspired quantum technologies. Understanding how birds harness quantum phenomena for navigation not only resolves a long-standing biological mystery but also redefines the interface between physics and life sciences.

Keywords: Avian Migration, Magnetoreception, Quantum Entanglement, Radical Pair Mechanism, Cryptochrome, Sensory Ecology

1. Introduction:

Bird migration represents one of the most extraordinary large-scale biological phenomena in the natural world. Each year, billions of birds travel thousands of kilometers across continents and oceans, navigating with remarkable precision between breeding and wintering grounds. These journeys are often completed under challenging environmental conditions, where visual landmarks are absent and weather patterns can be unpredictable. To complete such migrations, birds rely on a suite of sensory cues, including celestial navigation, olfactory signals, topographical features, and, critically, the Earth's magnetic field (Wiltschko & Wiltschko, 2005; Mouritsen, 2018).

The role of the geomagnetic field in avian orientation was first proposed in the mid-20th century, when behavioral experiments showed that migratory birds altered their orientation in response to artificial changes in magnetic fields (Wiltschko & Wiltschko, 1972; Wiltschko & Wiltschko, 1995). Since then, magnetoreception has emerged as one of the most fascinating and least understood biological senses. Unlike vision or hearing, magnetoreception operates through mechanisms that appear to require quantum-level interactions between light, proteins, and the Earth's weak magnetic field (Ritz *et al.*, 2004; Hore & Mouritsen, 2016).

A leading hypothesis for magnetoreception in birds is the radical pair mechanism (RPM), mediated by light-sensitive proteins called cryptochromes in the retina. When exposed to blue light, cryptochromes form radical pairs—molecules with unpaired electrons whose spins can exist in quantum superpositions influenced by magnetic fields. These spin dynamics potentially allow birds to detect geomagnetic information, integrating it into neural processing for orientation (Liedvogel & Mouritsen, 2010; Dodson *et al.*, 2013).

Recent advances in quantum biology suggest that quantum entanglement may play a stabilizing role in this mechanism, enabling radical pairs to maintain coherence long enough for biologically relevant signal transduction. This intersection of quantum physics and biology challenges traditional assumptions about the thermal noise limitations of living systems, showing that organisms may exploit quantum effects for ecological purposes (Gauger *et al.*, 2011; Solov'yov *et al.*, 2007).

The significance of understanding avian magnetoreception extends beyond ornithology. It provides insights into evolutionary adaptations for long-distance migration, highlights vulnerabilities to anthropogenic electromagnetic pollution, and inspires the development of bioinspired quantum technologies (Mouritsen, 2018; Xu *et al.*, 2021). This chapter explores the radical pair mechanism and its connection to quantum entanglement in avian navigation, emphasizing a biological and ecological perspective.

Bird migration represents one of the most extraordinary

Figure 1: Coceptual overview of avian migration and magnetoreception

2. Avian Migration and Sensory Ecology

Bird migration is a global ecological phenomenon involving complex physiological, behavioral, and sensory adaptations. Across taxa, migratory birds depend on multiple environmental cues to navigate accurately over thousands of kilometers, often traversing inhospitable terrain and open oceans (Newton, 2008). These cues are multimodal, involving celestial, geomagnetic, olfactory, and visual signals that operate in concert to ensure reliable orientation (Wiltschko & Wiltschko, 2005). Understanding how these signals are prioritized and integrated provides critical insights into the evolutionary ecology of migration.

Celestial and Visual Cues

Celestial cues, including the position of the sun, moon, and stars, have long been recognized as important orientation tools for migratory birds. Classic experiments by Emlen (1967) demonstrated that indigo buntings (*Passerina cyanea*) orient themselves using stellar constellations. Similarly, sun compass orientation, mediated through circadian mechanisms, allows birds to correct for the sun's apparent movement across the sky (Schmidt-Koenig, 1990). These visual strategies, while highly effective under clear skies, are limited by cloud cover and the absence of visible celestial bodies.

Olfactory Navigation

Olfaction provides another layer of orientation, particularly in homing pigeons (*Columba livia*) and seabirds. Papi *et al.* (1972) proposed the olfactory map hypothesis, suggesting that birds use spatial gradients of atmospheric odors to construct navigational maps. This system is especially relevant for coastal and pelagic species, where topographical landmarks are sparse. However, olfactory reliance alone cannot account for the long-distance precision seen in many migratory species, highlighting the role of additional sensory mechanisms (Wallraff, 2004).

Geomagnetic Cues

The geomagnetic field represents a pervasive and stable navigational cue. Birds detect both the inclination and intensity of the Earth's magnetic field, allowing for orientation relative to magnetic north (Wiltschko & Wiltschko, 1972). Behavioral studies reveal that migratory birds exhibit seasonally appropriate directional choices in orientation cages, even in complete darkness, demonstrating the importance of magnetoreception (Wiltschko & Wiltschko, 1995). Notably, experimental disruptions using radiofrequency fields have shown that magnetoreception is sensitive to electromagnetic interference, suggesting an underlying quantum mechanism (Ritz et al., 2004).

Integration of Multimodal Signals

Evidence suggests that birds integrate these cues hierarchically, with the geomagnetic field serving as a fallback mechanism when visual or olfactory inputs are unreliable (Mouritsen, 2018). This integration likely occurs through neural circuits linking the retina, hippocampus, and specialized forebrain regions such as Cluster N, which is active during nocturnal migration

(Heyers *et al.*, 2007). The multimodal nature of avian navigation ensures redundancy, enabling birds to adapt to variable environmental conditions while maintaining migratory accuracy.

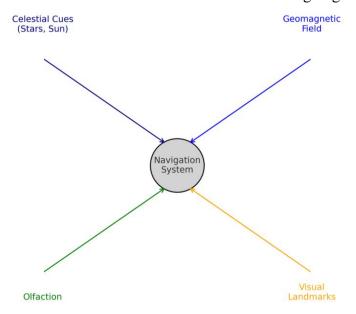


Figure 2: Sensory modalities in avian migration

3. The Radical Pair Mechanism in Detail

The radical pair mechanism (RPM) is currently the most widely supported model explaining how migratory birds perceive the Earth's magnetic field through quantum spin dynamics (Ritz *et al.*, 2000; Hore & Mouritsen, 2016). This model links light-dependent biochemical processes in the retina with geomagnetic sensitivity, providing a bridge between ornithology, photochemistry, and quantum physics.

3.1 Photochemistry of Radical Pair Formation

The process begins when a photon of blue light excites a cryptochrome molecule in the avian retina. This excitation triggers electron transfer between cofactors—often the flavin adenine dinucleotide (FAD) chromophore and adjacent tryptophan residues—resulting in the formation of two unpaired electrons located on separate molecular fragments (Maeda *et al.*, 2008).

These electrons form a radical pair, which can exist in either a singlet state (spins paired oppositely) or a triplet state (spins aligned parallel). The relative proportions of singlet and triplet states determine subsequent chemical reaction pathways (Steiner & Ulrich, 1989).

3.2 Quantum Spin Dynamics and Magnetic Sensitivity

The unique feature of the RPM is that the interconversion between singlet and triplet states is influenced by weak external magnetic fields such as the Earth's geomagnetic field (\sim 50 μ T). The Hamiltonian governing radical pair spin dynamics can be simplified as:

Where:

- $\mu B \setminus mu B \mu B = Bohr magneton$
- $B \vee ec\{B\}B = external magnetic field (Earth's field)$
- g1,g2g 1, g 2g1,g2 = electron g-factors
- $S1^{3}$, $S2^{3}$ \vec{S1}, $Vec{<math>S2$ }S1, S2 = spin operators of the electrons
- AAA = hyperfine coupling tensor
- $\Gamma \setminus \{I\}I = \text{nuclear spin}$

This Hamiltonian describes how the electron spins interact with both the external magnetic field and internal nuclear spins (Rodgers & Hore, 2009).

The consequence is that reaction yields depend on the orientation of the molecule relative to the geomagnetic field, providing directional information (Solov'yov & Schulten, 2009).

3.3 Entanglement and Coherence in Avian Magnetoreception

Experimental and theoretical studies suggest that entanglement between the two electron spins may persist long enough—hundreds of nanoseconds—to affect reaction outcomes, despite the noisy cellular environment (Cai *et al.*, 2010). This persistence of quantum coherence under biological conditions challenges conventional assumptions about decoherence in living systems. Moreover, entanglement is thought to enhance sensitivity, allowing birds to detect minute variations in geomagnetic inclination rather than intensity alone. This inclination compass aligns with behavioral experiments showing that robins and warblers orient according to the angle of geomagnetic field lines rather than field strength (Wiltschko & Wiltschko, 1972; Mouritsen, 2018).

3.4 Anatomical Basis in the Retina

Cryptochromes are localized in the outer segments of photoreceptor cells in the avian retina, especially in UV-sensitive cones (Nießner *et al.*, 2011). Their orientation in ordered arrays may enable differential radical pair responses depending on the bird's head orientation relative to the geomagnetic field. This aligns with the hypothesis that the avian magnetic compass is inclination-based and dependent on head scans (Wiltschko & Wiltschko, 2002).

The radical pair mechanism (RPM) is currently the most widely supported.

3.5 Evidence Supporting the Radical Pair Model

Several experimental findings support the RPM:

- **Behavioral Disruption by Oscillating Fields:** Birds lose orientation when exposed to radiofrequency oscillating magnetic fields, consistent with quantum-level spin resonance effects (Ritz *et al.*, 2004; Engels *et al.*, 2014).
- **Genetic Evidence:** Knockout experiments on cryptochrome 4 in migratory birds suggest a role in magnetoreception (Xu *et al.*, 2021).

• **Spectroscopic Studies:** Laboratory experiments demonstrate that cryptochromes undergo light-dependent radical pair reactions sensitive to magnetic fields (Maeda *et al.*, 2008).

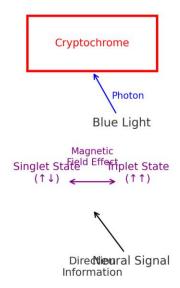


Figure 3: Radical pair mechanism in cryptochromes

4. Experimental Evidence for Quantum Effects in Birds

The radical pair mechanism (RPM) and its role in avian magnetoreception have moved from being a theoretical construct to a model increasingly supported by experimental data. Evidence has accumulated from behavioral experiments, genetic and molecular studies, and biophysical measurements. Together, these diverse approaches provide converging support for a quantum-based compass in migratory birds.

4.1 Behavioral Evidence: Magnetic Compass Orientation

The earliest evidence came from behavioral experiments demonstrating that birds use the geomagnetic field to orient during migration. Classic orientation cage tests showed that European robins (*Erithacus rubecula*) consistently preferred seasonally appropriate migratory directions when exposed to natural geomagnetic conditions, even in the absence of visual cues (Wiltschko, 1972).

Subsequent experiments confirmed that the avian magnetic compass is an inclination compass, detecting the angle at which magnetic field lines intersect the Earth's surface, rather than polarity (Wiltschko & Wiltschko, 1995). This aligns with theoretical predictions of the radical pair mechanism, which is sensitive to inclination but not field polarity (Ritz *et al.*, 2000).

A particularly striking line of evidence comes from studies using weak radiofrequency (RF) fields. When exposed to oscillating magnetic fields in the MHz range, migratory birds lost their ability to orient correctly (Ritz *et al.*, 2004). Such effects are difficult to explain by classical magnetoreception models but are predicted by spin resonance interactions within radical pairs (Henbest *et al.*, 2008).

4.2 Genetic and Molecular Evidence

Genomic studies have identified cryptochrome proteins as the most likely molecular candidates underlying the magnetic compass. In night-migratory birds such as European robins, cryptochrome 4 (Cry4) is highly expressed in the retina during the migratory season (Mouritsen *et al.*, 2004; Nießner *et al.*, 2011).

Recent functional assays revealed that avian Cry4 forms light-induced radical pairs that are magnetically sensitive (Xu *et al.*, 2021). Additionally, genetic knockouts in model species have shown that disrupting cryptochrome activity impairs orientation behavior, reinforcing their role as magnetoreceptor molecules (Zhao *et al.*, 2020).

Interestingly, cryptochromes in migratory species appear to differ structurally and functionally from those in non-migratory birds, suggesting evolutionary adaptations to optimize magnetosensitivity (Foley *et al.*, 2011).

4.3 Biophysical and Spectroscopic Evidence

Direct biophysical measurements provide some of the most compelling evidence for the RPM. Using advanced spectroscopic methods, Maeda *et al.* (2008) demonstrated that cryptochrome proteins undergo spin-correlated radical pair reactions sensitive to magnetic fields of Earth's strength.

Further, Engels *et al.* (2014) showed that weak broadband RF fields disrupted the magnetic compass of European robins in a natural setting, strongly supporting the quantum sensitivity of radical pairs under biologically realistic conditions.

Theoretical modeling has confirmed that radical pair lifetimes must be sufficiently long (hundreds of nanoseconds) to allow magnetic sensitivity. Quantum entanglement may enhance this sensitivity, although the exact contribution of coherence remains under debate (Cai *et al.*, 2010; Hore & Mouritsen, 2016).

4.4 Integration Across Scales

Taken together, behavioral, genetic, and biophysical data suggest that:

- 1. Birds possess a light-dependent, inclination-based magnetic compass.
- 2. Cryptochrome proteins in the retina are the likely molecular transducers.
- 3. Quantum spin dynamics underlie the sensitivity of this compass, and coherence plays a key role in sustaining signal fidelity.

This cross-disciplinary convergence—from behavioral ecology to quantum chemistry—provides one of the strongest cases for quantum biology in a vertebrate system.

Figure 4: Experimental evidence for magnetoreception

5. Neural Processing of Magnetic Information

While cryptochromes in the avian retina are considered the primary molecular candidates for magnetoreception, the translation of molecular-level quantum events into neural signals that guide behavior remains a central challenge in avian sensory biology. Understanding these pathways requires integrating photoreceptor physiology, neuroanatomical mapping, and behavioral neuroscience.

5.1 Cryptochromes in the Retina

Cryptochromes are localized in the outer segments of photoreceptor cells, particularly in UV/violet-sensitive cones (Nießner *et al.*, 2011). This spatial arrangement suggests that magnetic information is processed alongside visual input. Because cryptochromes are activated by blue light, the avian magnetic compass is light-dependent, with birds becoming disoriented under red light but able to orient correctly under blue or green light (Wiltschko & Wiltschko, 1995).

This dependence suggests that the magnetic sense may appear to birds as a visual modulation, a type of "magnetically tuned vision" in which the geomagnetic field is perceived as a light-based overlay pattern across the retina (Ritz *et al.*, 2000).

5.2 Retinal Signaling Pathways

Once a radical pair reaction is influenced by the geomagnetic field, the altered chemical outcome is thought to modulate phototransduction cascades in retinal neurons. These signals travel via the optic nerve to higher brain regions specialized in processing spatial and directional information (Heyers *et al.*, 2007).

The precise identity of these retinal neurons remains uncertain, though evidence suggests that ganglion cells sensitive to UV-light may play a role. The patterned array of cryptochromes across the retina may also contribute to the "map-like" projection of geomagnetic information (Mouritsen & Hore, 2012).

5.3 Cluster N: The Magnetoreception Center

Neurobiological studies have identified a brain region known as Cluster N in the avian forebrain as a central hub for magnetoreception. Using immediate-early gene expression markers, Mouritsen *et al.* (2005) showed that Cluster N is highly active during nocturnal migration under geomagnetic orientation, but not when magnetic cues are absent.

Lesion studies and electrophysiological experiments further support Cluster N's involvement: disruption of this region impairs a bird's ability to orient magnetically, while leaving other visual and spatial functions intact (Zapka *et al.*, 2009).

Cluster N receives input from the thalamofugal visual pathway, linking retinal photoreceptors to cortical-like processing areas. This suggests that the magnetic sense is tightly integrated with vision, supporting the hypothesis of a magnetic "visual map" (Wiltschko & Wiltschko, 2019).

5.4 Hippocampus and Spatial Memory

Although Cluster N is critical for real-time magnetic compass function, the hippocampus also plays an important role in navigation by integrating magnetic cues with spatial memory. Birds with hippocampal lesions show impaired map-based navigation, though they retain compass orientation (Bingman & Able, 2002). This distinction highlights a division of labor: Cluster N provides compass information, while the hippocampus integrates multiple cues into spatial maps.

5.5 Multisensory Integration and Behavioral Output

Ultimately, magnetic cues are integrated with celestial, olfactory, and visual signals to produce the robust navigational behaviors observed in migration. This multisensory integration likely involves networks across the forebrain, midbrain, and hippocampal regions, ensuring redundancy and adaptability in orientation (Mouritsen, 2018).

By linking quantum spin dynamics in retinal cryptochromes to higher-order cognitive processes, birds demonstrate a seamless integration of molecular quantum events into ecological-scale behaviors. This represents one of the most compelling examples of quantum effects influencing animal behavior.

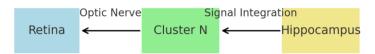


Figure 5: Neural pathways in magnetoreception

6. Evolutionary and Ecological Significance

The ability to perceive the Earth's geomagnetic field confers extraordinary adaptive advantages for migratory birds. By enabling orientation across vast, featureless landscapes, magnetoreception allows birds to optimize migration routes, reduce mortality, and ensure successful reproduction. Understanding the evolutionary origins and ecological significance of this sensory system sheds light on how quantum mechanisms can be shaped by natural selection.

6.1 Adaptive Value of Magnetoreception

Migration imposes high energetic costs and risks, including predation, adverse weather, and habitat loss (Alerstam, 2011). Birds capable of accurately navigating thousands of kilometers enjoy significant reproductive and survival benefits. Magnetoreception provides a reliable and

globally available cue, independent of weather or time of day, unlike visual or celestial cues that are often obscured (Wiltschko & Wiltschko, 2019).

By integrating geomagnetic information with other sensory inputs, migratory birds can:

- Maintain correct migratory direction under overcast conditions.
- Compensate for drift caused by wind and storms.
- Locate breeding and wintering grounds with remarkable precision.

Thus, magnetoreception represents an adaptive breakthrough, allowing birds to exploit ecological niches across continents.

6.2 Evolutionary Origins of Magnetoreception

The radical pair mechanism likely evolved from cryptochrome's ancestral role in circadian regulation. Cryptochromes are widespread across plants and animals as blue-light photoreceptors regulating circadian rhythms (Ahmad, 2016). In birds, structural modifications in cryptochrome 4 may have conferred enhanced sensitivity to magnetic fields (Xu *et al.*, 2021).

Comparative studies suggest that magnetoreception is not restricted to migratory birds but may also be present in non-migratory species, insects, fish, and even mammals (Mouritsen, 2018). This distribution implies that quantum-based magnetoreception is an ancient trait, potentially predating the radiation of modern avian lineages. Evolution may have refined this ability in long-distance migrants, optimizing cryptochrome function for geomagnetic navigation.

6.3 Ecological Role in Migration Systems

Migratory birds are critical components of ecosystems, contributing to seed dispersal, nutrient cycling, and predator-prey dynamics (Bauer & Hoye, 2014). Their ability to complete migration depends directly on functional magnetoreception. Disruption of this sensory system could therefore have cascading effects on ecosystem functioning, altering species interactions and biodiversity patterns.

6.4 Anthropogenic Threats

Human activity poses emerging threats to the functionality of avian magnetoreception. Electromagnetic pollution from urban infrastructure, such as power lines, communication towers, and Wi-Fi networks, has been shown to interfere with magnetic orientation in birds (Engels *et al.*, 2014). Even weak anthropogenic electromagnetic noise can disorient migratory songbirds, underscoring the fragility of quantum coherence under environmental stress (Schwarze *et al.*, 2016).

Light pollution is another major threat, as cryptochrome activation is wavelength-dependent. Artificial night lighting may desynchronize circadian systems and reduce the reliability of magnetic orientation (Wiltschko & Wiltschko, 2002).

These findings highlight the vulnerability of a sensory system dependent on delicate quantum processes. Conservation efforts must therefore consider electromagnetic and light pollution as significant stressors on migratory bird populations.

6.5 Evolutionary Lessons for Quantum Biology

The persistence of magnetoreception in diverse taxa suggests that quantum biology is not a rare accident but an evolutionary opportunity. Birds have harnessed quantum effects in cryptochromes to solve a major ecological challenge—navigation over planetary scales. This realization reframes how scientists view evolution: not only as a process shaping macroscopic traits, but also as one capable of selecting for molecular systems exploiting quantum entanglement and coherence.

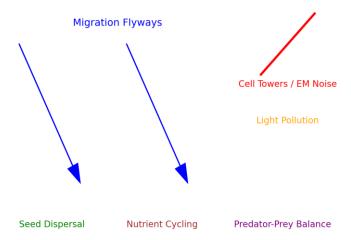


Figure 6: Evolutionary and ecological significance

7. Future Directions

Research into avian magnetoreception has provided compelling evidence that migratory birds exploit quantum processes to navigate across vast distances. Yet, many aspects remain unresolved. Future studies must address the molecular, neurobiological, and ecological dimensions of magnetoreception to fully understand how quantum effects are harnessed by living organisms.

7.1 Molecular and Biophysical Research

One of the foremost challenges is to directly demonstrate quantum entanglement in cryptochrome radical pairs under biological conditions. Current spectroscopic techniques, such as transient absorption spectroscopy and electron paramagnetic resonance (EPR), provide indirect evidence of spin dynamics (Maeda *et al.*, 2008). Future developments in ultrafast spectroscopy and genetically encoded spin probes could allow researchers to capture radical pair dynamics in vivo.

Additionally, structural biology tools such as cryo-electron microscopy (cryo-EM) may reveal how cryptochrome orientation within photoreceptors enhances magnetic sensitivity. Mutagenesis studies can test which amino acid substitutions optimize radical pair lifetimes (Xu *et al.*, 2021).

7.2 Genetic and Neurobiological Insights

Advances in genome editing (CRISPR-Cas9) create opportunities to manipulate cryptochrome genes in model avian systems, enabling causal tests of their role in magnetoreception. Knockout or knock-in experiments targeting cryptochrome 4 (Cry4) could determine its unique contributions compared to other cryptochrome isoforms.

On the neurobiological side, functional imaging of Cluster N and the hippocampus during controlled magnetic stimulation could clarify how magnetic information is integrated with other sensory modalities. Techniques such as optogenetics and connectomics will allow detailed mapping of neural circuits linking retinal cryptochromes to navigational decision-making (Mouritsen, 2018).

7.3 Conservation-Oriented Research

Given the sensitivity of magnetoreception to electromagnetic and light pollution, conservation efforts must address anthropogenic disruptions. Field studies combining GPS tracking of migratory birds with electromagnetic mapping of landscapes could assess how urbanization impacts navigation (Engels *et al.*, 2014).

Furthermore, climate change may alter geomagnetic cues through atmospheric and ionospheric fluctuations, creating an urgent need to evaluate how these changes affect migratory behavior. Conservation strategies should integrate habitat protection with the mitigation of sensory pollutants.

7.4 Interdisciplinary Collaborations

The future of magnetoreception research lies in interdisciplinary approaches uniting quantum physics, sensory biology, neuroscience, and ecology. Quantum simulations using spin chemistry models can guide biological experiments, while behavioral ecologists provide ecological context for laboratory findings. Such collaborations will ensure a holistic understanding of magnetoreception.

7.5 Technological Applications

Understanding quantum magnetoreception has profound implications beyond biology. Insights into how birds sustain coherence at physiological temperatures could inform the design of bio-inspired quantum sensors with potential applications in navigation, geophysics, and space exploration (Hore & Mouritsen, 2016).

These technologies may replicate the efficiency of avian magnetoreception while operating under real-world conditions where conventional quantum devices struggle. In this sense, migratory birds are not only biological marvels but also sources of inspiration for next-generation quantum engineering.

Research into avian magnetoreception has provided compelling evidence that migratory birds exploit quantum processes ...

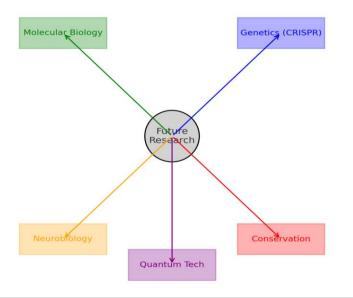


Figure 7: Future directions in magnetoreception research

Conclusion:

Avian migration stands as one of the most extraordinary biological feats in the natural world, requiring precision navigation across vast and often inhospitable landscapes. Among the suite of sensory mechanisms that support this behavior, magnetoreception emerges as both the most enigmatic and the most revolutionary. Unlike visual, olfactory, or auditory senses, magnetoreception appears to rely on quantum processes operating at the molecular level within the avian retina.

The radical pair mechanism, mediated by cryptochrome proteins, provides the most compelling model for how birds detect the Earth's weak geomagnetic field. Photon-induced electron transfers in cryptochromes generate radical pairs whose spin dynamics are sensitive to external magnetic fields. These processes are thought to be stabilized by quantum entanglement and coherence, enabling reaction outcomes that provide directional information. Behavioral evidence from orientation experiments, genetic data linking cryptochrome 4 to magnetoreception, and spectroscopic demonstrations of radical pair reactions together provide a strong empirical foundation for this model (Ritz et al., 2004; Xu et al., 2021).

At the neurobiological level, retinal signals influenced by radical pair dynamics are integrated in higher-order brain centers such as Cluster N and the hippocampus, linking molecular quantum events to large-scale spatial navigation. This seamless translation from quantum-scale interactions to ecological-scale behaviors underscores the sophistication of evolutionary adaptations in migratory birds (Mouritsen *et al.*, 2005; Zapka *et al.*, 2009).

From an evolutionary perspective, magnetoreception represents an adaptive breakthrough, enabling birds to reduce navigational uncertainty during long-distance migration. Its ecological significance extends to ecosystem functioning, as migratory birds contribute to seed dispersal, nutrient cycling, and biodiversity maintenance. Yet this delicate sensory system is

increasingly threatened by anthropogenic pressures, including electromagnetic pollution and artificial light, both of which can disrupt cryptochrome-dependent magnetoreception (Engels *et al.*, 2014).

Looking forward, advances in molecular biology, quantum physics, and neuroscience hold the potential to further unravel the mysteries of avian magnetoreception. These insights may also inform conservation strategies, ensuring that migratory species can continue to perform their vital ecological roles. Beyond biology, understanding how birds harness quantum effects inspires the design of bio-inspired quantum technologies capable of functioning under ambient conditions.

In conclusion, avian magnetoreception illustrates a profound principle: life has evolved to exploit the laws of quantum mechanics to solve ecological challenges. This realization not only deepens our understanding of migration but also redefines the boundaries of biology, physics, and technology. Birds, long admired for their migratory journeys, now emerge as living laboratories for the study of quantum phenomena in nature.

References:

- 1. Ahmad, M. (2016). Photoreception and cryptochrome blue-light proteins in plants and animals. *Current Opinion in Plant Biology*, *33*, 88–94. https://doi.org/10.1016/j.pbi.2016.06.001
- 2. Alerstam, T. (2011). Optimal bird migration revisited. *Journal of Ornithology, 152*(1), 5–23. https://doi.org/10.1007/s10336-011-0694-1
- 3. Bauer, S., & Hoye, B. J. (2014). Migratory animals couple biodiversity and ecosystem functioning worldwide. *Science*, *344*(6179), 1242552. https://doi.org/10.1126/science.1242552
- 4. Bingman, V. P., & Able, K. P. (2002). Maps in birds: representational mechanisms and neural bases. *Current Opinion in Neurobiology*, 12(6), 745–750. https://doi.org/10.1016/S0959-4388(02)00386-6
- 5. Cai, J., Guerreschi, G. G., & Briegel, H. J. (2010). Quantum control and entanglement in a chemical compass. *Physical Review Letters*, 104(22), 220502. https://doi.org/10.1103/PhysRevLett.104.220502
- 6. Dodson, C. A., Hore, P. J., & Wallace, M. I. (2013). A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception. *Trends in Biochemical Sciences*, 38(9), 435–446. https://doi.org/10.1016/j.tibs.2013.07.002
- 7. Emlen, S. T. (1975). Migration: orientation and navigation. In D. S. Farner & J. R. King (Eds.), *Avian Biology* (Vol. 5, pp. 129–219). Academic Press.
- 8. Engels, S., Schneider, N. L., Lefeldt, N., Hein, C. M., Zapka, M., Michalik, A., ... & Mouritsen, H. (2014). Anthropogenic electromagnetic noise disrupts magnetic compass

- orientation in a migratory bird. *Nature*, 509(7500), 353–356. https://doi.org/10.1038/nature13290
- 9. Foley, L. E., Gegear, R. J., & Reppert, S. M. (2011). Human cryptochrome exhibits light-dependent magnetosensitivity. *Nature Communications*, *2*, 356. https://doi.org/10.1038/ncomms1364
- 10. Gagliardo, A. (2013). Forty years of olfactory navigation in birds. *Journal of Experimental Biology*, 216(12), 2165–2171. https://doi.org/10.1242/jeb.070250
- 11. Gill, R. E., Piersma, T., Hufford, G., Servranckx, R., & Riegen, A. (2009). Crossing the ultimate ecological barrier: evidence for an 11,000-km-long nonstop flight from Alaska to New Zealand and eastern Australia by bar-tailed godwits. *The Condor*, 107(1), 1–20. https://doi.org/10.1093/condor/107.1.1
- 12. Henbest, K. B., Maeda, K., Hore, P. J., Joshi, M., Biskup, T., Rodgers, C. T., ... & Timmel, C. R. (2008). Magnetic-field effect on the photoactivation reaction of cryptochrome. *Journal of the American Chemical Society*, 130(30), 10842–10843. https://doi.org/10.1021/ja803689m
- 13. Heyers, D., Manns, M., Luksch, H., Güntürkün, O., & Mouritsen, H. (2007). A visual pathway links brain structures active during magnetic compass orientation in migratory birds. *PLoS ONE*, *2*(9), e937. https://doi.org/10.1371/journal.pone.0000937
- 14. Hore, P. J., & Mouritsen, H. (2016). The radical-pair mechanism of magnetoreception. Annual Review of Biophysics, 45, 299–344. https://doi.org/10.1146/annurev-biophys-032116-094545
- 15. Maeda, K., Robinson, A. J., Henbest, K. B., Hogben, H. J., Biskup, T., Ahmad, M., ... & Timmel, C. R. (2008). Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. *Proceedings of the National Academy of Sciences*, 105(24), 8534–8538. https://doi.org/10.1073/pnas.0711968105
- 16. Mouritsen, H. (2018). Long-distance navigation and magnetoreception in migratory animals. *Nature*, 558(7708), 50–59. https://doi.org/10.1038/s41586-018-0176-1
- 17. Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., Jarvis, E. D. (2005). Night-vision brain area in migratory songbirds. *Proceedings of the National Academy of Sciences*, 102(23), 8339–8344. https://doi.org/10.1073/pnas.0409575102
- 18. Mouritsen, H., & Hore, P. J. (2012). The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. *Current Opinion in Neurobiology*, 22(2), 343–352. https://doi.org/10.1016/j.conb.2012.01.005
- 19. Newton, I. (2008). The migration ecology of birds. Academic Press.
- 20. Nießner, C., Denzau, S., Stapput, K., Ahmad, M., Peichl, L., Wiltschko, W., ... & Wiltschko, R. (2011). Avian ultraviolet/violet cones identified as probable magnetoreceptors. *PLoS ONE*, 6(5), e20091. https://doi.org/10.1371/journal.pone.0020091

- 21. Ritz, T., Adem, S., & Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. *Biophysical Journal*, 78(2), 707–718. https://doi.org/10.1016/S0006-3495(00)76629-X
- 22. Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R., & Wiltschko, W. (2004). Resonance effects indicate a radical-pair mechanism for avian magnetic compass. *Nature*, 429(6988), 177–180. https://doi.org/10.1038/nature02534
- 23. Rodgers, C. T., & Hore, P. J. (2009). Chemical magnetoreception in birds: The radical pair mechanism. *Proceedings of the National Academy of Sciences*, 106(2), 353–360. https://doi.org/10.1073/pnas.0711968106
- 24. Schmidt-Koenig, K. (1990). The sun compass. *Experientia*, 46(9), 336–342. https://doi.org/10.1007/BF01955434
- Schwarze, S., Schneider, N. L., Reichl, T., Dreyer, D., Lefeldt, N., Engels, S., & Mouritsen, H. (2016). Weak broadband electromagnetic fields disrupt magnetic compass orientation of songbird migrants. *Journal of Experimental Biology*, 219(16), 2761–2767. https://doi.org/10.1242/jeb.138545
- 26. Wiltschko, R., & Wiltschko, W. (1972). Magnetic compass of European robins. *Science*, 176(4030), 62–64. https://doi.org/10.1126/science.176.4030.62
- 27. Wiltschko, R., & Wiltschko, W. (1995). Migratory orientation of European robins is affected by the wavelength of light. *Journal of Comparative Physiology A, 177*(3), 363–369. https://doi.org/10.1007/BF00192425
- 28. Wiltschko, R., & Wiltschko, W. (2019). Magnetoreception in birds. *Journal of the Royal Society Interface*, 16(20190295). https://doi.org/10.1098/rsif.2019.0295
- 29. Xu, J., Jarocha, L. E., Zollitsch, T., Konowalczyk, M., Henbest, K. B., Richert, S., ... & Mouritsen, H. (2021). Magnetic sensitivity of cryptochrome 4 from a migratory songbird. *Nature*, 594(7864), 535–540. https://doi.org/10.1038/s41586-021-03518-7
- 30. Zapka, M., Heyers, D., Hein, C. M., Engels, S., Schneider, N. L., Hans, J., ... & Mouritsen, H. (2009). Visual but not trigeminal mediation of magnetic compass information in a migratory bird. *Nature*, 461(7268), 1274–1277. https://doi.org/10.1038/nature08528

WEBS OF BALANCE: THE ROLE OF SPIDERS IN SUSTAINABLE AGRICULTURE AND ECOSYSTEM HEALTH

Shamal Sabaji Mhaske*1, Ajit Sopan Masurkar², Punam Dnyandeo Lonkar¹ and Sunil Narayan Pokale¹

¹Department of Zoology and Research Centre,
New Arts Commerce and Science College Ahmednagar -414 001., Maharashtra.

²Applied Biology Division, CSIR-Indian Institute of Chemical Technology,
Tarnaka, Hyderabad-500 007, Telangana, India.

*Corresponding author E-mail: shamalmhaske20@gmail.com

Abstract:

Background: Spiders are ubiquitous predators in agricultural ecosystems, playing crucial yet often underappreciated roles in natural pest regulation.

Objective: To investigate the role of spiders in natural pest control within agricultural ecosystems and explore their potential for sustainable pest management, including the development of spider venom-based bio-insecticides.

Content overview: As generalist hunters, spiders prey on a wide variety of arthropod pests that threaten crop productivity, contributing to sustainable pest management strategies. Although individual spider species rarely achieve complete pest control alone, their collective presence can significantly suppress pest populations, particularly in stable perennial systems such as orchards and vineyards. Their ability to remain active during off-seasons, including winter months, further enhances their pest suppression potential. Advances in biotechnology have also unlocked new possibilities by harnessing spider venom peptides to develop eco-friendly bio-insecticides that target specific crop pests with minimal environmental impact. In addition to their role in pest regulation, spiders serve as valuable bioindicators of ecosystem health. Their sensitivity to environmental changes and capacity to accumulate pollutants, including heavy metals and pesticides, enable them to provide crucial insights into the presence and effects of contaminants in agricultural landscapes. Despite their promising contributions, challenges remain due to spiders' broad prey range, slower population growth compared to pests, and occasional predation on beneficial arthropods. Nonetheless, supporting spider diversity through habitat management and integrating them into conservation biological control frameworks can strengthen agricultural resilience and reduce reliance on chemical pesticides. Continued research, especially in tropical and greenhouse agroecosystems, is essential to fully realize and optimize the benefits spiders offer to agriculture worldwide.

Conclusion: Spiders are natural predators in agriculture that help control crop pests and reduce pesticide use. Their venom offers potential for eco-friendly insecticides. Supporting spider populations can boost sustainable pest management, but more research is needed, especially in tropical and greenhouse systems.

Keywords: Arachnids, Spiders, Agriculture, Pest control, biopesticides, Spider venom, nutrient cycling.

Introduction:

Kingdom: Animalia: Phylum; Arthropoda; Class: Arachnida-Within arthropods, spiders belong to the class Arachnida, which also includes scorpions, ticks, and mites. Arachnids typically have eight legs and lack antennae. Order: Araneae- Spiders, classified under the order Araneae, are distinguished by having two main body segments—the cephalothorax and abdomen which remain connected by narrow pedicel—and eight legs attached to the cephalothorax. They possess specialized mouthparts called chelicerae with venomous fangs used to capture and immobilize prey. One of their defining features is the presence of spinnerets at the rear of the abdomen, which produce silk for building webs, protecting eggs, or aiding movement. Unlike insects, spiders lack antennae and wings, and they typically have six to eight simple eyes arranged in species-specific patterns. Their respiratory system includes book lungs or tracheae, allowing efficient gas exchange. As primarily carnivorous predators, spiders play an important role in controlling insect populations. Spiders play a crucial role in ecosystems as natural pest controllers by preying on a wide variety of insects and other small arthropods. By regulating insect populations, they help maintain ecological balance and reduce the spread of cropdamaging pests and disease-carrying insects. Additionally, spiders serve as a food source for many predators, including birds, reptiles, and small mammals, making them an integral part of the food web. Their silk production also contributes to the environment by providing habitats and resources for other organisms. Overall, spiders support biodiversity and help sustain healthy ecosystems.

Spiders are often met with fear or indifference, yet they are among the most widespread and ecologically significant predators in terrestrial environments. Despite their often-misunderstood reputation, spiders play indispensable roles that maintain the health and balance of ecosystems worldwide. These tiny arachnids contribute far beyond what meets the eye—they regulate pest populations that threaten crops, participate in nutrient cycling essential for soil fertility, and even serve as prey for numerous other species, thus supporting complex food webs. Moreover, spiders have inspired remarkable innovations in technology and medicine, from the development of bioinsecticides and novel materials based on their silk to potential therapeutic compounds derived from their venom. Beyond their ecological and practical importance, spiders hold deep cultural significance across many societies, influencing art, spirituality, and traditional

healing practices. As we face growing environmental challenges, understanding and valuing the full spectrum of services spiders provide offers promising opportunities to develop sustainable, nature-based solutions that benefit both ecosystems and human communities alike.

Silent Hunters: Arachnid Allies in Agriculture

Spiders are important generalist predators in agricultural ecosystems, preying on a wide range of arthropod pests. Although no single spider species or spider community alone has been definitively proven to completely control pest populations, numerous studies have demonstrated that spiders can significantly suppress pests under certain conditions, particularly in perennial cropping systems such as orchards, vineyards, and horticultural plantations (Michalko et al., 2019). These stable agroecosystems typically support diverse and abundant spider communities, which contribute to reducing populations of moths, psyllids, coccids, and planthoppers, among other pests. For example, increasing spider densities through habitat modifications, such as installing refuges like corrugated cardboard bands on fruit trees, has been shown to reduce pest numbers and improve crop yields in apples and pears (Michalko et al., 2017). Remarkably, some spider species remain active even during winter, preying on pests during critical off-seasons and influencing the trajectory of pest population growth in temperate zones. Nevertheless, spiders are an essential component of conservation biological control, where maintaining habitat conditions that support their natural populations helps preserve a balanced natural enemy community. In annual cropping systems, spiders also contribute to pest suppression, especially against aphids, although their effects may be transient and insufficient to fully prevent pest outbreaks. Greenhouse agroecosystems remain understudied regarding spider biocontrol potential, but offer promising opportunities for future research, particularly in identifying vegetation types that support beneficial spider assemblages. While spiders exhibit high functional responses to pest populations, their numerical response is often limited, and their slow development compared to pests can reduce their effectiveness as standalone biocontrol agents. Additionally, their lack of pest specificity and tendency to prey on beneficial arthropods further complicate their role in targeted pest control. Despite progress, significant knowledge gaps remain about spiders' role in pest control—especially in tropical and forest ecosystems—calling for more targeted research worldwide.

Spider Venom as a Bio Insecticide:

In modern agriculture, the demand for sustainable and environmentally friendly pest management solutions is more urgent than ever, due to the rising concerns over chemical pesticide resistance, environmental contamination, and harm to beneficial organisms. Spiders, as natural predators of many crop pests, offer promising avenues for developing bio-insecticides that align with these goals. Their venoms contain neurotoxic peptides specifically evolved to target the nervous systems of insects, the primary prey of spiders (Nyffeler & Birkhofer,2017).

These venom peptides exhibit high potency, stability in the insect gut and hemolymph, and selectivity, making them ideal candidates for eco-friendly pest control strategies. Through advances in biotechnology, transgenes encoding spider venom peptides can be introduced into crops to confer resistance against common pests or used to enhance entomopathogenic microorganisms that naturally infect insects (King & Hardy, 2013). A notable success in this area is the commercial development of a biopesticide based on a peptide from the Blue Mountains funnel-web spider (Hadronyche versuta), which effectively controls greenhouse pests such as thrips, spider mites, whiteflies, and aphids while being safe for mammals and pollinators like honeybees (Cardoso et al., 2025). Beyond this, ongoing research seeks to identify and synthesize additional spider toxins with characteristics tailored for agricultural use, including high oral toxicity to target pests, cost-effective production, and environmental stability. However, one of the biggest challenges remains ensuring the selectivity of these bio-insecticides to avoid unintended effects on non-target arthropods and beneficial insects critical to ecosystem health and crop productivity. By focusing on spider venom peptides with high taxon specificity, researchers can develop next-generation bio-insecticides that provide targeted pest suppression, reduce chemical pesticide use, and promote sustainable agricultural practices. This innovative approach underscores the valuable role of spiders not only as natural pest controllers but also as a source of biotechnological inspiration to improve food security while safeguarding environmental integrity.

Spider Driven Nutrient Flow:

Spiders contribute significantly to nutrient cycling both directly and indirectly in various ecosystems. Directly, through excretion, defecation, and disposal of prey remains, spiders enrich soil nutrients, as seen with species like the Neotropical jumping spider *Psecas chapoda*, which provides essential nitrogen to its host bromeliads, enhancing their growth (Romero *et al.*, 2006). Similarly, early colonizing spiders on glacier forelands supply vital nutrients to developing ecosystems. Experimental studies have demonstrated that spider waste products boost plant growth and biomass. Indirectly, spiders influence nutrient cycling by triggering trophic cascades in detritus- and plant-based food chains, affecting litter decomposition rates and carbon and nitrogen cycling. The impact varies with environmental conditions and spider hunting strategies, with actively hunting and sit-and-wait spiders differentially influencing plant productivity, species diversity, and soil nutrient mineralization. Overall, spiders play complex and essential roles in ecosystem nutrient dynamics through their interactions with prey and the broader food web.

Spider-Bioindicators of Agriculture and Ecosystem Health

Spiders serve as valuable bioindicators of environmental health due to their sensitivity to changes in habitat quality and pollutant levels. Because spiders are widespread, easy to collect,

(ISBN: 978-81-993182-0-5)

and occupy diverse habitats, they offer an accessible and cost-efficient method for assessing the impacts of human activities on ecosystems. Using spiders as bioindicators helps provide insights into the extent of environmental contamination and supports conservation and management efforts. Spider webs exhibit a distinctive capacity to capture and accumulate diverse airborne pollutants, including particulate matter, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and dioxins, rendering them effective bioindicators of atmospheric contamination (van Laaten et al., 2020; Takano et al., 2024). Their adhesive properties, coupled with prolonged environmental exposure, enable the passive entrapment of pollutants over extended durations. Moreover, spider webs are readily available, cost-effective, and simple to collect and identify. Typically constructed in sheltered microhabitats, webs are less susceptible to physical degradation by weather conditions. Importantly, their pollutant accumulation is independent of seasonal vegetation cycles, facilitating consistent long-term monitoring of air quality. Consequently, spider webs provide a valuable complement or alternative to conventional air pollution assessment methods. Spiders are also well established as effective bioindicators of chemical contaminants in aquatic ecosystems, reflecting the presence and bioavailability of pollutants in these environments (Chumchal et al., 2022).

Sense of Place:

The presence of endemic spider species across diverse regions worldwide underscores the rich biodiversity inherent to local ecosystems. These species offer a unique opportunity to foster a strong sense of responsibility and connection to natural heritage within local communities. Such connections can be cultivated through collaborative efforts and active engagement with residents who share their habitats with these spiders, promoting conservation awareness and stewardship.

Future Perspectives:

Spiders hold significant potential for advancing sustainable agriculture and ecosystem monitoring. Future research should focus on better understanding their roles in pest control and pollutant bioindication under changing environmental conditions. Integrating spiders into nature-based management strategies, alongside community engagement, can enhance both conservation and agricultural productivity. Additionally, exploring their biomimetic and medicinal applications may offer innovative solutions. Protecting spider diversity amid global environmental changes will be essential to fully harness their ecosystem services and support long-term ecological resilience.

Conclusion:

Spiders serve as vital tools in both ecological and agricultural contexts due to their diverse ecosystem services. They naturally regulate pest populations, reducing the need for chemical pesticides and supporting sustainable agriculture. Spiders also contribute to nutrient

cycling, biodiversity maintenance, and habitat creation, enhancing overall ecosystem resilience. Additionally, their webs and bodies act as effective bioindicators of airborne and aquatic pollutants, making them valuable for environmental monitoring. Beyond their ecological roles, spiders foster cultural connections and inspire innovative biomimetic and medicinal applications. Harnessing the multifunctional benefits of spiders offers promising nature-based solutions to address agricultural sustainability and ecosystem health, underscoring the need for further research and conservation efforts.

References:

- 1. Cardoso, P., Pekár, S., Birkhofer, K., Chuang, A., Fukushima, C. S., Hebets, E. A., ... & Mammola, S. (2025). Ecosystem services provided by spiders. *Biological Reviews*.
- 2. Chumchal, M. M., Beaubien, G. B., Drenner, R. W., Hannappel, M. P., Mills, M. A., Olson, C. I., ... & Walters, D. M. (2022). Use of riparian spiders as sentinels of persistent and bioavailable chemical contaminants in aquatic ecosystems: A review. *Environmental Toxicology and Chemistry*, 41(3), 499-514.
- 3. King, G. F., & Hardy, M. C. (2013). Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. *Annual review of entomology*, *58*(1), 475-496.
- 4. Michalko, R., Pekár, S., Dul'a, M., & Entling, M. H. (2019). Global patterns in the biocontrol efficacy of spiders: A meta-analysis. *Global Ecology and Biogeography*, 28(9), 1366-1378.
- 5. Michalko, R., Petráková, L., Sentenská, L., & Pekár, S. (2017). The effect of increased habitat complexity and density-dependent non-consumptive interference on pest suppression by winter-active spiders. *Agriculture, Ecosystems & Environment*, 242, 26-33.
- 6. Nyffeler, M., & Birkhofer, K. (2017). An estimated 400–800 million tons of prey are annually killed by the global spider community. *The Science of nature*, 104(3), 30.
- 7. Romero, G. Q., Mazzafera, P., Vasconcellos-Neto, J., & Trivelin, P. C. (2006). Bromeliad-living spiders improve host plant nutrition and growth. *Ecology*, 87(4), 803-808.
- 8. Takano, A. P. C., Rybak, J., & Veras, M. M. (2024). Bioindicators and human biomarkers as alternative approaches for cost-effective assessment of air pollution exposure. *Frontiers in Environmental Engineering*, *3*, 1346863.
- 9. van Laaten, N., Merten, D., von Tümpling, W., Schäfer, T., & Pirrung, M. (2020). Comparison of spider web and moss bag biomonitoring to detect sources of airborne trace elements. *Water, Air, & Soil Pollution*, 231(10), 512.

IMPACT OF LONG TERM CONVENTIONAL AND ORGANIC NUTRIENT MANAGEMENT PRACTICES IN PULSE BASED CROPPING SYSTEMS

Vinay Kumar M¹, Jyothi Prakash H P*2 and Sanjayakumar³

¹Department of Agricultural Engineering,
Akshaya Institute of Technology, Tumakuru – 572106 (Karnataka), India

²Department of Plant and Soil Sciences,
Mississippi State University, Starkville, Mississippi, USA – 39759

³Department of Agronomy,
University of Agricultural Sciences, Raichur – 584104 (Karnataka), India

*Corresponding author E-mail: <u>jyothiprakash.hp@gmail.com</u>

Abstract:

Long-term nutrient management plays a critical role in sustaining soil health and crop productivity, particularly in pulse-based cropping systems that contribute significantly to soil fertility through biological nitrogen fixation. This study investigates the comparative impact of conventional and organic nutrient management practices on soil properties, crop yield, and system sustainability over an extended period. Field experiments conducted under a pulse-based cropping system revealed that organic nutrient management significantly improved soil organic carbon, microbial activity, and nutrient availability, leading to enhanced soil fertility and sustainability. Conversely, conventional practices resulted in higher short-term yields but contributed to nutrient imbalances and a gradual decline in soil health parameters. The integration of organic amendments such as farmyard manure, compost, and biofertilizers showed promise in improving soil resilience and long-term productivity. The findings underscore the importance of adopting organic or integrated nutrient management strategies to ensure the ecological and agronomic sustainability of pulse-based cropping systems.

1. Introduction:

India is the world's largest producer of pulses providing 23.02 million tonnes from an acreage of 27.98 million ha, with a productivity of 823 kg ha⁻¹ during 2020 (Anon., 2020). The country accounts for 35 % global area and 27 % of global production. Pulses are commonly grown under *rainfed* condition all over India (87 % *rainfed*) during rainy season (*kharif*): pigeonpea (*Cajanus cajan* L.), cowpea (*Vigna unguiculata* L.), mungbean (*Vigna radiata* L.), urdbean (*Vigna mungo* L.) and winter season (*rabi*): chickpea (*Cicer arietinum* L.), lentil (*Lens culinaris*), field pea (*Pisum sativum* L.) and rajmash (*Phaseolus vulgaris* L.). In India, over a dozen of pulse crops are grown, of which few have prominent role in occupying major areas. As these are generally grown in *rainfed* areas under pitiable management condition and face various

kinds of biotic and abiotic stresses, both the productivity and overall production of the pulses in India continue to be low. Besides this, nutrient-deficient soils, unfavourable weather and perceived climate change, quality seeds availability, socio-economic limitations, improper and inadequate post-harvest handling and storage and insufficient market support are the major constraints in realizing potential of production/ productivity gains in these pulses. Pulses are imported to a tune of 2.52 m t.

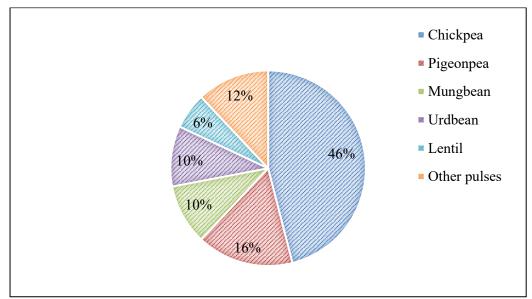


Figure 1: Area occupied by different pulses in India (Praharaj et al., 2016)

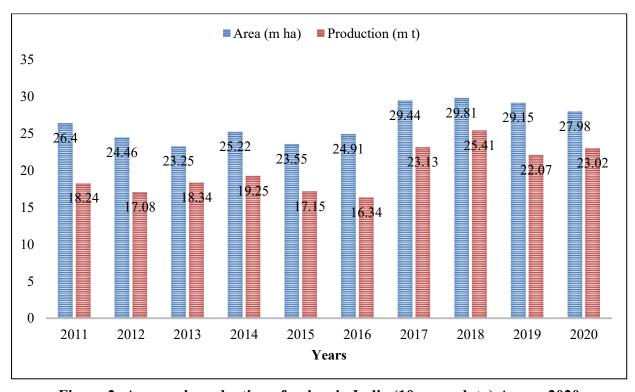


Figure 2: Area and production of pulses in India (10 years data) Anon., 2020

(ISBN: 978-81-993182-0-5)

Pulses are the important vegetable protein sources in Indian food scenario. As per ICMR recommendation, every person requires 52 g pulses daily for meeting his protein requirement. The split grains of the seeds of pulses are called dal and are excellent source of high-quality protein, essential amino and fatty acids, fibres, minerals and vitamins. These crops have an inherent role in improving soil fertility through biological N fixation (BNF) by its root nodules, thereby enhancing soil N status, long-term soil fertility and sustainability of the cropping systems. Despite the fact that these are mostly grown as *rainfed* crop all over India (87 %), a majority of N need of these pulses is met from BNF from air and the rest is left behind in the form of residual N and soil organic matter (SOM) for the use of subsequent crops in rotation (Solanki *et al.*, 2012).

2. Importance of Pulses

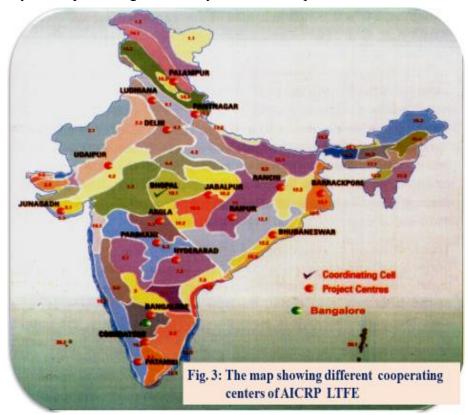
- Main source of protein
- -80 g day⁻¹ person⁻¹ WHO
 - -30-35 g day⁻¹ person⁻¹ Actual consumption
- Used as fodder, food crops, green manure, cover crop, catch crop, restorative crops etc.,
- Host for Rhizobium

3. Causes For Low Productivity of Pulses

- a) Ecological factors: grown as *rainfed* (only 8 % irrigated) and under residual soil moisture, sensitivity to excess soil moisture, salinity, alkalinity and acidity
- b) Agronomic factors
- c) Basic research factors
- d) Biological constraints leaf shedding before maturity, flower drop
- e) Socio-economic constraints: grown by resource poor, marginal farmers
- f) Constraints in post-harvest technology

What is Long term experiment?

• Long Term Experiments are those, which are conducted on the same set of experimental units over a sequence of years with pre-planned sequence of treatments or crops or both and are mainly carried out to study the long term effects of given treatments and crops on soil fertility and on economic returns.


(OR)

- A **long-term experiment** is an experimental procedure that runs through a long period of time, in order to test a hypothesis or observe a phenomenon that takes place at an extremely slow rate.
- These may be with seasonal crops, annual crop sequences, perennial crops or a combination of the three.

- These experiments include fertilizer experiments with cereal crops, irrigation experiments, tillage experiments, fertility status of soil, experiments on biomass production of cereals, experiments on crop rotation, effects of green manure etc.
- These experiments provide the effect of continuous application of treatments over the soil productivity and fertility.

Why Long-Term Experiments?

- Changes in ecosystems **do not always occur quickly**, some may take decades to take place. LTEs therefore provide us with the vital opportunity to study real-world systems on time scales appropriate to ecosystems.
- Long-term experiments (LTEs) are robust research instruments for ecosystem **productivity** and **sustainability** because these capture the behavior and relationship between crop production systems and the changing environment at different time points over long periods.
- Long term nutrient management experiments are useful to study the long term effects of continuous use of organics, inorganics, INM etc.
- To study the impacts of use of different fertilizers on soil physical properties, chemical properties, biological properties, microbial population, soil health, soil fertility and productivity.
- To study the sustainability of the system.
- To study the impacts on growth and yield of the crop.

4. Pulse Based Cropping Systems

- 1. Monocropping
- 2. Sequence cropping: Ex: Rice-Chickpea/ Lentil/ Fieldpea
 - ➤ Pigeonpea Wheat
 - ➤ Rice Urdbean/Mungbean/ Lathyrus
- 3. Mixed/ Intercropping: Ex: Chickpea+Mustard (6:2)
 - ➤ Autumn Sugarcane + Lentil (1 : 2)
 - ➤ Pigeonpea + Sorghum (1 : 1)
- 4. Relay cropping Ex: Rice-Urdbean/Lentil/Lathyrus
- 5. Ratoon cropping: Ex: Pigeonpea

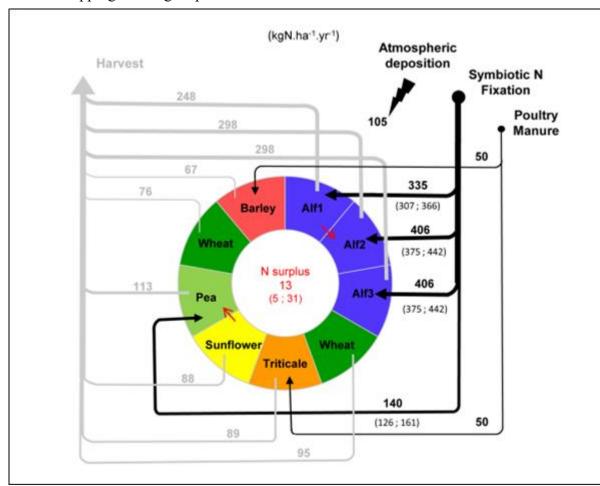


Figure 4: Soil surface balance in a typical organic crop rotation on deep loamy sand soil in the Ile-de-France region

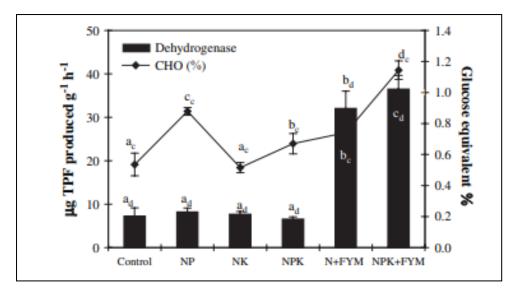


Figure 5: Dehydrogenase activity and carbohydrate content in soil with different treatments in soybean-wheat cropping system

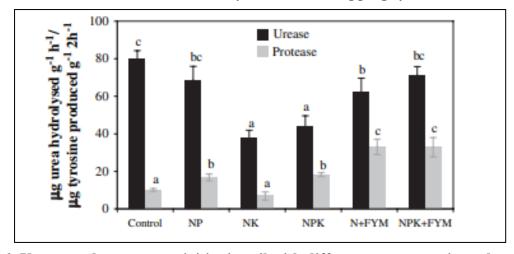


Figure 6: Urease and protease activities in soil with different treatments in soybean wheat cropping system Almora, Uttarakhand (Saha *et al.*, 2008)

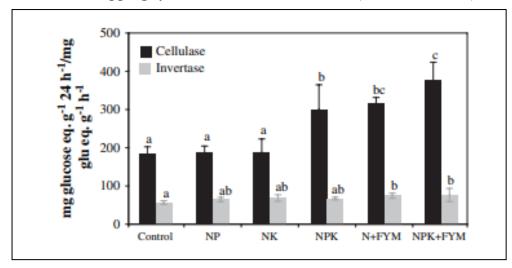


Figure 7: Cellulase and invertase activities in soil with different treatments in soybeanwheat cropping system

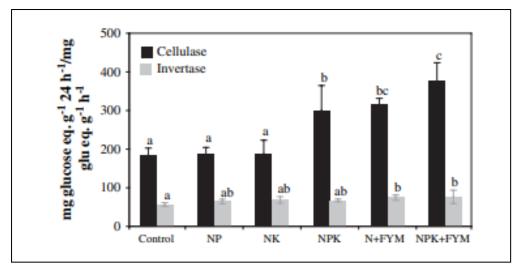


Figure 8: Acid and alkaline phosphatase activities in soil with different treatments in soybean-wheat cropping system Almora, Uttarakhand (Saha *et al.*, 2008)

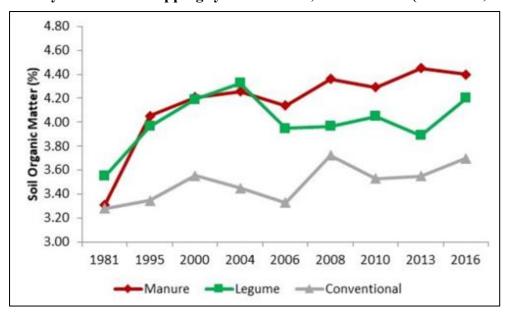


Figure 9: Percent soil organic matter over time in Rodale Institute's Farming System Trial North America (Anon., 2017)

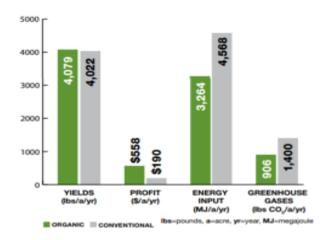


Figure 10: Comparision of farming system trial in organic and conventional system

Conclusion:

- Inclusion of pulses in cropping systems improve yield of other non-pulse crops in the system by synergistic effect.
- Pulses fix atmospheric nitrogen to soil and reduce external application of nitrogenous fertilizers and increases the N economy in the soil.
- Pulse crops improve soil health by lowering BD, increasing water holding capacity, increased enzymatic activities, faster decomposition of organic matter and sustains life of soil microflora and fauna.
- Addition of nutrients in both organic and inorganic form increases crop yield and also sustains soil health.

References:

- 1. Anglade, J., Billen, G., & Garnier, J. (2015). Relationships for estimating N₂ fixation in legumes: Incidence for N balance of legume-based cropping systems in Europe. *Ecosphere*, 6(3), 37. https://doi.org/10.1890/ES14-00353.1
- 2. Anonymous. (2017). *Rodale Institute's farming system trial report* (pp. 1–12). Rodale Institute.
- 3. Anonymous. (2020). *India agristat*. Retrieved from http://www.indiaagristat.com
- 4. Praharaj, C. S., Ummed, S., Singh, S. S., Singh, N. P., & Shivay, Y. S. (2016). Supplementary and life-saving irrigation for enhancing pulses production, productivity and water-use efficiency in India. *Indian Journal of Agronomy*, 61(4), 249–261.
- 5. Saha, S., Prakash, V., Kundu, S., Kumar, N., & Mina, B. L. (2008). Soil enzymatic activity as affected by long-term application of farmyard manure and mineral fertilizer under a rainfed soybean—wheat system in N-W Himalaya. *European Journal of Soil Biology*, 44(3), 309–315. https://doi.org/10.1016/j.ejsobi.2008.02.002
- 6. Solanki, R. M., Sagarka, B. K., Dabhi, B. M., Shaikh, M. A., & Gohil, B. S. (2012). Response of chickpea to drip irrigation and integrated nutrient management under Saurashtra region of Gujarat. *Agriculture: Towards a New Paradigm of Sustainability*, 6(3), 188–191.

(ISBN: 978-81-993182-0-5)

HEMP CULTIVATION IN UTTARAKHAND: FROM TRADITIONAL USES TO ECOLOGICAL PROSPECTS

Madhushree Barik

Department of Anthropology and Tribal Studies, Central University of Jharkhand, Ranchi, Jharkhand Corresponding author E-mail: madhushree.612@gmail.com

Abstract:

Hemp is one of the oldest crops grown by local people of Uttarakhand state in India. However, in recent years, hemp cultivation has become apparent as a considerable ecological phenomenon in Uttarakhand. This chapter discusses the ecological aspects of hemp cultivation by emphasizing the role of hemp in phytoremediation, carbon sequestration, weed suppression, multicropping and crop rotation patterns, and also maintaining biodiversity. The hemp crop significantly impacts the environment by absorbing carbon dioxide from the atmosphere during its different stages of growth. The chapter also explores the use of hemp in different industries, such as textile and construction industries, dealing with the production of ecologically sustainable hemp-based products in Uttarakhand. The affective ecology between hemp plants and humans, despite of the existing legal restrictions and societal stigma, contribute to a deeper sense of connection with the environment.

Keywords: Ecological, Hemp, Phytoremediation, Stigma, Sustainable

Introduction:

Hemp and its products have been used for food, clothing, medicine, and recreation in the states of Uttarakhand, where the climate and soil conditions are conducive to cultivation of hemp. The plant's stalks have been used to make hemp fabric for coats that keep people warm during the bitterly cold months. Also, because hemp is resilient and can withstand extreme weather conditions, it is used to make footwear by the locals (Tribhuvan, 2023). Different parts of the hemp plant are used in regional cuisines such as hempseed chutney is made from hemp seeds. Traditionally, it has been smoked in hookahs or chillums, which are regional smoking pipes, combined with tea and snacks during the social gatherings. Hemp is among the earliest crops ever grown, likely been in use for over 10,000 years in human history, starting in the Stone Age (Joshi, 2020). In global context, the use of hemp for fibre, fabrics, pottery and paper has been recorded long ago. According to Carbon-14 dating, the utilisation of cannabis fibres to produce hemp dates back to 4000 BCE in China (Li, 1974).

Ecological Aspects of Hemp:

The ecological aspects of the hemp plant cultivation in Uttarakhand includes a significant environmental impact of the hemp plant i.e. it absorbs carbon dioxide from the atmosphere during its growth stages (Pervaiz & Sain, 2003) making it a useful instrument for climate change mitigation. The process by which carbon dioxide is drawn from the atmosphere and stored, lowering its concentration in the atmosphere, is referred to as carbon sequestration. Growing hemp also aids in the phytoremediation process, which purifies and enhances soil quality and has a significant chance of eliminating heavy metals from the soil (Ahmad, et al., 2016). Hemp plants are thought to absorb more carbon than agroforestry, with upto 22 tonnes per hectare (Vosper, 2011). Because of its ability to suppress weeds, hemp is also regarded as sustainable, and also because it can help other plants that are grown in rotation with it (Smith-Heisters, 2008), and due to its positive impact on the biodiversity (Montford & Small, 1999). Furthermore, hemp plants are extremely resilient to harmful environmental factors like weeds, pests, droughts, and diseases. Because of its highly developed root system, which gives it great potential and versatility, hemp plants can be grown in a variety of growing conditions. The long taproot and all-encompassing origin system of hemp have also been shown to prevent soil disintegration and improve top soil quality when grown in a multi-crop system (Ranalli & Venturi, 2004). Additionally, hemp uses a lot less water and chemicals than cotton and other plants that produce natural fibres (Kaur & Kander, 2023). It is possible to lessen the burden on non-renewable and declining resources by using hemp as a renewable raw material. Because hemp has a large root system, agronomically it can increase soil oxygenation and decrease the use of fertiliser and chemicals (Cherney & Small, 2016).

History of Use of Hemp in India:

- 1. Textiles: Hemp was only grown for fibre in 'British Kumaon and Garhwal' in all of India, according to the Indian Hemp Drugs Commission Report of 1893–1894. The hemp producers in pre-colonial Uttarakhand had a monopoly in the hemp industry, which allowed them to live comfortably and enjoy the social standing of a thriving community. But when less expensive, stylish machine-made cloth was introduced by the British, the market for hempen cloth (*bhangela*) declined, which had a direct impact on the economic and social standing of those who produced it (Joshi M. P., 2017). Up until the last quarter of the nineteenth century AD, bhangela was the main fabric used by the masses and especially the less fortunate classes in Garhwal during the hot summer months.
- **2. Medicines:** The background of medicinal uses of hemp in India originates from thousands of years ago. As mentioned in Ralph T. H. Griffith's book titled *The Hymns of Atharva Veda* and also in the traditional medical texts of India, the first records of cannabis date back thousands of years in the fourth Veda of Hinduism, called *Atharva Veda* as one of the five most sacred plants

(Griffith, 1895). Cannabis is also suggested as the ideal remedy for phlegm, catarrh, and diarrhoea in Sushruta Samhita, which is an old Sanskrit text on medicine and surgery that may have been written between the third and eighth centuries BCE (Grierson, 1894). According to Dwarakanath, Indian traditional medicine used cannabis as an aphrodisiac and to treat pain, (Dwarakanath, 1965).

- **3. Construction:** Ancient Indians were most likely the first people in the world to use hempcrete technology, which involves combining bhang with lime plaster or clay for building purposes. Although it was lost nearly 1500 years ago, the usage of hemp for construction by ancient Indians in the Ellora caves, which date to the sixth and eleventh centuries AD, has since been restored thanks to documented research (Joshi, 2020). Hemp was widely used in Ellora and by the Yadavas, who constructed the Deogiri or Daulatabad Fort in the 12th century (M. Singh, 2018).
- **4. Mythology:** In Hindu mythology, the Hindu deity Lord Shiva is renowned for having a deep affection for bhang. Lord Shiva was given the title 'The Lord of Bhang', because the cannabis plant was his favourite food (htt6). The usage of hemp in drinks and offerings is also found during various festivals in India including Durga Puja in West Bengal, Holi and Maha Shivratri. Further, hemp is also offered as Prasad in temples throughout India such as the Mouneshwara temple in Karnataka and various temples in Varanasi (htt15). The ancient Hindus thought that the medicinal benefits of cannabis were explained by pleasing the gods such as Shiva.

Traditional Uses of Hemp in Uttarakhand:

1. Agronomy: In the state of Uttarakhand, use of inorganic fertilizers and pesticides are restricted in agriculture. Here, cultivation of hemp plays a significant role by being a source of organic fertilizer to other crops. The local people of Uttarakhand use to cultivate hemp plants close to the crops of rajma (kidney beans) and chemi (flat beans). The reason being rajma and chemi are creepers, and the upright hemp plants give these creepers the support for their growth. And in return, the pulses provide liquid nitrogen to the hemp plants, which is considered beneficial for the growth of hemp plants. This depicts an example of symbiotic relationship between hemp and the leguminous plants. In addition, crops such as Amaranth (local namechaulai or rajgira), finger millet (local name- ragi), lobia (black-eyed beans), and black beans (local name- bhatt dal) are planted along with hemp crops because the season of cultivation of all of these crops is the same i.e. Kharif season. This practice of multicropping increases the productivity and helps in yielding higher quality of both the crops. This also illustrates mutualistic relationship among multiple species in which hemp and other plants help each other to enhance their productivity and quality. The locals cultivate wheat right after the harvesting of hemp, because they consider hemp to be a great green manure for wheat that helps to significantly boost yields. They grow hemp alongside beans to keep them free of brown spots,

they cultivate hemp with beets to protect them from turnip fleas; and grow hemp with cabbage to protect them from the white cabbage butterflies.

- **2. Festivals and Religious Activities:** During the festival of Maha Shivratri, the local devotees partake in the consumption of cannabis-infused drinks commonly called as bhang, in the form of an offering to Lord Shiva and to make a deeper connection with the divine. During the festival of Holi, cannabis-infused drink commonly called thandai, and cannabis-infused sweets such as *gujiya* are shared among the local people as a way to enhance the festive spirit.
- 3. Leisure Activities: The local peoples of Uttarakhand harvest fully matured hemp plants manually using traditional methods during the months of September and October i.e. just before the period of onset of winters. This involves cutting down the plants and stripping away the leaves and branches, leaving behind the long, fibrous stalks. These stalks are then bundled together and left to dry completely in the sun. Once dried, the hemp stalks serve as fuel during winters for cooking as well as bonfires, depicting the sustainable and multi-purpose nature of hemp cultivation in the region. The locals enjoy the roasted hemp seeds while sitting around the bonfire, and also use to separate hemp fibres from the freshly harvested hemp stalks as a leisure time activity while enjoying the bonfire during winters. The separated hemp fibres are used to make animal beddings and baskets, which are used in the mountain areas for carrying grasses, leaves or wood from the nearby forest areas. The ropes made of hemp fibres are also used to tie cattles, cows, etc. as the hemp ropes are natural, strong and durable.
- 4. Local Cuisines: In the mountainous terrain of Uttarakhand, where climatic conditions fluctuate significantly across seasons, the consumption of hemp seeds exhibits a notable degree of seasonal variation. Hemp seeds are consumed by the locals in the form of different cuisines throughout the year, but its consumption in Uttarakhand increases during the winters. During summer months, bhang sharbat or bhang thandai is prepared using overnight soaked hemp seeds by grinding them into a fine paste or powder and then mixing it along with milk, water, or yogurt. This drink provides relief from the heat and helps in hydrating the body. During the cold winter months, hemp seeds are roasted and eaten as such to enjoy as a snack, or combined with jaggery and dry fruits to make hempseed ladoos which are energy-dense and provide warmth to the body. The hemp seed paste is often added to several vegetable curries in the form of hemp seed milk to thicken the gravy as well as provide warmth and nourishment to the body during colder weather. Furthermore, hemp oil is used in cooking during the winters to provide heat to the body and also improve blood circulation. At noon during winters, the locals especially women, gather in each other's houses, terraces or fields, and savour the pahadi nimbu saan, which is a traditional winter delicacy of Uttarakhand that is made by mixing hill lemons, hemp seeds salt, yogurt, coriander leaves, chillies, and some spices for seasoning. Along with being

(ISBN: 978-81-993182-0-5)

flavoursome, the *nimbu saan* is rich in Vitamin C, and hence improves immunity against various ailments during winter season.

- 5. Textile Industry: Growing interest in hemp textiles is a result of both societal awareness of the benefits that the hemp plant can offer and the need to protect ecosystems and create demand for bio-based products in order to ensure sustainable solutions for a circular bio-economy. Since generations, many local peoples of Uttarakhand are doing the processing of hemp fibres into hemp fabrics, which is a labor-intensive procedure comprising of several stages. After harvesting fully matured hemp plants, the hemp stalks are dried, followed by a process called retting, where they are soaked in water to soften the fibers. Subsequently, scutching and hackling are performed to remove impurities and straighten the fibers. Hand carders are then used to disentangle the fibers through a process called carding, breaking up clumps and preparing them for spinning. Finally, the fibers are drawn out and twisted slightly, ready for spinning into hemp fabrics. Through this process, the local peoples create beautiful hemp-based fabric products. The locals since generations do prefer hemp fabrics over cotton clothes due to their high water absorption, comfort, durability, and colour strength. Earlier the hemp fabrics were considered as the fabric of poor, but nowadays hemp fabrics have expanded their limits. But the only drawback is the less affordable price of hemp fabrics in comparison to the cotton ones.
- **6. Medicines:** Hemp is used by the local peoples in Uttarakhand to cure innumerable diseases after its purification process. Different parts of hemp plant are used for the treatment of diarrhoea, insomnia, piles, headaches, skin diseases, cough, fever, inflammation, etc. Apart from human beings, cannabis is being used as a medicine for animals too in Uttarakhand. The paste of hemp leaves is applied on the affected parts of wounds and joint pains in domestic animals such as cows, buffaloes, etc.

Despite the societal stigma surrounding hemp, its cultivation persists across generations, driven by a profound emotional attachment that transcends legal restrictions. Locals continue to prepare traditional hemp recipes and incorporate the plant into religious festivities, reaffirming their enduring connection to this culturally significant and economically vital member of their family. The fear of authorities destroying their crops is obvious, mirroring the anxiety parents experience at the prospect of harm befalling their loved ones. Locals strictly regulate access to their hemp fields, mirroring the cautiousness that parents exhibit towards strangers approaching their children.

Future Ecological Prospects of Hemp:

From an economic standpoint, hemp has been regarded as a crop with low input costs, rapid growth, and high yields which has a lot of potential for sustainable products in the future. There are many industries that can use hemp for a variety of goods and by-products, such as building materials, medications, food products, furniture, and textiles. As the demand for more

environmentally friendly products rises, so does interest in hemp-based products. Each part of the hemp plant has a variety of applications. The leaves have nutritional value and can be used for tea and medicine (Lachenmeier & Walch, 2005). Although the wooden portion of hemp stalks, known as hurds, is unsuitable for textile applications, it can be used to make acoustic panels, building materials, paper, composite insulation, garden mulch, and animal bedding (Stevulova, et al., 2014). The roots can be turned into pulp that can be used to make paper goods. Additionally, the capacity to establish regional and local supply chains contributes to hemp's value as a raw material in terms of social sustainability.

- 1. Construction Industry: Construction projects such as homestays in Uttarakhand should use eco-friendly building materials like hemp concrete, hemp concrete blocks and insulation made from hemp shives. The first house built recently using hemp fibre and hemp-derived products in India is Himalayan Hemp Ecostay by a visionary architect couple named Namrata Kandwal and Gaurav Dixit, located in Faldakot Malla hamlet of Yamkeshwar block in Pauri Garhwal district, Uttarakhand (Azad, 2021). The primary advantages of using hemp in place of traditional building materials like concrete, wood, or plastics are the lower energy costs involved in production and the carbon sequestration that hemp building materials provide. Hemp building materials are lightweight and have low heat conductivity, with low production costs, moisture-proof, and waterproof. The chemical bond developed using a combination of hemp plant parts and unslacked lime is close to what cement looks like. Apart from being eco-friendly in nature, this compound is waterproof, fireproof and earthquake resistant. It provides incredible insulation and absorbs carbon dioxide which makes it ideal for most climatic conditions and is durable as it lasts for hundreds of years without leaving any negative carbon footprint.
- 2. Textile Industry: The textile industries should make more eco-friendly linens and fabrics based out of hemp fibres. There are already some NGOs in Uttarakhand which are dealing with hemp fabrics such as Himadri Hans Handloom. Hemp-based linens such as hemp bedsheets, hemp cushion covers, hemp pillow covers, and hemp towels have a substantial impact on the environment, and also on the health of human beings. These are hypoallergenic, biodegradable and recyclable, but the traditional cotton linens affect the environment negatively. Hemp fabrics offer a low environmental footprint compared to conventional textiles like cotton. Their cultivation requires significantly less water, thriving in various climates and soil types with less irrigation, as compared to irrigation required for cotton. This reduced water usage makes hemp a sustainable alternative, alleviating pressure on water resources. Hemp yarn is biodegradable, compostable, and devoid of toxic residue, unlike synthetic fibres that persist for centuries and release micro plastics. Because hemp fibres have a special chemical makeup that includes lignin and phenolic acids, they can be used to make textiles that make barrier against harmful UV radiation (Zimniewska, 2018).

3. Food and Medicines: The food industries should manufacture and promote more organic food products of hemp. Also, hemp has proved its significance as a medicine by saving lives of many people, and the real life example of an individual for whom cannabis proved to be a savior is Priya Mishra, who was diagnosed with stage-3 lymph node tuberculosis at a very young age of 20. She is India's first female certified cannabis teacher, pioneering female cannabis activist and lobbyist, and also the founder of startup named Hempvati. Hemp can be used as a food product when the seeds are used whole, reduced to flour, or changed, to include the lipid components, after the oil is extracted. For both human and animal consumption, hemp seeds are an excellent source of fat and proteins (Potin & Saurel, 2020). The food industries in Uttarakhand should produce more hemp-based food products such as hemp flour, hemp protein powder, hempseed salt, hempseed oil, etc. The hemp flour is gluten-free, keto-friendly, has high liquid absorbency, and has longer pantry shelf life when compared to all-purpose flour. The hemp protein powder is the best choice for vegans and supporters of a plant-based diet as well as people with lactose intolerance. Hemp protein powder is excellent for overall improvement of body and diet, whereas whey protein is a good source of pure protein intake only. Medicines made by using hemp seeds and leaves should be manufactured to get relief from issues such as arthritis, joint pain, insomnia, skin diseases, infertility, etc. This will lead to decrease in dependence on expensive and chemical-based allopathic medicines.

Conclusion:

Although hemp cultivation has made strides in contributing to various industries such as construction, textiles, and food, the full potential of the hemp plant—both ecologically and economically—is still far from being fully utilized. Hemp cultivation can provide an alternative livelihood for farmers and create employment opportunities in various industries, from construction and textiles to food production. Government intervention, in the form of policy reforms, subsidies for hemp farmers, and investment in research and development, is essential to support the growth of the hemp industry in Uttarakhand. Additionally, public education campaigns are needed to raise awareness about the ecological significance and future prospects of hemp, and also to challenge the negative perceptions surrounding its cultivation and use.

References:

- 1. History of cannabis. University of Sydney. Retrieved from https://www.sydney.edu.au/lambert/medicinal-cannabis/history-of-cannabis.html
- 2. History and regulatory landscape of hemp and hemp products. Legal Service India.

 Retrieved from https://www.legalserviceindia.com/legal/article-7005-history-and-regulatory-landscape-of-hemp-and-hemp-products.html
- 3. Ahmad, R., Tehsin, Z., Malik, S., Asad, S., Shahzad, M., Bilal, M., et al. (2016). Phytoremediation potential of hemp (Cannabis sativa L.): Identification and

- characterization of heavy metals responsive genes. *CLEAN Soil, Air, Water, 44*(2), 195–201. https://doi.org/10.1002/clen.201300225
- 4. Azad, S. (2021, November 28). *The Times of India*. Retrieved from https://m.timesofindia.com
- 5. Cherney, J., & Small, E. (2016). Industrial hemp in North America: Production, politics and potential. *Agronomy*, 6(4), 58. https://doi.org/10.3390/agronomy6040058
- 6. Dwarakanath, C. (1965). Use of opium and cannabis in the traditional systems of medicine in India. *Bulletin on Narcotics*, 17(1), 15–19.
- 7. Grierson, G. A. (1894). The hemp plant in Sanskrit and Hindi literature. *Indian Antiquary*, 260–262.
- 8. Griffith, R. T. (1895). The hymns of Atharva Veda.
- 9. Joshi, M. P. (2017). The hemp cultivators of Uttarakhand and social complexity (with a special reference to the Rathis of Garhwal). *Acta Orientalia*, 78, 173–221.
- 10. Joshi, S. (2020). An introduction to hemp cultivation in Uttarakhand: A historical and economic perspective. *Studies in Indian Place Names*, 40(3), 6533–6543.
- 11. Kaur, G., & Kander, R. (2023). The sustainability of industrial hemp: A literature review of its economic, environmental, and social sustainability. *Sustainability*, *15*(8), 6457. https://doi.org/10.3390/su15086457
- 12. Lachenmeier, D., & Walch, S. (2005). Analysis and toxicological evaluation of cannabinoids in hemp food products: A review. *Electronic Journal of Environmental, Agricultural and Food Chemistry*, 4(1), 812–826.
- 13. Li, H. (1974). An archaeological and historical account of cannabis in China. *Economic Botany*, 28, 437–448.
- 14. Singh, M., & Singh, S. V. (2018, April). Mineralogical, chemical, and thermal characterisations of historic lime plasters of thirteenth–sixteenth century Daulatabad Fort, India. *Studies in Conservation*, 63(2), 1–15.
- 15. Montford, S., & Small, E. (1999). A comparison of the biodiversity friendliness of crops with special reference to hemp (Cannabis sativa L.). *Journal of International Hemp Association*, 6(2), 53–63.
- 16. Pervaiz, M., & Sain, M. (2003). Carbon storage potential in natural fiber composites. *Resources, Conservation and Recycling*, 39(4), 325–340. https://doi.org/10.1016/S0921-3449(02)00173-8
- 17. Potin, F., & Saurel, R. (2020). Hemp seed as a source of food proteins. In G. Crini & E. Lichtfouse (Eds.), *Sustainable agriculture reviews* (pp. 265–294). Springer. https://doi.org/10.1007/978-3-030-33838-7 9

- 18. Ranalli, P., & Venturi, G. (2004). Hemp as a raw material for industrial applications. *Euphytica*, *140*(1–2), 1–6. https://doi.org/10.1007/s10681-004-4759-5
- 19. Smith-Heisters, S. (2008). Environmental costs of hemp prohibition in the United States. *Journal of Industrial Hemp, 13*(2), 115–146.
- 20. Stevulova, N., Cigasova, J., Estokova, A., Terpakova, E., Geffert, A., Kacik, F., et al. (2014). Properties and characterization of chemically modified hemp hurds. *Materials*, 7(12), 8131–8150. https://doi.org/10.3390/ma7128131
- 21. Tribhuvan, P. (2023, May). Cannabis and social change in the Indian Himalayas. *Journal of Ethnobiology*, 38(4), 577–592. https://doi.org/10.2993/0278-0771-38.4.577
- 22. Vosper, J. (2011). The role of industrial hemp in carbon farming. *GoodEarth Resources PTY Ltd*.
- 23. Zimniewska, M. (2018). Antioxidant potential of hemp and flax fibers depending on their chemical composition. *Molecules*, 23(8), 1993. https://doi.org/10.3390/molecules23081993

Ecology Research: Trends and Techniques

ISBN: 978-81-993182-0-5

About Editors

Prof. (Dr.) Sanjay Khajuria currently serves as Chief Scientist and Head of Krishi Vigyan Kendra (KVK), Samba, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Jammu, J&K. A dedicated agricultural scientist, he is committed to enhancing rural livelihoods through research, extension, and farmer-centric innovations. Under his leadership, KVK Samba has played a vital role in the Viksit Krishi Sankalp Abhiyan, promoting sustainable agriculture, modern technologies, and farmer awareness. His research interests include crop productivity enhancement, soil health management, and climate-resilient farming systems. Dr. Khajuria actively engages with farming communities through training, demonstrations, and awareness programs, ensuring wider adoption of scientific practices. His contributions have significantly advanced agricultural development and socio-economic upliftment of farmers in Jammu & Kashmir, establishing him as a key leader in the field.

Dr. Vinayaka K.S. is an Assistant Professor and Head of the Department of Botany at Sri Venkataramana Swamy College, Bantwal. He earned his Ph.D. in Applied Botany from Kuvempu University in 2012, with additional postgraduate diplomas in Medicinal and Aromatic Plants, Genetics, Human Resource Management, Intellectual Property Rights, and Kannada Journalism. With over 110 publications, 47 conference abstracts, and 54 participations in workshops and symposia, he has made significant contributions to plant sciences, biodiversity, and lichenology. He has guided more than 100 student projects, authored book chapters, and served as Associate Editor of scientific volumes. A recipient of multiple national and international awards, including the DST Young Scientist Award and Excellence in Teaching Award, Dr. Vinayaka has also delivered numerous invited lectures, outreach talks, and organized academic workshops promoting biodiversity conservation.

Dr. Balbir Dhotra is currently serving as Professor at the Organic Farming Research Centre (OFRC), Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, J&K. He obtained his M.Sc. in Soil Science & Agricultural Chemistry from Choudhary Charan Singh University, Meerut, and Ph.D. from SKUAST-J, Jammu. His major research areas include soil fertility, composting, and manure management with a strong focus on soil health improvement. Dr. Dhotra has published more than 30 research papers in reputed national and international journals, authored one book, 18 book chapters, and 20 popular articles. He has successfully handled several research projects as Principal Investigator and Co-PI funded by RKVY, ICAR, and DST. He also serves as reviewer for scientific journals and has received Young Scientist, Excellence in Research, and Best Thesis Awards.

Ms. Mitali Chetia is serving as an Assistant Professor in the Department of Zoology at Nanda Nath Saikia College, Titabor, Jorhat. With an academic specialization in Physiology and Biochemistry, she has made notable contributions to her field through research and teaching. She has published eight research papers in reputed national and international journals, reflecting her commitment to advancing scientific knowledge. At the undergraduate level, she is actively involved in teaching, mentoring, and guiding students with a focus on conceptual clarity and practical understanding. Beyond academics, she is engaged in outreach programmes that promote scientific awareness, environmental consciousness, and community engagement. Her dedication to education and research underscores her role as both an academician and a facilitator of knowledge for the larger community.

