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PREFACE 

We are delighted to publish our book entitled "Research Trends in Mathematical and 

Statistical Science". This book is the compilation of esteemed articles of acknowledged 

experts in the fields of basic and applied mathematical science. 

This book is published in the hopes of sharing the excitement found in the study of 

mathematics and statistical science. Mathematical science can help us unlock the mysteries 

of our universe, but beyond that, conquering it can be personally satisfying. We developed 

this digital book with the goal of helping people achieve that feeling of accomplishment. 

The articles in the book have been contributed by eminent scientists, academicians. 

Our special thanks and appreciation goes to experts and research workers whose 

contributions have enriched this book. We thank our publisher Bhumi Publishing, India for 

taking pains in bringing out the book.  

Finally, we will always remain a debtor to all our well-wishers for their blessings, 

without which this book would not have come into existence. 

  

- Editorial Team 
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Abstract: 

The process, by which an optimal solution is chosen among many alternative 

solutions, is called optimization. For several issues in real life, it is not feasible to verify all 

solutions within a reasonable time. Algorithms inspired by nature are stochastic techniques 

which are designed to deal with such issues. They normally incorporate some deterministic 

and haphazardness methods together and afterward iteratively think about a number of 

arrangements until an agreeable one is found. Many optimization techniques were 

developed to tackle different linear, non linear and multi objective problems. While in 

recent years different optimization approaches have been developed, some common 

optimization techniques presented here are Ant colony optimization, Honey Bee Algorithm, 

Cat Swarm optimization algorithm and Cuckoo optimization algorithm. 

 

Introduction: 

Optimization is the analysis of dynamic preparation, constructing, and resolving day 

to day life issues and problems. These issues can be related to each sector like industrial 

sector, scientific sector, knowledge sector etc. In optimization, the primary goal is to 

optimize the physical parameter in considered problem. Many organizations use these 

methods to optimize their income with minimum expenditures, travel expenses, maximize 

power, minimize flaws, etc. Nature based algorithms are extracted by captivating the 

stirring inspiration of biological species’s collective conduct and decentralized management 

structure. Scientists and researchers have solved real life issues with mathematical or 

simulation modelling by carefully studying the underlying individual behaviors and 

observations. Developing heuristics from nature is a continuous process as world is filled by 
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more than 84,00,000 species. Optimization techniques developed during Second World War.  

Many researchers and scientists are inspired by nature based algorithms and implement 

different terminologies and advanced operators on natural choice and growth, to attain 

solidity and convergence in Multiple Search space. They used it to solve various linear, non-

linear, uniform and non- uniform complex problems with minimum time consumption. 

Nature based algorithms were developed on behavior of Bee, Cuckoo, Monkey, wolf spider, 

elephant, Bat, fire fly, ants etc.  

 

Ant Colony Optimization Algorithm: 

Ant colony optimization technique is based on behavior of ants searching for food. It 

is searching for best path in the graph based on behavior of ants seeking a path between 

their colony and source of food. It is a Meta-heuristic optimization method. Originally it was 

proposed by Marco Dorigo in 1992 [1, 2]. Ants navigate from nest to food source.  Ants 

discover shortest track via pheromone trails as they are blind by nature. Each ant moves at 

arbitrarytrack. Pheromone is dropped on track. More pheromone on track rises probability 

of path being tracked. One of the chiefconcepts behind this method is that the ants can link 

with one another through subsidiary means by making alterations to the attention of highly 

unstable chemicals called pheromones in their instant environment. The behavior of ants 

for finding shortest track is shown by Fig.1. 

 

 

Figure 1: Behavior of Ants to find shortest route [2, 3, 4] 

 

 

 

https://en.wikipedia.org/wiki/Marco_Dorigo
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#cite_note-5
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#cite_note-M._Dorigo,_Optimization,_Learning_and_Natural_Algorithms-6
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Honey Bee Optimization Algorithm: 

The bee’s algorithm is a population-based search algorithm. It was first developed by 

Pham, Ghanbarzadeh et al. [5]. This algorithm stimulated by the usual searching 

performance of honey bees. Honeybees are social bugs that live in groups composed of a 

single queen and up to numerous thousand workers.Their collective behavior enables it to 

solve many complex tasks such as keeping a persistenthive temperature, keeping track of 

changing searching conditions and choosing the finest possible nest spot. In searching of 

nest site, some queen cells are produced to generate new queen. Before its birth, the old 

queen leaves the colony with the half of the colony components to form a new colony. They 

search new nest site. The scouts seek about twelve nest sites. They indicate the various 

locations of new nests by waggle dances. The dance quality is related to the nest site 

quality. Thus, and over time, selected sites decrease until a single site will be found. In 

Food source searching, some bees “scouts” navigate and explore the region in aim to find a 

food source. In the positive case, they come at the hive in place called “dance floor” to 

transmit and share this discovery with the others through dance language (round or waggle 

dance relating to the discovery distance). Some bees are recruited and then, become 

foragers. Their number is proportional to the food quantity information communicated by 

the scouts. We call this step exploration phases which is followed by the exploitation step. 

Bee collects food and calculates their quantity to make a new decision. Either it continues 

collecting by the memorization of this best location, or it leaves the source and returns to 

hive as simple bee [6-8]. 

 

Cat Swarm Optimization Algorithm: 

Cat swarm optimization is a single-objective algorithm. Chu et al. [9] in invented 

this algorithm 2006. It is encouraged by resting and tracing behaviors of cats. Cats are lazy 

in nature and devotemaximum of time in resting, although their awareness is very high 

during resting. So, they are regularlydetecting the surroundswisely and consciously.Upon 

seeing a target, they start stirring towards it quickly. Therefore, CSO algorithm is 

constructed on combination of these two main manners of cats. CSO algorithm is composed 

of two modes: tracing and seeking modes. A solution set is represented by each cat having 

its position flag and fitness value. The position is prepared with dimensions in the search 

space, and every dimension has its individual speed; the fitness value describe wellness of 

the solution set (cat) is; the flag is to categorize the cats into seeking or tracing mode. Thus, 

we should first identify number of cats engaged in the iteration and run them from first to 

last in the algorithm. The finest cat in each iteration is kept into memory, and the one at 
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the ending iteration represent the solution. The population of cats depicts more information 

than just the activities or poses. It helps in investigation and exploitation of search space 

all together and predictably leads to optimality. CSO can even be quicker in finding the 

solution, in particular, when the population is well break up and indomitable [10]. 

 

Cuckoo Optimization Algorithm: 

The optimization algorithm inspired by life of bird Cuckoo is novel evolutionary 

algorithm for non linear optimization problems. X. S. Yang and S. Deb [11] expanded this 

algorithm in 2009 and it was investigated in detail by R. Rajabioun [12] in 2011. The main 

inspiration behind this algorithm is egg laying and reproduction characteristics of cuckoo 

bird. This algorithm starts with initial population. This population owns eggs which are 

placed in nests of other birds.  

 

Figure 2: Flow chart of Cuckoo Optimization Algorithm [11] 

 

Cuckoo optimization algorithm is based on survival of these eggs. In reality, this idle 

bird absolutely enables other birds to play an involuntary part in the survival of its 

generation. The host bird identifies and destroys the eggs that have fewer similarities with 

its eggs. Cuckoos develop and learn  the consistent way of laying eggs similar to host bird’s 

eggs how to consistently lay eggs much like the eggs of the target host bird, and the host 

birds learn the ways of  recognizing the fake eggs. Cuckoos explore for the most appropriate 

spot to put down eggs for maximum survival rate of eggs. They build several communities 

after the remaining eggs develop and turn into an adult cuckoo. Every community has its 
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own habitat for living. The most excellent habitat of all communities will be the target for 

the cuckoos in other communities. This strategy proceeds until the best position is achieved 

for the highest benefit value and much of the cuckoo population is accumulated around the 

same position.  

 

Conclusion: 

Many problems in daily life are of complex nature with non linear constraints. These 

problems can be easily converted in optimization problems. Traditional optimization 

methods cannot be suitable for these complex nature problems. These problems require 

refined optimization methods. Nature based algorithms are best choice as they are flexible 

and capable of solving these type of problems. Nature based algorithms are increasing 

rapidly because of their various applications in diverse fields.  
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Introduction to Reliability:  

Reliable engineering is one of the important engineering tasks in design and 

development of a technical system. In the last 30 years, much effort has been made in the 

design and development of reliable large-scale systems for space science, Military 

applications, and power distribution. 

In the real world problems, the collected data or system parameters are often 

imprecise, because of incomplete or non-obtainable information. The probabilistic approach 

to the conventional reliability analysis is inadequate to account for such built-in 

uncertainties in data. For this reason the concept of fuzzy reliability have been introduced 

and formulated as a transition from fuzzy success state to fuzzy failure state.The reliability 

of system is defined as the probability that the system performs its assigned function 

properly during a predefined period.       

Most of the research in classical reliability theory is based on binary state 

assumption for states. For multi-component system with parallel redundancy, graceful 

degradation describes a smooth change to lower performance level of the system as 

individual component fail. For such systems, it is therefore unrealistic to assume that the 

system possess only two stages, i.e. “Working” or “Failed”. Such systems may be considered 

working to a certain degree at different states of its performance degradation during its 

transition from fully working state to completely failed state. The degree may be any real 

number ‘0’ (to indicate the system is in failed state) and ‘1’ (to indicate the system is in 

working state). The new concept of fuzzy sets in reliability analysis is suggested in. Fuzzy 

sets can express the gradual transition of the system from a working state to a failed state. 

The crisp set theory only discuss the system in to a working state and failed state while 

fuzzy set theory can handle all possible states between fully working state and completely 

failed state. This approach to the reliability theory is known as PROFUST reliability 

mailto:Prchava83@gmail.com
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theory. In PROFUST reliability theory the binary state assumptions are replaced by fuzzy 

state assumptions. 

 

The definition of Reliability Engineering: 

 Immediately following reliability’s emergence as a technical discipline just after 

World War I, it was used to compare operational safety of airplanes. Reliability was then 

measured as the number of accidents per hour of flight time. Reliability engineering was 

considered as an equal to applied probability and statistics. Nowadays, reliability research 

has been clearly sub-divided into smaller entities and research topics may be divided by the 

methodology that applies: mathematics based approaches have a long history, especially in 

reliability analysis of large system; while physics based approaches are being introduced 

especially in component level studies.  

 Reliability theory is a body of ideas, mathematical models, and methods directed to 

predict, estimate, understand, and optimize the lifespan distribution of system and their 

components. The term reliability is defined as the probability that a component or a system 

will perform a required function for a given period of time when used under stated 

operating conditions. This definition has its roots in military handbook MIL-STD-721C. 

 ISO however has a different and more general definition of what the term reliability 

means. ISO describes reliability as the ability of item to perform a required function, under 

given environment and operational conditions and for a stated period of time. Others 

measures include Maintenance Free Operating (MFOP), which allows a period of operation 

during which an item will be able to carry out all its assigned missions, without the 

operator being restricted in any way due to system faults of limitations, with the minimum 

of maintenance. 

 There are also as many ways to measure reliability as there are different ways to 

define it. The most widely used measure of reliability are Mean Time to Failure (MTTF) 

and the Mean Time between Failure (MTBF), which is the mean, or the expected value, of a 

probability distribution. One key issue regarding reliability measurement/estimation is that 

no one can calculate the exact period of time for which a component will work without a 

failure. The only thing that any model can do is to calculate the probability of the 

component working without failure for a period of time. 

 Many systems are designed to operate for specified period of time. If there is no 

benefit to having the system last longer than what the customers need, then it may be a 

waste of resources to over-design the system’s capabilities. But in many situations, this is 

not the case. For example, the Mars rovers; Sprit and Opportunity, were for 90-day 

missions and those missions turned into much longer than that. In this case, the Scientific, 

benefits of this extra system life have been tremendous. 
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 The basic assumptions is the when randomly selecting a large sample from a very 

large population, the sample will possess the same properties and behavior as the total 

population. It is important to understand that such a description explains what happens 

when a large number of components are put into operation. The resulting reliability 

calculations have no meaning when applied to a single item. 

 To express this relationship mathematically, the continuous random variable T is 

defined as the time to failure of a system or a component where T 0 . Then the 

reliability can be express as: 

( )  F t = P T < tr  

( ) ( )  R t =1- F t = P T tr   

Where, ( )F t is defined as the probability that a failure occurs before time t. There are 

several other definitions for reliability estimation in literature, but in general most of the 

scientists and researchers describe reliability in terms of performance without failure under 

stated conditions for specified period of time.    

 In this Chapter, we present a new method to analyze fuzzy system reliability using 

fuzzy number arithmetic operations. Suggested method is based on PROFUST reliability 

theory, where the reliability of each system component is presented by trapezoidal fuzzy 

number. The proposed method uses simplified fuzzy arithmetic operations of fuzzy 

numbers.   

 

Fuzzy arithmetic operations for reliability analysis: 

We briefly review some basic definitions of fuzzy sets from [1]. Let U be the 

universe of discourse,  n1 2 3
U = u ,u ,u ,.....,u .Let set R of U is a set of ordered 

pairs: 

( )( ) ( )( ) ( )( ) n n1 1 2 2R R R
u ,f u , u , f u ..... u , f u

 

Where, 
R

f ,
R

f : U [0,1]→
 is the membership function of 

i
U in R , and 

( )iR
f u

 

indicates the grade of membership 
i

U in R .  

 To formulate the fuzzy numbers or parameters, we can use either membership 

functions or possibility distributions [91]. In this chapter we use the trapezoidal 

membership function. The membership function curve and characteristic of the trapezoidal 

fuzzy number
( )i i i i i

R = α ,β , γ ,δ
, 1 i n  . are expressed in Fig. (1.1.1) and eqn. (1.1.1) 

Where 
i
α and 

i
δ are called the left and right spreads of the curve, respectively.  

 
                                        

( )iR
f u
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                          a-αi   a-βi           a             a+γi     a+δi           

Figure 1.1.1: Trapezoidal membership function 

 

The fuzzy trapezoidal distribution is:                     

           

( )

i

i i i i i

i iR

i i i i i

i

0 U a - α

α + U - a/α - β a - α < U a - β

μ U = 1 a - β U <a + γ ,

δ - U + a/δ - γ a + γ U a + δ

0 a + δ <U

 








 



                         (1.1.1) 

                          Where 
i i

0 < β < γ  and  a                 

 

The methodology for fuzzy system reliability analysis: 

In this section, we present the technique for analyzing system reliability using fuzzy 

arithmetic operations. The serial system and parallel system are shown in fig. (1.1.3) and 

fig. (1.1.4). 

 

Figure 1.1.3: Configuration of a Serial system 

 

 

 

Figure 1.1.4: Configuration of a Parallel system 

 

Where Pi’s are subsystems of equipment. The subsystems Pi’s are represented by the 

trapezoidal fuzzy number. 
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 Suppose that the event model contains logical operators “OR” and “AND” then, the 

reliability function of the system can be obtained replacing the logical operators by the 

algebraic addition and multiplication. From the Boolean event of the system, a probabilistic 

model of the structure is obtained with the difference that the logical OR and AND 

operators. Creating the nodes of the model, are replaced by the appropriate probability 

operators like fig.5.       

    

 

Figure 1.1.5: The probabilistic model of system structure 

 

The probability function of AND and OR operators are:  

           AND

X

n

i
i=1

P = R
                                                                       (1.1.2) 

           ( )( ) ( )

( )

X
OR

n1 2

n

i
i=1

P = 1- 1- R 1- R ..... 1 - R

= 1- 1- R

                                                (1.1.3) 

Where Ri’s are the probabilities of input events, Px those of out put events 

 

Fuzzy operators of reliability analysis:         

The membership function of the fuzzy AND and OR operators can be obtained, 

considering the variables in equation (1.1.2) and (1.1.3) as fuzzy variables and substituting 

the algebraic operations given in section 2.  

The fuzzy form of AND operator function is: 

           ( )
nAND

P = R = AND R , R ,....., RnX 1 2ii=1


                                       (1.1.4) 

And the fuzzy form of OR operator function is: 

          ( ) ( )
nOR

nX 1 2i
i=1

P = 1- 1- R = OR R ,R ,.....,R                       (1.1.5) 

The reliability of the serial system shown in fig. (5.3) can be evaluated and is equal to: 

          ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n n1 2 1 1 1 1 2 2 2 2

n n n n

i i i i
i=1 i=1 i=1 i=1

R R ..... R = α ,β , γ ,δ α ,β , γ ,δ ..... α ,β , γ ,δ

α , β , γ , δ

     

 
=      

       (1.1.6) 

Furthermore, consider the parallel system shown in fig. (1.1.4), where the reliability 

of the subsystem iP is represented by the fuzzy number Ri  shown in fig. (1.1.1).  
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The reliability of parallel system can be evaluated and is equal to: 

          

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( ) 

( ) ( ) ( ) ( ) ( )

n n

i i i i i
i=1 i=1

1 1 1 1

2 2 2 2

1 2 3 4

i i i i
i=

1- 1- R = 1- 1- α , β , γ , δ

= 1- 1- α , 1- β , 1- γ 1- δ

1- α , 1- β , 1- γ 1- δ

..............................................

1 - α , 1- β , 1- γ 1- δ

= 1,1,1,1 - 1- α , 1- β , 1- γ , 1- δ

    

  
 

  
 

 
 

       
       

( ) ( ) ( ) ( ) ( )

n n n n

i=1 i=1 i=1 1

n n n n

i i i i
i=1 i=1 i=1 i=1

= 1- 1- α , 1- 1- β , 1- 1- γ , 1- 1- δ 5.7

 
    

 

                    

 

 

A technical example: 

  

Figure 1.1.6: Fault tree of the example 

 

Two grinding machines are working next to each other. What is the possibility that 

people coming in the vicinity of the machines are injured mainly by getting a chip into the 

eye? It is obvious that the most endangered persons are the operators, who are obliged to 

wear safety glasses but often fail to do this. Furthermore, endangered are persons coming 

in the vicinity of the machines, bringing and carrying away items, and those entering the 

area for other reasons.  

 

Table 1.1.1: The basic events contributing to the accident 

Symbol Basic events 

A Operator 1 fails to wear safety glasses. 

B Operator 2 fails to wear safety glasses. 

C Machine 1 is operating. 

D Machine 2 is operating. 

E Persons entering the area without safety glasses. 

F Persons entering the endangered area bringing material. 

G Persons entering area carrying away made product. 

H Persons entering the area for other reasons. 
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The fault tree for the main event that somebody will be injured can be constructed 

as shown in fig. 1.1.6. 

The basic events contributing to the accident are summarized in table [1.1.1]. 

Assume that the basic events are mutually independent and reliability of the basic 

events is represented by trapezoidal fuzzy numbers parameterized by ( )i i i i
α ,β , γ ,δ . Then 

we can see that   

( )

( )

( )

( )

( )

( )

A

B

C

D

E

F

G

R = 0.00888,0.01444,0.02,0.0255

R = 0.00888,0.01444,0.02,0.0255

R = 0.75552,0.77776,0.8,0.82224

R = 0.75552,0.77776,0.8,0.82224

R = 0.94434,0.97217,1.0,1.02783

R = 0.04722,0.04861,0.05,0.05139

R = 0.04722,0( )

( )H

.04861,0.05,0.05139

R = 0.0944,0.00972,.000974,0.009776

 

From fig. 6, the truth function of the main event X can be written as follows: 

U=F+G+H 

V=C+D 

Z=E+U+V 

X=A+B+Z 

 

From equation (5.6) and (5.7), we can get  

( ) ( ) ( )
 

 

U F HG
R = 1- 1- R 1- R 1- R

= 1- 0.8220635,0.89344942,0.89370243,0.89063891

= 0.10936109,0.10629757,0.10365505,0.1779365

 
 

( ) ( )
 

 

DC
R = 1- 1- R 1- Rv

= 1- 0.05977,0.0493906,0.04,0.031598617

= 0.96840138,0.96,0.9506094,0.94023


 

 
Z E U V

R = R R R

= 0.100010,0.099205736,0.0985354,0.0169438

 

( ) ( ) ( )
 

 

A B cX
R = 1- 1- R 1- R 1- R

= 1- 0.8840771,0.8749671,0.8657665,0.5447422

= 0.115922,0.125038,0.1342334,0.45525

 
 

 

It is obvious that the above results coincide with the one presented in. However, 

from the above procedure, we can see that the proposed method has the advantage of low 

computation complexity compared to. 
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Concluding Remarks: 

Reliability of each system component involves uncertainty in the performance of the 

system and its output. This kind of uncertainty is referred as fuzziness. While the 

probability theory characterizes randomness, fuzzy set theory deals with fuzziness. 

PROFUST reliability theory provides more realistic estimates than PROBIST reliability 

theory. In this paperr, we have developed a new method to analyze fuzzy system reliability 

using fuzzy number arithmetic operations and fuzzy logic operators. The reliability of each 

system component is represented by a trapezoidal fuzzy number. The proposed method uses 

simplified fuzzy arithmetic operations of fuzzy numbers rather than complicated interval 

arithmetic operations of fuzzy numbers. Execution of the developed method is faster than 

the one presented in the literature. 
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Abstract: 

In this paper, review of L1- convergence of real and complex trigonometric series 

with modified trigonometric sums is done as the modified sums converge to their limits 

better than classical sums. 

Keywords: Conjugate Dirichlet kernel, Dirichlet kernel, Fezer Kernel, L1-convergence, 

modified sums. 

 

Introduction: 

Let h(x) = 
a0

2
+ ∑ ap cos px      …  (1) 

∞
p=1   and g(x) = ∑ bp sinpx      …  (2)

∞
p=1  be the 

trigonometric cosine and sine series. Then Sn(x) = ∑ ap cospx
n
p=1  and  and   S̃n(x) =

∑ bp sinpx
n
p=1  be the partial sums of the series (1) and (2) respectively, where a0, a1,a2,…and 

b0, b1, b2,…are real or complex coefficients. 

Convergence in L1 norm:  

 The series (1) is said to converge in L1(0, π ) norm if ‖f − Sn‖ =  0(1), n → ∞ , where 

we denote ‖f‖ = ∫ |f|  dz
∞

0
  where L is metric space. 

 

Convex Sequence:  

 ([1], Vol. I, p. 4) A sequence {βk} is said to be convex if ∆2βk ≥ 0  Where ∆βk = βk −

βk+1 and ∆
2 βk = ∆βk − ∆βk+1 

 

Quasi- Convex Sequence:  

 ([1],Vol.II,p.202) A sequence {βk} is said to be Quasi- convex if  

mailto:shipracoem@pbi.ac.in
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∑ (k+ 1)|∆2βk| < ∞
∞

k=1
 

A sequence {αk} is said to be Generalized Quasi- Convex if ∑ kr|∆2βk| < ∞,   r = 0,1,2,3… . .
∞
k=1   

 

Class S (Sidon-Telyakovskii class):  

 ([4], [5]) A sequence {βk} is said to follow class S if βk = 0(1), as k → ∞ and there, 

exists a sequence, {Ak} such that  

(i)  Ak  ↓ 0 as k → ∞   (ii)  ∑ Ak
∞
k=0  < ∞  (iii)  |βk|  ≤ Ak   ∀ k. 

 After that class Sr, r = 1,2,... is invented by Tomovski [6], which is defined as: A 

sequence is said to fit class Sr, if ak→0 , as k →∞ and if there exists a, monotonically 

decreasing sequence {Ak}   which satisfies ∑ KrAk
∞
k=1  < ∞ and |∆ak| ≤ Ak , for all k. As Ak 

↓ 0 and ∑ KrAk
∞
k=1  < ∞ It implies Kr+1Ak = 0(1) , K → ∞ .Clearly Sr+1 is subset of Sr   ∀ r =

1,2.3…  and S0 = S 

 

Class S*:  

 A sequence {βk} is said to follow class S* if βk = 0(1), k → ∞ and there exists a 

sequence {Ak} such that  

                    (i)  {Ak} is quasi-monotone  (ii)  ∑ Ak
∞
k=0  < ∞  (iii) |βk|  ≤ Ak   ∀ k 

 

Class R:  

 A null sequence {βk} is said to follow the class R if  ∑ k2 |∆2 (
βk
k
)|  < ∞∞

k=1  

 

Class K:  

 If βk = 0(1) , k → ∞  and ∑ k |∆2βk−1 − ∆
2βk+1|  < ∞       (β0= 0)

∞
k=1  then we will say 

that {βk} belongs to class K. 

 

Class Kα:  

 If βk = 0(1) , k → ∞  and ∑ 𝑘𝛼 |∆𝛼+1𝛽𝑘−1 − ∆
𝛼+1𝛽𝑘+1|  < ∞               (𝛽0= 0)

∞
𝑘=1  𝑓𝑜𝑟 𝛼 > 0 

Then we will say that {βk} is related to class K
α. 

 

Class J:  

 A null sequence {βk} of positive numbers is follow the class J if there exists a 

sequence , {Ak} such that  
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(i)     Ak  ↓ 0 as k → ∞     (ii) ∑  kAk
∞
k=0  < ∞     (iii) |∆ (

βk
k
)|  ≤

Ak

k
 ∀ k. 

 Young [2] and ,Kolmogorov [3] initiated the research on L1-convergence of 

trigonometric series underneath some special coefficients with classes of convex and ,quasi- 

convex Sequences . 

 

Theorem 1.([2], [3]):  

 If {ak}↓0 and {ak} is convex or even quasi-convex, then if and only if, condition for L1 

convergence ,of series (1) is that, ak log k = 0(1), , k → ∞. Theorem 1 for the cosine series (1) 

with coefficients satisfying  the class S is indiscriminated by Telyakovskii [5]  in the 

following way: 

 

Theorem 2. [5]:  

 Let {ak} be the, sequence of the series (1) ,belonging to class S, then if and only if, 

condition for L1-convergence of, (1) is that ak log k . = 0(1), , k → ∞ L1-convergence of 

trigonometric series with unique coefficients has been studied by numerous authors. 

During the literature survey, it could be observed that many authors have introduced 

improved trigonometric sums as their results for L1 convergence of trigonometric series are  

better than results of classical sums. 

 

Rees and Stanojevic [7] have introduced modified cosine sum as 

                     gn(x) =
1

2
 ∑ ∆ak

n
k=0 + ∑ ∑ (∆aj)

n
j=k

n
k=1  cos kx        

 L1-convergence of above defined cosine sum under different set of conditions on the 

coefficients are studied by Garrett and Stanojevic [18], Singh and Sharma[20]. Ram [19],  

proved the L1-convergence of above defined cosine sum when the coefficients of Fourier 

series belong to class S. 

 

Kumari and Ram ([8], [9]) introduced new modified cosine sum as 

fn(x) =
a0
2
+∑∑∆(

aj

j
)  k cos kx

n

j=k

 

n

k=1

    

 They discussed the L1-convergence of above defined cosine sum when coefficients are 

under class S and class R. Kaur and Bhatia proved the L1-convergence of above defined 

cosine sum results for class S*. Singh and Modi proved the same results by eliminating the 

condition an logn =0(1) as n→ ∞. 
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Kaur[9] introduced a new modified sine sums as 

Kn(x) =
1

2 sin x
∑∑(∆aj−1 − ∆aj+1) sin kx

n

j=k

n

k=1

 

and studied the L1-convergence of this modified sine sum with semi-convex 

coefficients.Also, Kaur et al. [12] introduced a new class of numerical sequences as class K 

and proved that the sequence {ak} belong to the class K, then Kn(x) converges to f(x) in the 

L1-norm. 

 

Singh and Kaur [19] defined new modified generalised sine sums 

    Knr(x) =
1

2 sinx
 ∑ (∆rak−1 − ∆

rak+1)S̃k
r−1
(x)n

k=1   

and a new class of coefficient Kα and proved that if the sequence {ak} belong to the class Kα, 

then Knr(x) converges to f(x) in the L1-norm 

 

Hooda, Ram and Bhatia [10] informed about,a new modified cosine sums, as 

                             fn(x) =
1

2
 (a1 + ∑ ∆2 ak

n
k=0 ) + ∑ (ak+1 +∑ ∆2  aj 

n
j=k ) cos kxn

k=1   

and studied its L1  convergence and a result of Telyakovskii [21] is deduced as a corollary.  

 

Kaur, Bhatia and Ram [12] introduced new modified cosine sums as 

Kn(x) =
1

2 sin x
 ∑∑(∆bj−1 − ∆bj+1)

n

j=k

n

k=1

cos kx        

and have studied the L1-convergence of modified sine sums under a different class.J 

 

N.L.Braha and Xrasniqi introduced new modified sums  

       Nn(x) = −
1

(2sin
x

2
)
2  ∑ ∑ (∆2aj−1 − ∆

2aj) cos kx +
a1

(2 sin(
x

2
))
2

n
j=k

n
k=1   

and discussed L1-convergence under semi-convex coefficients. 

 

Krasniqi [15] have introduced new modified cosine and sine sums as 

 Hn(x) = −
1

2 sin x
 ∑∑∆[(aj−1 − aj+1) cos jx]

n

j=k

n

k=0

       

and studied the L1-convergence of these modified cosine and sine sums with semi convex 

coefficients. 
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Krasniqi [16] have invented new modified cosine sum as 

Gn(x) =
a0
2
+ ∑ ∑ ∑ ∆2(ak3  cos k3x)                 

n

k3=k2

n

k2=k1

n

k1=1

 

where∆2ak = ∆(∆ak) = ∆(ak − ak+1) = ak − ak+1 − (ak+1 − ak+2) = ak − 2ak+1 + ak+2 

 

Chouhan ,Kaur and Bhatia [17] have introduced new modified cosine and sine sum 

                         fn(x) = ∑ [∑ (∆aj+1 +∑ ∆3 ai
n
i=j )n

j=k ]n
k=1  cos kx 

                         gn(x) = ∑ [∑ (∆bj+1 + ∑ ∆3 bi
n
i=j )n

j=k ]n
k=1 sin kx 

 and study the L1-convergence of these modified cosine and sine sums under the class S. 

with the condition n2an=0(1) as n→ ∞. 

 

Singh and Modi [18] have introduced new modified cosine and sine sums as 

   un(x) =
a0
2
+∑∑∆(

aj cos jx

2j
) 2k

n

j=k

n

k=1

 

                                                      vn(x) = ∑ ∑ ∆(
bj sin jx

2j
)2kn

j=k
n
k=1       

and study the L1- convergence of these modified cosine and sine sums under the class S.  

 

Chouhan ,Kaur and Bhatia [19] have introduced new modified cosine and sine sum 

                               fn(t) = ∑ (
ak+1

k+1
+ ∑ ∆2 (

aj

j
)n

j=k )k cosktn
k=1        (a0 = a1=a2 = 0) 

            and           gn(t) =  ∑ (
bk+1

k+1
+ ∑ ∆2 (

bj

j
)n

j=k )  k sin ktn
k=1        (b1 = b2 = 0)  

and study the L1- convergence of these modified sums when {ak} is generalized semi-convex. 

 

Priyanka and Singh new modified cosine and sine sums as 

Rn(x) = ∑[(∑(∆(
aj+1

j + 1
) +∑ ∆3 (

ai
i
)

n

i=j
)

n

j=k

)k coskx]                   

n

k=1

 

                     Where ∆3ak = ∆
2ak − ∆

2ak+1= ak − 3ak+1 + 3ak+2 − ak+3 

 

                                Qn(x) = ∑ [(∑ (∆ (
bj+1

j+1
) + ∑ ∆3 (

bi

i
)n

i=j )n
j=k ) k sin kx]                   n

k=1   

           Where ∆3bk = ∆
2bk − ∆

2bk+1=bk − 3bk+1 + 3bk+2 − bk+3    

and study the L1-convergence of these modified cosine and sine sums under the class S2. 
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Conclusion: 

 In this review paper various types of modified trigonometric sums are studied under 

different set of conditions on the coefficient class. In all the above sums lim
𝑛→∞

𝑎𝑛 log 𝑛 = 0(1) 

is necessary and sufficient condition for L1-convergence of real and complex trigonometric 

sine and cosine series. Still there is a need to formulate new modified sums and new set of 

coefficients under which this condition is eliminated. 
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Abstract:  

The aim of this paper is to study the properties of the generalized Mellin-Whittaker 

transform. In this paper we have also proved the inversion theorem and some lemmas 

related to inversion theorem. 

 

Introduction:  

For almost two centuries the method of function transformations has been used 

successfully in solving many problems in engineering, mathematical physics and applied 

mathematics. A function transformation simply means mathematical operation through 

which a real or complex valued function is transformed into another setting of data in 

which the original problem can be solved more easily or in which the problem has clear 

physical meaning. Integral transform is one of the techniques in the function 

transformation methods. The integral transform methods are of great importance in the 

initial and final values problems of partial differential equations. The theory of integral 

transform flourished and continues to do so since the birth of great mathematician Laplace. 

Number of integral transforms e.g. Fourier, Mellin, Hankel, Hilbert, Stieltjes etc. are 

developed as per the need arose in the physical situations or in partial differential 

equations. Mellin transform is also used in scale invariant systems [3, 4, 5, 7]. 

Extension of some transformations to generalized functions have been done from 

time to time and their properties have been studied  

This chapter deals with different theorems concerned with generalized Mellin-

Whittaker transform. we have derived different types of operation transform formulae for 

Mellin-Whittaker transform which will be useful to solve boundary value problems in 
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partial differential equations. Properties like shifting, scaling, differentiation, translation of 

a Mellin variable are discussed. 

 

Generalized Mellin-Whittaker Transform:  

 For 𝑓(𝑥, 𝑡) ∈ 𝑀𝑊′( dual space of 𝑀𝑊𝑎,𝑏 ) where 𝑎 = (𝑎1,𝑎2) and 𝑏 = (𝑏1, 𝑏2),  𝑎2 < 1 and 

𝑏2 > m + k + ½ when 0 < 𝑥 < ∞ , 0 < 𝑡 < ∞ and  (𝑠, 𝑦) ∈ Ω𝑓 = { (𝑠, 𝑦)/ 𝑎1 < 𝑅𝑒𝑠 <

𝑏1 𝑎𝑛𝑑  𝑅𝑒[(𝑝 + 𝑞)𝑦] > 0 } the function 𝐹(𝑠, 𝑦) is defined as the generalized Mellin-Whittaker 

transform, 

𝐹(𝑠, 𝑦) = 𝑀𝑊𝑓(𝑥, 𝑡) = 〈 𝑓(𝑥, 𝑡), 𝜑(𝑥, 𝑡, 𝑠, 𝑦)〉, 

where          𝜑(𝑥, 𝑡, 𝑠, 𝑦) = 𝑥𝑠−1𝑒−
𝑞
2
𝑦𝑡(𝑦𝑡)𝑚−

1
2 𝑊𝑘,𝑚(𝑝𝑦𝑡). 

 The right hand side is meaningful because according to theorem 3.5.2, 𝜑(𝑥, 𝑡, 𝑠, 𝑦) ∈

𝑀𝑊 and 𝑓(𝑥, 𝑡) ∈ 𝑀𝑊′. 

 Moreover if  𝑓(𝑥, 𝑡) is a regular generalized function then conventionally we can 

write, 

𝐹(𝑠, 𝑦) = [𝑀𝑊𝑓(𝑥, 𝑡)](𝑠, 𝑦) 

              = ∫ ∫ 𝑥𝑠−1𝑒−
𝑞
2
𝑦𝑡(𝑦𝑡)𝑚−

1
2 𝑊𝑘,𝑚(𝑝𝑦𝑡)𝑓(𝑥, 𝑡)𝑑𝑥𝑑𝑡.

∞

0

∞

0

 

 

Properties of Generalized Mellin-Whittaker Transform: 

 In this section we derive some properties of generalized Mellin-Whittaker transform. 

Next in all the properties we suppose   𝑓(𝑥, 𝑡) ∈ 𝑀𝑊′ and we listed the proved properties in 

tabular form in the next subsection. 

 

Table 1: Properties of the Mellin-Whittaker Transform 

Sr. 

No. 

Function Mellin-Whittaker Transform 

1 
( )txf

dx

d
,  

( ) ( )( )( )ystxfMWs ,1,1 −−−  

2 
( )txf

dx

d
k

k

,  ( ) ( ) ( ) ( )ystxf
x

MWks
k

k
,,

1
!1 








−−  

3 ( )txfx x ,.  ( ) ( )ystxfMWs ,,−  

4 ( )txft ,  ( )   ),(),(
2

,),(
1

,
2

1,
2

1 ystxfMWy
qp

ystxfMW
p

mkmk







 −
−







−+
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Inversion Theorem: 

This section is devoted for the derivation of an inversion theorem for Mellin-

Whittaker Transform. Inversion theorem requires two lemmas which have been proved in 

this section. 

Lemma: If 
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Proof: If ),,,( ystx = 0 there is nothing to prove. 

 So, assume ),,,( ystx  0 

To prove the lemma means to show – 

( ) ( )   
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
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

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dsdydxdtystxxytysF ,,,)(,   

= 〈𝑓(𝑢, 𝑧), ∫ ∫ ∫ ∫ 𝐹(𝑢, 𝑧, 𝑠, 𝑦)𝛷(𝑦𝑡)𝑥−𝑠𝜙(𝑥, 𝑡, 𝑠, 𝑦)𝑑𝑥𝑑𝑡𝑑𝑠𝑑𝑦
∞

0

∞

0

∞

0

𝑟

−𝑟
〉.  

Now, note that ),( ysF is analytic for 𝑎2 <  + 1 – m, | Re s | < c. 

Moreover, ( )dxdtystxxyt
o o

s ,,,)(  
 

−  is entire function. 

Therefore integral on l.h.s. definitely exists. 

Now to show that r.h.s is meaningful, we first show that, 

∫∫ ∫ ∫ 𝐹(𝑢, 𝑧, 𝑠, 𝑦)𝛷(𝑦𝑡)𝑥−𝑠𝜙(𝑥, 𝑡, 𝑠, 𝑦)𝑑𝑥𝑑𝑡𝑑𝑠𝑑𝑦
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∞
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= 𝐴(𝑢, 𝑧) ∈ 𝑀𝑊 

and 𝑓(𝑢, 𝑧) ∈ 𝑀𝑊′  

Hence r.h.s. will be meaningful. 



Bhumi Publishing, India 

26 
 

Now consider, 

 

𝛾𝑘,𝑙[𝐴(𝑢, 𝑧)] = 𝑠𝑢𝑝| 𝜆(𝑢, 𝑧)𝑢
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is continuous function of  s and  y. 

 Since '),( MWzuf  , all that remains to be proven is that ),(, zunm  converges in MW 

to, 

∫ ∫ 𝑢𝑠−1𝑒−
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2
𝑦𝑧(𝑦𝑧)𝑚−

1
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First term on r.h.s. of equation (3.7.2) is bounded by 
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            (4.1.3) 

 Choose m and n, so large say m > mo and n > no that expression (4.1.3) will be less 

than
3

2
. 
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 Thus, 𝛾𝑘,𝑙[ 𝜃𝑚,𝑛(𝑢, 𝑧) − 𝐵(𝑢, 𝑧) ] <
𝜀

2
+
𝜀

2
= 𝜀. 

But   is arbitrary. This implies that, 

𝜃𝑚,𝑛(𝑢, 𝑧) → 𝐵(𝑢, 𝑧) uniformly for Uu ||  and  
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Therefore there exist m1 and n1 integers such that m > m1 and n > n1, 
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Since   is continuous, as in Zemanian [85] p.66 it can be shown that, 

   0),(),(, →− zuzuBlk   

Hence the theorem is proved. 

 

Inversion Theorem: 
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      by lemma (4.1) ,(4.2) 

Using the result, from [70] 
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Now if v = d + ir and s = c + iw 
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By lemma (4.2) 
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 (4.3.3) => ( ) ( ) ( ) ( ) 
 

=
o o

zuzufdzduzufzu ,,,.,,  . 

Hence the proof. 

 

Uniqueness Theorem: 

 In the theory of integral transforms the uniqueness theorem is of special importance 

because of this theorem the question of recovery of a function is possible from its transform. 

In the next theorem we have shown that if two functions have the same Mellin-Whittaker 

transform then they coincide almost everywhere. 

Theorem: 

If  𝐹(𝑠, 𝑦) = [ 𝑀𝑊𝑓(𝑥, 𝑡) ](𝑠, 𝑦) for (𝑠, 𝑦) ∈ Ω𝑓 and   

    𝐺(𝑠, 𝑦) = [ 𝑀𝑊𝑔(𝑥, 𝑡) ](𝑠, 𝑦) for (𝑠, 𝑦) ∈ Ω𝑔.  

If 𝐹(𝑠, 𝑦) = 𝐺(𝑠, 𝑦), then 𝑓(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) in the sense of equality in 𝐷′(𝐼). 

Proof: By inversion theorem, 

𝑓(𝑥, 𝑡) − 𝑔(𝑥, 𝑡) = ∫ ∫ 𝛷(𝑦𝑡)𝑥−𝑠[ 𝐹(𝑠, 𝑦) − 𝐺(𝑠, 𝑦)]𝑑𝑠𝑑𝑦
∞

0

∞

0

 

         = 0 , 

as 𝐹(𝑠, 𝑦) = 𝐺(𝑠, 𝑦) 

⇒   𝑓 = 𝑔  in  𝐷′(𝐼).  

This proves uniqueness. 
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Abstract: 

Mathematical physics deals with the study of development of mathematical methods 

for the formulation of physical theories and application to problems in physics. Schrodinger 

using de Broglie’s idea of matter waves developed a precise mathematical theory which has 

received the name of wave Mechanics. The essential feature of this theory is the 

incorporation of the expression for the De Broglie wavelength into the general classical 

wave equation. By this means a wave equation for a moving particle is derived, which is 

known as Schrodinger’s fundamental wave equation. Schrodinger wave equation is a 

mathematical expression describing the energy and position of the electron in space and 

time, taking into accounts the matter, wave nature of the electron inside an atom. 

This Review article discusses about the Schrodinger’s equations.  This article 

provides the simplified derivation of Schrodinger’s wave equations starting from wave 

mechanics. 

Keywords:  Schrodinger’s equation, Mathematical physics. 

 

Introduction: 

There are several different branches of mathematical physics such as vector 

analysis, Partial differential equations, Classical mechanics, Quantum mechanics, 

Relativity, Statistical mechanics etc.,. Usually mathematical physics has been very much 

linked with differential equations, integral equations. Its approach can be adapted to 

applications in classical as well as quantum mechanics. Partial differential equations are 

used in different fields of science. There are several theories in the history of science. There 
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exist equations, in most of the theories, describing those theories in order to carry out some 

calculation and get the results. The Schrodinger equation is mathematically described as a 

partial differential equation that is used in quantum mechanics to describe the quantum 

behavior and state of the changes in physical system. Schrodinger expressed De Broglie 

hypothesis relating to the wave behavior of matter in a mathematical form that is useful for 

solving physical problems without additional arbitrary assumptions.  

Similar endeavor have been done earlier by some researchers. Schrödinger’s 

equation is a fundamental or building block of quantum mechanics and finds several 

applications. Some of the significant applications are Schrödinger equation is used to 

determine the allowed or permissible energy levels of quantum mechanical systems like 

atoms, electrons, protons, neutrons etc. The associated wave function gives the probability 

of finding the particle at a certain position. The allowed energy levels of a particle 

constrained to a rigid box can also be determined using SE. Square well potential is a 

typical example or problem in quantum mechanics that exemplify differences between 

classical and quantum mechanical situations. SE is the way to determine the potential 

energy, rather allowed energy levels, of vibrating atoms and to analyze their motion [1]. 

Numerical methods have been very important in basic research on physics. Nowadays 

partial differential equations (PDEs) related to main stream problems involve the use of 

numerical solutions to PDEs [2]. In quantum mechanics, the Schrodinger equation 

describes how the quantum state of a physical state evolves over time. It is not a simple 

algebraic equation but, in general, a linear partial differential equation. The solutions to 

the Schrodinger equation describe not only molecular, atomic and subatomic systems but 

also macroscopic systems.  The Schrodinger equation is easy to use for the hydrogen atom, 

but when the atomic number is increased, the numerical methods are more effective and 

facilitate the resolution of the problem. The Schrodinger equation is easy to use for the 

hydrogen atom, but when the atomic number is increased, the numerical methods are more 

effective and facilitate the resolution of the problem. This equation has limitations because 

it only applies to particles with low velocities [3].  A wave equation should be able to model 

atom and molecule in realistic way. There can be possible correspondence between classical 

mechanics and quantum mechanics [4].  An approximate solution of the radial Schrodinger 

equation is obtained with a generalized group of potentials in the presence of both magnetic 

field and potential effect using supersymmetric quantum mechanics and shape invariance 

methodology. The inclusion of the potential effect greatly affects the accuracy of the results 

[5].  
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Schrodinger’s equations:  

According to De Broglie’s hypothesis, every moving material particle has a wave 

associated with it, whose wavelength is given by the relation 𝜆 =
h

mv
 . By this means, a wave 

equation for a moving particle is derived, which is known as Schrodinger fundamental wave 

equation. In 1926, in order to explain the dual nature of matter, Schrodinger considered 

every material particle as to be equivalent to a wave packet, which moves with a certain 

group velocity and each individual wave, comprising a wave packet, moves with a certain 

phase velocity. The concept of wave packet demanded the existence of a certain guiding 

wave. The equation of this guiding wave was derived by Schrodinger and is of immense use 

in the problems concerned with almost all the domains of physics as well as chemistry. It is 

an equation that describes the behavior of the wave function associated with the atomic 

particles.  

The motion of a particle of atomic dimensions cannot be described by Newton’s laws 

of motion which are applicable to bodies of macroscopic dimensions. The behavior of 

particles of microscopic size is governed by the associated de – Broglie waves or the wave 

functionψ ( 𝑟, t), the variable quantity that characterizes the De Broglie waves is called the 

wave function.  Wave in general associated with quantities that vary periodically is called 

wave function.  The wave function ψ associated with mechanical system contains in itself 

all the relevant information about the behavior of the system and hence defines it 

completely. In other words, the probability of experimentally finding the particle described 

by the wave function at the point x, y, z at the time t is proportional to  |ψ |2. Thus  |ψ |2 i.e. 

the square of the magnitude (amplitude) of the wavefunction ψ (𝑟, t) gives the probability 

density of finding the physical system (particle or photon) at a particular place at a given 

time.  

To describe the motion of the particle in space and time we must know the value of 

ψ ( 𝑟, t) at all times and for this purpose it is necessary to find a differential equation which 

controls the space time behavior of the wave functionψ ( 𝑟, t). The solution of such a 

differential equation will gives the possible motion of the particle. There are two equations, 

which are time-dependent Schrodinger equation and a time-independent Schrodinger 

equation. Hence the necessary, differential equations are  

  

Schrodinger Time Independent Wave Equation (Stationary state):  

A state is said to be in a stationary state, if the function explaining the state does 

not include time. Thus the function ψ (x, y, z ) is a stationary state whereas function 

ψ (x, y, z, t ) is not. If a moving particle has a wave associated with it, then its nature in 
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terms of a periodic displacement in space and time should be represented by a definite wave 

equation. In order to obtain this equation, we consider a system of stationary waves to be 

associated with the particle and referring the particle to the Cartesian coordinate system, 

at any point x, y, z in the immediate vicinity of the particle, ψ undergoes periodic changes, 

its value at any instant t being given by  

ψ = ψ0 sin2πυt                                                             (1) 

In it,  ψ0 is the amplitude at the point considered, independent of t but function of x, 

y, z and υ is the frequency.  

If the position coordinates of particle be (x, y, z) and ψ be the periodic displacement 

for the matter waves at any instant t, we can  write a differential equation of this wave 

motion in the classical way as  

∂2ψ 

∂x2
+ 

∂2ψ

∂y2
+
∂2ψ

∂z2
− 

1

u2
 .
∂2ψ

∂t2
= 0                              (2) 

Where u is the wave velocity of particle, ψ (x, y, z, t) usually called the wave function, 

can be expressed as a periodic displacement in the form of the solution of equation (1) as 

follows:  

ψ (x, y, z, t) = ψ0 (x, y, z)e
−iwt                                        (3) 

In it,  ψ0 is the amplitude of particle wave at the point (x, y, z). It is independent of 

time t.  

Equation (3) can also be expressed in the terms of position vector  r⃗ given by 

 r⃗ = i ̂x + j ̂ y + k ̂z     As follows:    

    ψ (r⃗, t) =  ψ0 (r⃗)e
−iωt                                                 (4) 

If we differentiate equation (4) twice respect to time, we get 

∂2ψ

∂t2
= i2ω2ψ0e

−iωt = ω2ψ0e
−iwt  

 
∂2ψ

∂t2
= −ω2 ψ                                                                  (5) 

Substituting the value of   
∂2ψ

∂t2
  from this equation in equation (2), we get  

∂2ψ

∂x2
+ 

∂2ψ

∂y2
+  

∂2ψ

∂z2
+  

ω2

u2
ψ = 0                                         (6)    

Where ω = 2πʋυ = 2π
u

λ
.  

So that 
ω

u
=

2π

λ
                                                                    (7)    

From equation (6) and (7), we get  

∂2ψ

∂x2
+ 

∂2ψ

∂y2
+  

∂2ψ

∂z2
+ 

4π2

λ2
ψ = 0    

 But   
∂2

∂x2
+ 

∂2

∂y2
+  

∂2

∂z2
= ∇2, ∇2 being the Laplacian operator  
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Hence  ∇2ψ+ 
4π2

λ2
.ψ = 0                                                  (8)    

According to the de Broglie’s theory, a particle of mass m moving with velocity v is 

associated with a wave system of some type of wavelength,  λ =
h

mv
. Though one has no 

knowledge of what is that vibrates, one can indicate it by ψ, the periodic changes, which are 

responsible for λ =
h

mv
    

Using this relation equation (8) gives  

𝛻2ψ+
4π2m2v2

ħ2
.ψ = 0                               

𝛻2ψ+
m2v2

ħ2
.ψ = 0                                                            (9)   Where ħ = 

h

2π
 

∴  𝛻2ψ+
p2

ħ2
.ψ = 0       (Since p, the linear momentum = mv) 

The kinetic energy of the particle in terms energy E and Potential energy V can be 

written as: 

1

2
mv2 = E − V  

Or     mv2 = 2 (E-V)  

Or     m2v2 = 2m (E-V)  

Substituting it in equation (9), we get 

 𝛻2ψ+
2m

ħ2
 (𝐸 − 𝑉)ψ = 0   

Or     𝛻2ψ+
8π2m

h2
 (𝐸 − 𝑉)ψ = 0                              (10)    

This is the time independent Schrodinger equation in it’s usually used from. This 

equation is also termed as the Schrodinger’s fundamental Wave Equation with respect to 

space. This equation, as it is independent of time gives the steady value.  The solutions of 

this equation are called the steady state wave functions. This equation is particularly 

useful when the energy of the particle is very small as compared to the rest energy of the 

particle. In most of the atomic problems, which we consider, the energy of the particle will 

be very small when compared to the rest energy.  

The Schrodinger equation with respect to time can be derived as follows 

 

Schrodinger’s Time dependent Wave Equation: 

In order to obtain a time dependent Schrodinger equation, we eliminate the total 

energy E from time independent Schrodinger equation, given by relation 

 𝛻2ψ+
2m

ħ2
 (𝐸 − 𝑉)ψ = 0.                                             (1)    

Since there are no forces acting on a free particle, it can be considered to be having a 

constant potential energy. For the sake of convenience, this constant potential energy is 
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taken to be zero, i.e., V (x, y, z) = 0. So that equation of motion for a free particle of mass m 

becomes  

   𝛻2ψ+
2m

ħ2
Eψ = 0                                                      (2)    

For it, let us differentiate equation ψ (x, y, z, t) = ψ0 (x, y, z)e
−iwt  with respect to time. 

It gives 

∂ψ

∂t
= −iωψ0 e

−iωt = −iωψ = −2πiʋψ      (Since ω =  2πʋυ)                                                                                             

∂ψ

∂t
= −i 

2πE

h
ψ                              Since E =  hυ, ∴ υ =

E

h
     

Or  
∂ψ

∂t
= −

iE

ħ
ψ                                                              (3)    Since  ħ =

h

2π
            

Or   Eψ = −
ħ∂ψ

i ∂t
= iħ 

∂ψ

∂t
                                              (4)    

  Substituting this value in equation (1), we get 

 ∇2ψ+
2m

ħ2
 (iħ

∂ψ

∂t
− Vψ) =  0   

 or 
ħ2

2m
 ∇2ψ+  iħ

∂ψ

∂t
− Vψ = 0  

or  iħ
∂ψ

∂t
= −

ħ2

2m
 ∇2ψ+ Vψ   

or  iħ
∂ψ

∂t
= (−

ħ2

2m
 ∇2 + V)ψ                                           (5)    

Equation (5) is known as the Schrodinger’s time dependent wave equation 

containing the time factor. It is unique among the differential equations of mathematical 

physics, as it includes the imaginary quantity i =  √−1.  

 The equation can be modified in terms of Hamiltonian operator H given by 

 H =  −
ħ2

2m
 ∇2 + V  

Equation 5) then becomes,  

iħ
∂ψ

∂t
= Hψ   

Hψ = Eψ                                                                  (6)   using equation 4) 

The Hamiltonian H thus coincides with the total energy operator. Although H and E 

both are the energy operators, yet while H depends only on space coordinates, E depends 

upon time coordinate.  

The Schrodinger equation, like Newton’s law of motion, is a fundamental 

relationship, showing logical coherence to a vast amount of experimental observations. 

These two equations are like statics and dynamics in classical mechanics; hence derivability 

of the time dependent equation from the time independent form is much significant [1]. 
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Concluding Remarks: 

Schrodinger’s equation is useful for investing various quantum mechanical 

problems. With the help of these equations and boundary conditions, the expression for the 

wave function is obtained. The probability of finding the particle is calculated by using 

wave function. Schrodinger’s equation is used to solve one dimensional problems in which 

the potential is discontinuous and is such that between two points of discontinuity it is a 

constant. e.g. The problems of potential well and potential barrier. This article provides a 

broad derivation of Schrodinger’s wave equations which would helpful for understanding.  
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Introduction: 

The term Deep Tech was coined in 2014 by Indian investor and entrepreneur Swati 

Chaturvedi. Deep Tech refers to fundamental breakthroughs in science and engineering 

that profoundly impact industries and people’s live. It brings about a change in the 

landscape of the affected field such that the change is enduring and permanent.  In 

business and consumer innovations existing technology is used but in Deep Tech 

companies’ revolutionary solutions are created that redefine markets and industry 

processes. The solutions brought in by the Deep Tech is a paradigm shift in the way things 

were practiced and goals achieved, such that the resultant ecosystem or product will not 

have any resemblance to the initial product or current industry practices.  For instance 

Uber, will not be considered as deep tech company because it was built on the concept of a 

‘sharing economy’ and their service was built using existing technologies.  Conversely, Deep 

Tech innovations provides solution to previously-intractable real life problems, for example, 

data analytics to help farmers grow more food,  medical devices and drugs that cure disease 

and extend life, artificial intelligence to forecast natural disasters such as earthquakes,  

clean energy solution to lessen the impact of climate change,  autonomous vehicles, flying 

cars, drones. 

The Deep Tech ecosystem is greatly benefitted due to the innovations in the input 

technology required to create the niche product and reduction in cost of the same 

technology. Concurrently, is an exciting time for India’s deep tech startup ecosystem which 

at a tipping point. According to a report from KPMG, India is the third largest AI startup 

ecosystem, as 13 percent of the global technology industry leaders indicate its potential for 

tech breakthroughs. According to grant-thorton 2019 the following is the composition of 

Indian- startups: 
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1. The total startups are approximately 10,000 and around 800 technology based new 

startups are coming up annually. 

 

 

 

 

 

 

 

 

 

 

Sector wise concentration: 

Sr. 

No. 

Technology based 

startups 

% Non Technology based 

startups 

% 

1 E-commerce 33 Engineering 17 

2 B2B 24 Construction  13 

3 Consumer internet  12 Agri products 11 

4 Mobile apps 10 Textile 8 

5 Saas 8 Printing andpackaging 8 

6 Others 13 Transportand logistics 6 

7   Outsourcing andsupport 5 

8   Other 32 

 

The following is the scenario of the deep-tech startups in India. 

1. The DeepTech Startups in India received a total investment of $732 Mn in 170 deals 

between 2014 and 2018.In terms of value, the funding in Deep Tech startups has risen 

at a CAGR of 22.79% during this period. The numberof deals has increased at a CAGR 

of 20.11% over the five-year interval. 

2.  Deep Tech in India is finding it hard to catch up with the top performing sectors of 

the Indian startup ecosystem. 

Bengaluruhas emerged as a hub for the Deep Tech startup as many ancillary 

systems are in place for this eco system to develop; Hyderabad also benefits from the 

advantages of the former, but is developing at a slower pace. Being in the nascent stage and 

having greater appeal and visibility Deep Tech companies have great life expectancy and 
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low rate of failure. But the Deep Tech ecosystem is still developing, with the fundamentals 

of the industry still not defined and supply chain yet to firm up, the funding in deep-tech is 

relatively lower compared to the top funded and established sectors. High setup cost, weak 

intellectual property framework, and low market adoption are some of the reasons for weak 

investor interest in the India Deep Tech startups. 

 

 

 

Objective:  

We consider emerging deep technology, and its potential as startup and challenges 

in India. 

 

Research Methodology: 

The study is mainly based on the secondary data. The data are collected from 

journals, reports, web, magazines, data reports etc. The study is descriptive and conceptual 

in nature. 

 

Specificities of Deep Tech Startups: 

Deep Tech start-ups transfer research andtechnology to the market which due to 

their high worth and use of new age technology, results in high impact for society. Deep 

Tech innovations have lowered the costs of starting a company and created an ecosystem, in 

which many companies benefit due to lateral use and application of products and processes. 

Having stated as such, still it is slower and more expensive to establish an innovative Deep 

Tech idea and get valuable derivatives or products from such ideas, which can be used in 

the industry or society. The major challenges and shortcomings to get the Deep Tech 

companies’ off the ground as compared to a digital startup for the following reasons: 
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1. Strong research and innovations:  

Deep Tech startups, by their very nature are using the best technology and 

methodology for making products or processes. Thus, they have a strong foundation in 

cutting edge research and develop new paradigms. They have to create a niche product or 

conceive a new approach, which requires a synergy of manpower and attendant technology 

for getting the desired results. Some of the challenges towards intensive research and 

innovations are: 

A. Advanced skills: Human resource required for Deep Tech companies have to be the 

most creative and those with an ability to bring forth ‘out of box’ solutions. These 

individuals will have to come from multitude fields and their leaders will have to 

bring the necessary synergy for meaningful and positive outcomes.  

B. Knowledge: Coming from the previous point, the collective knowledge base 

required for setting up a Deep Tech company will be very challenging. Since, the 

tools employed to come at a result are also the very niche that the industry can 

provide. Therefore, subject experts will be required ranging from software 

developers, artificial intelligence experts, machine experts, production specialist etc. 

to bring in meaning outcomes.  

C. Infrastructure: Since most of the tools and inputs being worked with in a Deep 

Tech company would be used in the scale and scope for the first time, the 

infrastructure and initial cost will be very high. The unique requirements of the 

work station will also entail additional cost to the promoters.  

D. Lengthen the product time in the market: The Deep Tech products at an early 

stage will be for high tech solutions and gradually volumes will bring the cost down, 

thus scaling up will also entail extra cost due to large gestation periods. Hence, the 

profitability of the venture will take longer durations to realize.  

 

2. Large funds requirements:  

Given the unique nature of Deep Tech companies, many of the reasons listed above, 

the initial capital required will be very high. Also, most of the sourcing of tools and inputs 

required, might not be available locally, which would increase the cost many folds. The 

outsourcing of certain portions to experts in other fields will also increase the costs.  

 

3. Heavy Industrialization process: 

If the Deep Tech product has to be set up in a industrial framework, then there 

would be a need for total revamp of the process or setting up from ground up. Even if the 



Research Trends in Mathematical and Statistical Science  
(ISBN: 978-93-88901-17-8) 

 

43 
 

Deep Tech Company is small in scope and scale, the technology input, hardware 

requirement, networking and related inputs will be much higher than the industry 

standards.  

 

4. Yet to defined commercial applications: 

Many of the products and processes developed by the Deep Tech companies might 

not find use in immediate future, due to lack of other infrastructure and conditions. Thus 

some of the innovations might not be monetized immediately, which will generate negative 

perceptions towards the Deep Tech startups. For example,blockchainwas used by the 

developers to create a product, namely Bitcoin. But the same technology is being used for 

many products now, but the developers of blockchain did not foresee the huge potential of 

their innovations but they opened the door for a new market in finance pioneered by 

Bitcoin.  

 

Deep Tech Innovation Ecosystem: 

Research has established that innovation depends on smoothly functioning 

innovation ecosystems—combinations of people, companies, infrastructure, and government 

policies linked through informal and formal networks. Collaborations are crucial to the 

concept of Open Innovation, which—unlike closed, in-house innovation processes—requires 

that companies’ source and collaborate with others. These collaborations is not limited in 

scope or the size of collaborating institutions or entities. The most notable rising trend, 

however, is the growing role of startups and their increasingly important collaborations 

with corporates. Startups today bet on long-term and high-risk deep-tech innovation—such 

as storage of information in DNA, or antimatter propulsion—that used to be the 

prerogative of public research. Collaborations between startups and corporates began in 

ICT and biopharma but are now spreading through all industries. 

The role of startups in the innovation ecosystem is increasing, especially within the field of 

radical innovation. Collaborations between corporates that tend to implement incremental 

innovation and academic centers that focus on radical innovation can be cumbersome due to 

strategic misalignments. Still, the synergy is important to bring for an equitable system 

such that the scope of work of academic centers and corporates are narrowed.  

Collaborative ecosystems and open innovation are crucial in Deep Tech. This is due to the 

fore mentioned specifics of Deep Tech innovation, which pose daunting challenges for a 

young company. 
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Important components of Deep Tech Startups: 

 The four key dimensions need to be connected from the 

beginning of the creation process of Deep Tech start-ups are: 

1. Minds:  

 The human resource required for a promising Deep Tech startup would involve 

experts from various fields, mostly from technology related fields, including software, 

hardware, biotech, artificial intelligence, robotics to name a few. These people will also 

require access to the best technological infrastructure and inputs to bring an idea to 

fruition. These innovators will bring a promising marketing oriented technology into a 

product or process with strong intellectual property, leading to reorientation in the present 

concepts or creation of new markets.  

2. Management:  

 The team leading the Deep Tech startup will require strong ideas, smart 

implementation and a versatile team of experts across many fields. The entrepreneur/ 

intrapreneur will have to have a good market vision, who is able to convert technology led 

disruptive technologies into ready to invest business opportunities or products that can be 

readily monetized.  

3. Market:  

 These Deep Tech products will have to be marketed very strategically to make them 

viable in the industry. The same will require interested partners and committed industrial 

clients, who have the acumen to bring see the development and distribution of these 

products.  

4. Money:  

 The capital for Deep Tech will not be available from traditional sources and will 

require investors with deep understanding of technology and ways in which they can be 

transformed into good business value. The investor will require multiple ventures, such 

that some can become successful thereby balancing the investment.  

 Incentives must be aligned between these four dimensions to ensure compatibility 

and success. Most of the time, a strong and smart team of Minds and Management 

developing a promising technology with a smart Market strategy including several 

committed industrial clients will make it much easier to attract and secure smart Money. 

 

Two Models of Startups: 

Based on the above key components we have two models of Deep Tech startups: 

either create a new startup or to help the existing startups to access technology. 
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1. Inside-Out Approach:  

This approach is adopted when the new technology cannot be transferred to existing 

companies. RandD adopts a market-oriented approach at early stage of development with 

the objective to develop strong IP and transfer the technology to the market. This approach 

is a symbiosis of a smart entrepreneur coming together with experts in the field and 

innovators in the industry to make marketable products. The focus here is on innovating 

new products and adapting them to the market requirement.  

 

2. Outside-in Approach:  

In this approach the entrepreneurs with early stage of startups and having good 

vision of the market and potential clients contact the RandD with promising technology 

portfolio for the new business. The focus here is on the marketability of the products with 

the experts being motivated to come up mass appeal products or the specific needs of 

industry which can be monetized far easier.  

 

 

Key Challenges of Startups, Indian Perspective: 

The following are some of the challenges faced by Deep Tech startups: 

1. Time to Marketing:  

The Deep Tech startups are based on new technology and so their products may take 

longer development time. It takes on an average 4 years to develop a technology in biotech 

(1.8 years from incorporation to first prototype and another 2.2 years to reach the market) 

while about 2.4 years (1.4 years to first prototype and 1 year to market) for startup in 
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blockchain as shown in the analysis of the startups done by Hello Tomorrow Challenge. In 

India, with the lack of specialized ‘venture capitalists’, who have deep knowledge of 

technology, the chances of an entrepreneur waiting for long gestation period for profitability 

is very low. 

 

2. Capital Intensity: 

The understanding and maturity in investment is still very low in India, thus there 

is a general lack of focused credit disbursement for niche innovation and technologies. For 

developing new products expensive infrastructure is required. Also there is extended period 

for the product. Hardware is more expensive then software. For example to develop a 

mobile app is not expensive as compared to designing a machine say, for hearing aid. 

 

3. Technology risk and complexity: 

The lack of incubators for the experimental technology to mature is also great 

impediment towards the development of the tech ecosystem.Deep Tech ecosystem is 

nascent and emerging and many aspects like supply chains are not stabilized. They are 

difficult to navigate as it requires thorough analysis of the stakeholder’s interdependence 

and value creation models. Due to its complexity and risk factors newcomers finds 

themselves in unfamiliar territory. 

4. Lack of high-skilled workers: 

A specialized workforce is required for innovations in advance technologies such as 

robotics, AI, drones. Though India have the required talents but most of them prefer to 

work in the western countries for better pay prospects. This migration has negative impact 

on Deep Tech. 

5. A Low-Level Readiness of the Indian Public towards technology: 

India is leading exporter in software services but Indians are less tech-savvy 

compared to other nations. This makes it difficult for companies to capture a larger share of 

the 1.2 Bn-strong vibrant Indian market. 

 

6. Regulatory frame work: 

India has weak intellectual property framework.Although the Modi led BJP 

government has taken many steps towards the intellectual property rights, but there is still 

lack of confidence of innovators. 
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Current trends in Deep Tech startups in India: 

In today’s era of Deep Tech, the startup ecosystem is playing a key role in its 

development. In 2018, Deep Tech saw a rise of 20% in private investment since 2015 and 

has reached $18 billion globally. The following are the current key trends which are being 

accelerated by promising startups in this field. 

1. Artificial Intelligence (AI) in healthcare: 

In healthcare sectors Deep Tech startups are making steady and much needed 

innovations. For instance, Audiologist couple T Uday Raga Kiran and Remyafounded 

Nautilus Hearingthe Hubli-based startup, incubated by Sandbox Hubli. They have 

designed a device that can be used to conduct ear tests with ease.The device costs Rs 2 lakh, 

claiming the price point is 80 percent lower than that of other devices available in the 

market at present.Niramai, another startup has created technology that diagnoses breast 

cancer by integrating AI with Machine Learning. 

 

2. Virtual Reality (VR) in real estate and collaborative platform:  

The real estate is benefitted immensely by the developments in VR technology. Now 

homebuyers can have the virtual view of their prospective new homes as compared to 

traditional 2- dimensional layouts. Magicbricks- Mumbai based VR startup have 

established the India’s first real estate experience center in the city. Meraki Studio, another 

Mumbai based VR startup enlisted by the Lodha group to create virtual walkthroughs of its 

properties in, an upcoming smart city in Palava, near Mumbai. 

VR is also set to revolutionize collaboration. Hyderabad –based startup NuSpace 

founded by Hemanth Satyanarayana is based on the idea of interacting between the people 

through holograms instead of being physically present in the same room together. Financial 

company MetLife is already using NuSpace to enhance its customer experience by enabling 

customers to talk to ‘avatars’ of customer service agents. 

3. Internet of things (IoT) in sustainability:  

IoT has seen a rise since 2015 in the Indian startup ecosystem.  IoT  funding have 

raised to $54.5 million (approx..) by May 2018 and it is predicted by NASSCOM and 

Deloitte report in 2018 that India will soon have 1.9 billion IoT devices installed with $9 

billion market value. There are wide range of fields that uses IoT such as automobiles and 

logistics. The main purpose of IoT startups is to reduce energy wastage. For instance, 

Bengaluru-based Zenatix is curbing energy wastage for commercial establishments byusing 

machine-learning based models. Another startup on the same lines is Ahmedabad-based 

Ecolibrium Energy. 
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4. Robotics:  

Robotics is another fast growing field of Deep Tech startups. It is widely used in 

retail, military, e-commerce, logistics, hospitality and also in agriculture. Maruti Drones a 

robotics startup designs Unmanned Aerial Vehicle (UAV) commonly known as drones. 

These agri-sparying drones not only effectively monitor but also provide data about crop 

and soil health, hence boosting food production. Another Chennai based restaurant Robot is 

first one to design Robot waiter in India.Generobotics- Thiruvananthapurm based startup 

launched in 2015 by engineers VimalGovind MK, Arun George, Nikhil NP, and Rashid Bin 

Abdulla Khan has designed a spider-shaped robot – Bandicoot to clean holes. 

 

5. Computer vision is aiding retail, healthcare and transport: 

Computer vision combines the elements of data processing, analytics, machine 

learning and AI.  This technology enables computers to process images and has several 

applications,including e-commerce, transport, security and health care.Bangaluru based 

Hyperworks uses AI in the perishable food market. They provide self-checkout counter that 

can scan food items using computer vision and not barcodes, in turn make business easier 

for merchants. Another Bengaluru based startup Turing Analytics helps shoppers to look 

for products using images and videos. This has eased the business between retailers and 

consumers.  Another startup, Netradyne,enables safe driving by alerting drivers to any 

emergency on their route using computer vision technology , hence aiding the transport 

industry. 

 

Conclusion: 

The new Deep Tech ecosystem is in early stage and is maturing as an industry in 

the fields of AI, robotics, blockchain, agritech, VR.The rise of new platform technologies, 

falling barriers and the inevitability of climbing the technology ladder are the major driving 

factors. The third factor is the significant decrease of barriers to entry into cutting-edge 

research, including more and open data (open IP environment, etc.), hardware (cost 

decrease, 3D printing and IoT), software and computing (AI and computing power), biology 

as well as process (interdisciplinary research and open innovation practices).As new 

discoveries are being made and technologies demonstrate their potentials various players, 

their role and rules will eventually evolve. Having seen the potential, it is also important to 

understand the unique needs of the industry, challenges in capital and manpower, markets 

for the products and navigating the regulations, many of which are in the drafting stage. 

Still, the stake-holders should set their goals as first rule and get into the game. They 
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should be ready to take risk and should be prepared to learn including from their failures, 

and only then they can tap into the power and potential of the win-win ecosystem. 
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Abstract: 

Mathematical formulation, results of many physical problems in differential 

equations which are truly nonlinear. In several cases it is possible to replace such a 

nonlinear equation by a related linear equation which approximates the actual nonlinear 

equation closely enough to give useful results. However such a linearization is not always 

possible, and when it is not, the original nonlinear equation itself must be considered. 

The study of nonlinear equation is generally limited to a variety of rather special 

cases, and one must option to various methods of approximation. Here we shall give a brief 

introduction to certain of these methods. 

Keywords: Nonlinear, Approximation, Differential Equation, Phase Plane, Stability. 

Introduction:  

The laws of the universe are written in the language of mathematics. Algebra is 

sufficient to solve several static problems, but the most interesting natural phenomena 

involve change and are described by equations that relate changing quantities. 

When we study the differential equations, it has three principal goals, first is to 

discover the differential equation that describes a specified physical situation, second is to 

find either exactly or approximately the appropriate solution of that equation and lastly, to 

interpret the solution that is found. 

Linear equations are the most tractable, they are the ones that we understand best, 

and they are the ones for which there is the most complete theory. But in fact the world is 

largely nonlinear. We have traditionally shied away from nonlinear equations just because 

they are so difficult, and because their solutions can rarely be written down in a closed 

formula. But there is still much that can be said about nonlinear differential equations, 

especially if we are willing to accept qualitative information rather than closed formulas, 

there is a considerable amount that one can learn using even elementary techniques. 

mailto:snbidarkar@gmail.com
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In the present paper we shall concentrate one attention on nonlinear equations of 

the form 
𝑑2𝑥

𝑑𝑡2
= 𝑓(𝑥,

𝑑𝑥

𝑑𝑡
 ) …….. (1) 

is the resulting equation of motion. 

In equation (1), 𝑓(𝑥,
𝑑𝑥

𝑑𝑡
 ) is the force acting on it, the values of 𝑥 is the position and 

𝑑𝑥

𝑑𝑡
 

is the velocity, i.e. the qualities that at each instant characterize the state of the system, 

the phases of the system, the plane determined by these two variables is called the phase 

plane. 

By substituting 𝑦 =  
𝑑𝑥

𝑑𝑡
 and 𝑡 as a parameter and a curve in the 𝑥 − 𝑦 plane i.e. the 

phase plane are continuously differentiable, in which the dependent variable 𝑡 does not 

appear in the functions on the right is called an autonomous system. 

The study of a differential equation can be divided in three stages: 

i. Formation of differential equation, from the given physical problem. 

ii. To get the solution of the differential equation, and fixing the values of the 

arbitrary constants, with the help of given conditions. 

iii. Physical analysis of the mathematical solution. 

 

The Phase Plane and its Phenomena: 

i. Phase Portraits 

If the initial point (𝑥0, 𝑦0) is not a critical point, then the corresponding trajectory is 

a curve in the 𝑥𝑦-plane along which the point (𝑥(𝑠), (𝑦(𝑠)) moves as s increases. Here we 

can exhibit qualitatively the behavior of solutions of the autonomous system 
𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
 𝑄(𝑥, 𝑦) by constructing a picture that shows its critical points together with a collection 

of typical solution curves or trajectories in the 𝑥𝑦-plane. Such a picture is called a phase 

portrait or phase plane picture because it illustrates phases or 𝑥𝑦-states of the system, and 

indicates how they change with time. 

e.g.
𝑑𝑥

𝑑𝑡
= 𝑥2 − 2𝑥𝑦 ,

𝑑𝑥

𝑑𝑡
=  2𝑥𝑦 − 𝑦2. 

Consider the first order differential equation of the form 

𝑑𝑦

𝑑𝑥
= 

𝑃(𝑥,𝑦)

𝑄(𝑥,𝑦)
 , which may be difficult or impossible to solve explicitly. Its solution curves 

can nevertheless be plotted as trajectories of the corresponding autonomous two-

dimensional system 
𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
 𝑄(𝑥, 𝑦). 

Paths: 
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If 𝑓 and 𝑔 are not both constant functions, then the equations 𝑥 = 𝑓(𝑠) and 𝑦 = 𝑔(𝑠) 

defines a curve in the𝑥𝑦-plane which we shall call a path for orbit or trajectory of the 

system 
𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
 𝑄(𝑥, 𝑦). 

Stability: 

A point (𝑥∗, 𝑦∗) of the autonomous system in 
𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
 𝑄(𝑥, 𝑦) is said to be 

stable provided that if the initial point (𝑥0, 𝑦0) is sufficiently close to (𝑥∗, 𝑦∗) then 

(𝑥(𝑠), (𝑦(𝑠)) remains close to (𝑥∗, 𝑦∗) for all𝑠 > 0. 

Asymptotic Stability: 

The critical point (𝑥∗, 𝑦∗) is called asymptotically stable if it is stable and moreover 

every trajectory that begins sufficiently close to (𝑥∗, 𝑦∗) also approaches (𝑥∗, 𝑦∗)as 𝑠 →  +∞. 

 

Types of Critical Points: 

Definition:  

The isolated critical point (0,0) of the equations of the autonomous system 
𝑑𝑥

𝑑𝑡
=

𝑃(𝑥, 𝑦),
𝑑𝑦

𝑑𝑡
 𝑄(𝑥, 𝑦) is called a center if there exists a neighborhood of (0,0) which contains a 

countably infinite number of closed paths 𝑃𝑛 (𝑛 = 1,2,3,… . ), each of which contains (0,0) in 

its interior, and which are such that the diameters of the paths approach 0 as 𝑛 → ∞ ( but 

(0,0) is not approached by any path either as 𝑠 → +∞ or as 𝑠 → −∞). [2] 

i. Nodes:  

A node is said to be proper provided that no two different pairs of opposite 

trajectories are tangent to the same straight line through the critical points. [3] 

The critical point (𝑥∗, 𝑦∗) of the autonomous system in the equation 
𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
 𝑄(𝑥, 𝑦) is called a node provided that either every trajectory approaches (𝑥∗, 𝑦∗) as 𝑠 →

+∞ and every trajectory is tangent at (𝑥∗, 𝑦∗) to some straight line through the critical 

point. 

 

ii. Saddle Points: 

A critical Point is approached and entered by two half line paths as 𝑠 → +∞ and 

these two paths lie on a single line.It is also approached another two half line paths on 

another line. Between the four half line paths there are four regions and each contains a 

family of paths resembling hyperbolas. 
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iii. Centers:  

A Center also called as vortex is a critical point that is surrounded by a family of 

closed paths. It is not approached by any path as 𝑠 → +∞ or as 𝑠 → −∞. [1] 

 

iv. Spirals: 

A critical Point is approached in a spiral like manner by a family of paths that wind 

around it an infinite number of times as 𝑠 → +∞or𝑠 → −∞. 

 

Conclusion: 

Differential equations are applicable in various branches of Mathematics, Physics 

and Engineering, etc. In Dynamics whenever any body is found in motion, it certainly 

retains some differential equations. e.g. Population, electric circuits, proportion, 

temperature, etc., to solve explicitly, its solution curves can nonetheless be plotted as 

trajectories of the corresponding autonomous two-dimensional system. For each of the 

autonomous system we find the real critical points of the system and obtain the differential 

equation which gives the slope of the tangent to the paths of the system and to solve this 

differential equation we obtain the one parameter family of paths. 

These methods of approximations are useful to solve explicitly the differential 

equations that are difficult or impossible to solve. 
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Abstract: 

Let 𝑆(𝐺), the splitting graph of a graph 𝐺 which can be obtained by taking a new 

point 𝑣 ′ for each point 𝑣 of 𝐺  and joining 𝑣 ′ to all points of 𝐺 adjacent to 𝑣.  In this study, the 

achromatic colouring of the splitting graphs of double star graph, path, star graph, comb 

graph and complete graph are discussed.  Along with this, the investigation of the 

properties of these graphs is also done. 

Keywords: Achromatic number, Splitting graphs, Star graph, Comb graph, complete graph 

 

AMS Subject Classification: 05C15 

 

Introduction: 

 The splitting graph was introduced by E. Sampath kumar and B. Walikar in the 

year 1981. In that paper they introduced the definition of the splitting graph, studied some 

of its properties and obtained its characterization. For each node 𝑣 of a graph 𝐺, take a new 

node 𝑣 ′.   Join 𝑣 ′ to all the nodes of 𝐺 adjacent to 𝑣.  The graph 𝑆(𝐺) thus obtained is called 

the splitting graph of 𝐺.  

In a graph 𝐺, the achromatic colouring refers to a proper vertex colouring in a 

manner that there is at least one line incident on every colour pair.  For a graph G , the 

maximum number of colours possible in such a colouring of 𝐺, is its achromatic number, 

denoted by 𝜓(𝐺). A Star 𝑎𝑛 is the bi partite graph 𝐾1,𝑛.  A double star graph is the graph 

𝐾2(𝑎𝑛, 𝑎𝑟) obtained by joining the root nodes of two star graphs  𝑎𝑛 and  𝑎𝑟 by an edge.  Comb 

is the graph got by joining a single pendent edge to each point of a path. 
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The Achromatic Number of Splitting graph of Path graph: 

Structural Properties of 𝑺(𝑷𝒏): 

• The total number of points in (𝑃𝑛) = 2𝑛 . 

•  The total number of lines in 𝑆(𝑃𝑛) = 3𝑛 − 3.  

• The maximum degree in 𝑆(𝑃𝑛) = 4.  

• The minimum degree in 𝑆(𝑃𝑛) = 1. 

 

Observation: 

• For any 𝑆(𝑃𝑛), the achromatic number 

















=

=

=

=

=

=

=

=

15149

13128

111097

876

655

44

3,23

,,  n

,,  n

,,, n

,, n

,, n

, n

, n

)]ψ[S(Pn

 

 

The Achromatic Number of Splitting graph of Star graph 

Structural Propertiesof 𝑆(𝐾1,𝑛) 

• The total number of points in 𝑆(𝐾1,𝑛) = 2𝑛. 

• The total number of lines in 𝑆(𝐾1,𝑛) = 3𝑛. 

• The maximum degree in 𝑆(𝐾1,𝑛) = 2𝑛. 

• The minimum degree in 𝑆(𝐾1,𝑛) = 1. 

 

Theorem: 

For any  𝑆(𝐾1,𝑛), the achromatic number 𝜓[𝑆(𝐾1,𝑛)] = 3  for 𝑛 ≥ 2. 

Proof: 

Let {𝑣0, 𝑣1, … , 𝑣𝑛} be the vertex set of 𝐾1,𝑛where 𝑣0 denotes the root node. Assign the 

remaining nodes to the leaf nodes of 𝐾1,𝑛. By the definition of 𝑆(𝐾1,𝑛),  let 𝑢0  be the 

corresponding image of 𝑣0 and  𝑢1, … , 𝑢𝑛be the nodes corresponding to 𝑣1, … , 𝑣𝑛. Here the 

node 𝑢0 is adjacent to all the other 𝑢𝑖 ’s and  𝑣0 is adjacent to the other   𝑣𝑖 ’s. Let us take set 

of colours 𝐶′ = {𝐶0
′ , 𝐶1

′ , 𝐶2′}. Assign 𝐶0  to 𝑣0  and 𝐶1
′  to all the  𝑣𝑖 ’s, for 1 ≤ 𝑖 ≤ 𝑛 and 𝐶2

′  to all 
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the 𝑢𝑖 ’s for  1 ≤ 𝑖 ≤ 𝑛.  In 𝑆(𝐾1,𝑛),  only two nodes have degree greater than 2.  We cannot 

assign more than 3 colours.  By this construction, the colouring is achromatic and it is the 

maximal one. 

Example: 

 

 

Figure1:   𝝍[𝑺(𝑲𝟏,𝟓)] = 𝟑 

 

The Structural properties of 𝑆(𝐾2(𝑎𝑛, 𝑎𝑟)): 

• The total number of points in 𝐾2(𝑎𝑛, 𝑎𝑟) = 𝑛 + 𝑟 + 2. 

• The total number of lines in 𝐾2(𝑎𝑛, 𝑎𝑟) = 𝑛 + 𝑟 + 1. 

• The total number of points in 𝑆(𝐾2(𝑎𝑛, 𝑎𝑟)) = 2(𝑛 + 𝑟 + 2). 

• The total  number of edges in 𝑆(𝐾2(𝑎𝑛, 𝑎𝑟)) = 3(𝑛 + 𝑟 + 1). 

 

Observation: 

For any 𝑆(𝐾2(𝑎𝑛, 𝑎𝑟)),the achromatic number  𝜓[𝑆(𝐾2(𝑎𝑛, 𝑎𝑟))] = 5 

 

Figure 2: 𝝍[𝑺(𝑲𝟐(𝒂𝟑, 𝒂𝟑))] = 𝟓 

 

The Achromatic Number of Splitting graph of complete graph and Comb graph 

Structural Properties of  𝑆(𝐾𝑛): 

• The total number of points in 𝑆(𝐾𝑛) = 2𝑛. 
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• The total number of lines in 𝑆(𝐾𝑛) =
3𝑛(𝑛−1)

2
. 

• The maximum degree in 𝑆(𝐾𝑛) = 2(𝑛 − 1). 

• The minimum degree in 𝑆(𝐾𝑛) = 𝑛 − 1. 

 

Theorem:  

For any 𝑆(𝐾𝑛), the achromatic number 𝜓[𝑆(𝐾𝑛)] = 𝑛 + 1, 𝑛 ≥ 3. 

Proof: 

 Let 𝐾𝑛 be the complete graph.  The splitting graph 𝑆(𝐾𝑛) is obtained by taking a new 

point  𝑢𝑖 for each point 𝑣𝑖  of 𝐾𝑛 and joining 𝑢𝑖 to all points of 𝐾𝑛 adjacent to 𝑣𝑖 .  Consider the 

two sets of vertices 𝑈 = {𝑢1, 𝑢2, … 𝑢𝑛} and 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛}.   Assign the nodes in 𝑉 to 𝐾𝑛 in 

the positive direction, the anti-clock wise direction is considered as a positive direction. 

Assign the nodes in 𝑈 to the newly introduced nodes in 𝑆(𝐾𝑛) in the same direction. 

By the definition of complete graph all the 𝑣𝑖 ’s are adjacent to all the other 𝑛 −

1 nodes.  We need 𝑛 colours to colour 𝐾𝑛.  In 𝑆(𝐾𝑛), the nodes 𝑢𝑖 ’s are regular with degree 

𝑛 − 1.   Here all the 𝑢𝑖 ’s are adjacent to 𝑣𝑗 ’s for all 𝑗 ≠ 𝑖.  Consider the colour set 𝐶 ′ =

{𝐶0
′ , 𝐶1

′ , . . , 𝐶𝑛
′ }.  Allot 𝐶𝑖 

′ to  𝑣𝑖  for 1 ≤ 𝑖 ≤ 𝑛 and 𝐶0
′  to all the 𝑢𝑖 ’s.  By this construction the 

above colouring is achromatic and is the maximal one. Hence 𝜓[𝑆(𝐾𝑛)] = 𝑛 + 1, 𝑛 ≥ 3. 

Example: 

 

Figure 3:  𝜓[𝑺(𝑲𝟓)] = 𝟔, 𝒏 ≥ 𝟑. 

 

Structural Properties of 𝑆[𝐶𝑏𝑛]: 

• The total number of lines in 𝑆[𝐶𝑏𝑛] = 6𝑛 − 3.  

• The maximum degree in 𝑆[𝐶𝑏𝑛] = 6. 

• The total number of points in 𝑆[𝐶𝑏𝑛] = 2𝑛.   
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Observation:  

• For any  𝑆(𝐶𝑏𝑛), the achromatic number 𝜓[𝑆(𝐶𝑏𝑛)] = 𝑛 + 2, 𝑛 ≥ 2. 

 

Conclusion: 

In this work, the structural properties of the splitting graphs of path graphs, star 

related graphs, complete graphs and comb graphs have been studied. 
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Abstract: 

Let 𝑆(𝐺), the splitting graph of a graph 𝐺 which can be obtained by taking a new 

point 𝑣 ′ for each point 𝑣 of 𝐺  and joining 𝑣 ′ to all points of 𝐺 adjacent to 𝑣.  In this study, the 

b-chromatic colouring, of the splitting graphs of double star graph, path, star graph, comb 

graph and complete graph are discussed.   

Keywords: b-chromatic number, Splitting graphs, Star graph, Comb graph, complete 

graph 

 

AMS Subject Classification: 05C15 

 

Introduction: 

 The splitting graph was introduced by E. Sampath Kumar and B. Walikar in the 

year 1981. In that paper they introduced the definition of the splitting graph, studied some 

of its properties and obtained its characterization.  For each node  𝑣 of a graph 𝐺, take a 

new node 𝑣 ′.   Join 𝑣 ′ to all the nodes of 𝐺 adjacent to 𝑣.  The graph 𝑆(𝐺) thus obtained is 

called the splitting graph of 𝐺.  

The concept of b-chromatic number was introduced by Irwing and Manlove. They 

defined the b-chromatic colouring as “The b-chromatic number 𝜑(𝐺) of a graph 𝐺 is the 

largest integer 𝑘, such that 𝐺 admits a proper 𝑘 − colouring, and every colour class has a 

representative point adjacent at least to one point in each other class. “ This type of 

colouring is called b-colouring. A Star  𝑎𝑛 is the bi partite graph 𝐾1,𝑛.  A double star graph is 

the graph 𝐾2(𝑎𝑛, 𝑎𝑟) obtained by joining the root nodes of two star graphs  𝑎𝑛  and  𝑎𝑟 by an 

edge.  Comb is the graph got by joining a single pendent edge to each point of a path. 
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The b-chromatic Number of Splitting graph of Path graph: 

Observation: 

For any 𝑆(𝑃𝑛), the b-chromatic number
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Example:  

 

Figure 1:  𝝋[𝑺(𝑷𝟖)] = 𝟓 

 

The b-chromatic Number of Splitting graph of Star graph: 

Observation: 

• For any 𝑆(𝐾1,𝑛), the b-chromatic number 𝜑[𝑆(𝐾1,𝑛)] = 2, 𝑛 ≥ 2   

 

Example 

 

 

Figure 2:    𝝋[𝑺(𝑲𝟏,𝟒)] = 𝟐, 𝒏 ≥ 𝟐 

 

Theorem:  

For any 𝑆(𝐾2(𝑎𝑛, 𝑎𝑟)), the b-chromatic number  𝜑[𝑆(𝐾2(𝑎𝑛, 𝑎𝑟))] = 2 

Proof: 

Let 𝐾2(𝑎𝑛, 𝑎𝑟) denote the double star graph which is obtained by connecting the roots 

of two star graphs  𝑎𝑛 and 𝑎𝑟  𝑏𝑦  an edge.  Let the nodes of  𝐾1,𝑛 be {𝑣0, 𝑣1, . . , 𝑣𝑛} where 𝑣0 is 
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the root node and let the nodes of  𝑎𝑟  be {𝑢0, 𝑢1, . . , 𝑢𝑟} where 𝑢0 is the root node. The graph 

𝑆[𝐾2(𝑎𝑛, 𝑎𝑟)] can be obtained by adding new nodes 𝑣𝑖
′ and 𝑢𝑖

′  for each point 𝑣𝑖  and 𝑢𝑖  of 𝐺 and 

joining 𝑣𝑖
′ and 𝑢𝑖

′  to all points of 𝐾2(𝑎𝑛, 𝑎𝑟) adjacent to 𝑣𝑖   & 𝑢𝑖  respectively. 

The degree of the node 𝑣0 is equal to 𝑛 + 1 and the degree of 𝑢0 is equal to 𝑟 +

1.   Consider the colour set 𝐶 = {𝐶1, 𝐶2 }. Assign the colour 𝐶1 to 𝑢0 and 𝐶2 to 𝑣0.   Assign the 

colour 𝐶2 to all the adjacent nodes of 𝑢0 and assign 𝐶1 to all the adjacent nodes of 𝑣0.  If we 

assign any new colour 𝐶3 to any of the 𝑢𝑖
′  𝑠 or 𝑣𝑖

′  𝑠, that will not satisfy the b-chromatic 

colouring property.  Hence the maximal number of colours is  2 and this colouring is b-

chromatic. Hence 𝜑[𝑆(𝐾2(𝑎𝑛, 𝑎𝑟))] = 2. 

 

Example: 

.  

Figure 3:  𝜑[𝑺(𝑲𝟐(𝒂𝒏, 𝒂𝒓))] = 𝟐 

 

The b-chromatic Number of Splitting graph of complete graph and Comb graph 

Theorem: 

For any  𝑆(𝐾𝑛), the b-chromatic number 𝜑[𝑆(𝐾𝑛)] = 𝑛,   𝑛 ≥ 3. 

Proof: 

Let   𝑉(𝐾𝑛) = {𝑣1, 𝑣2, … 𝑣𝑛} and   𝑉[𝑆(𝐾𝑛)] = {𝑢1, 𝑢2, … 𝑢𝑛} ∪ {𝑣1, 𝑣2, … 𝑣𝑛} where 𝑢𝑖 is the 

node in the splitting graph corresponding to the node𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛.   Here it is observed that, 

the node 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛  has degree 2(𝑛 − 1).   All the node s𝑢𝑖  have degree (𝑛 − 1). For  1 ≤

𝑖 ≤ 𝑛, assign 𝐶𝑖 
′  to 𝑣𝑖 ,  we note that 𝑛 colours are needed to colour these 2(𝑛 − 1) nodes. If we 

assign a number 𝐶0 
′  to any node 𝑢𝑖 , that will violate the property of b-chromatic colouring. 

Hence 𝑛  number of colours are required to colour 𝑆(𝐾𝑛).   Hence 𝜑[𝑆(𝐾𝑛)] = 𝑛, 𝑛 ≥ 3. 
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Observation: 

For any  𝑆(𝐶𝑏𝑛), the b-chromatic number 
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Example:  

 

Figure 4:   𝝋[𝑺(𝑪𝒃𝟕)] = 𝟓 

 

Conclusion: 

 In this work, the structural properties of the splitting graphs of path graphs, star 

related graphs, complete graphs and comb graphs have been studied.   
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Abstract: 

In this work, the notion of strong-self-function chainable sets has been pulled-

out to bitopological spaces, which has been defined for general topological space in 

Shrivastava et al. (2014). Results demonstrated by Shrivastava, et al. (2014) are 

drawn-out to strong-self-function chainable sets for a bitopological space. In this 

article, self−𝑏𝑖 − 𝑓 − 𝜖 −chainable and strongly self−𝑏𝑖 − 𝑓 − chainable are discussed for 

bitoplogical space and some results related to them are established in addition to the 

results established in Vijeta (2020) 

Subject Classification: AMS (2000):54A99 

Keywords: 𝑓 − 𝜖 −chainablility, function – bi −𝑓 −chainable sets, function– 

bi−𝑓 −chainable space 

 

All through this article, X will symbolize a bitopological space with topologies 

𝜏1 𝑎𝑛𝑑 𝜏2 and 𝜏 = 𝜏1 ∩ 𝜏2 and 𝑓 ∶ (𝑋, 𝜏) → [0,∞) will be talked about as a non-constant real 

valued continuous function unless otherwise stated.  

 

Introduction: 

As long back as in 1883, Cantor defined connectedness in metric spaces through 𝜀 -

chains which have been studied extensively by many mathematicians.  These 𝜀-chains were 

defined between two given points and comprised points of the metric space under 

consideration. In the context of metric spaces, 𝜀- chainability describes connected sets 

amongst compact sets.  In the same setting, Beer (1981) has characterized compact sets 

among the connected sets. Different definitions of chains in metric spaces have been 
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provided by various Mathematicians. A simple chain joining two points p, q of the metric 

space X is a finite sequence  𝐴1, 𝐴2, … , 𝐴𝑚 of subsets of 𝑋 such that 𝐴1 (and only 𝐴1) contains 

𝑝, 𝐴𝑚 (and only 𝐴𝑚)  contains 𝑞 and  𝐴𝑖 ∩ 𝐴𝑗 = ø if and only if  |𝑖 − 𝑗| > 1. However, Piotr 

Minc (1990) has called such a chain by the name weak chain, whereas Newmann (1961) 

has called it a chain of sets. The idea of 𝜀-chainability in metric spaces have been 

generalized to topological spaces utilizing open covers and have acquired a characterization 

of connectedness in terms of open cover by Naimpally and Pareek (pre-print). The concept 

of connectedness by uniformly short paths was defined by Bellamy (1987). Shrivastava and 

Agrawal (2002) have defined chainable sets using chains between points. These concepts 

were extended to topological spaces through continuous functions by Vijeta et al. (2013). 

Function – 𝜀 – chainability has been defined in terms of real valued continuous functions on 

the space. Shrivastava et al. (2014) introduced the concept of self and strongly function 

chainable sets in topological spaces. In this article, the same concept introduced by 

Shrivastava et al. (2014) has been extended to bitopological spaces. 

All the way through this article, [0,∞) is with usual metric topology and 𝜀 is positive 

real number unless stated otherwise. Also 𝜏 is the intersection of two topologies 𝜏1 and 𝜏2 on 

X. Consider a bitopological space (𝑋, 𝜏1, 𝜏2) and 𝐴 ⊂ 𝑋 then (𝐴, 𝜏1𝐴, 𝜏2𝐴) is a bitopological 

space which is subspace of (𝑋, 𝜏1, 𝜏2) where (𝑋, 𝜏) is a topological space and 𝜏1𝐴 and 𝜏2𝐴 are 

relative topologies on the subset A. 

 

Preliminary: 

Function−𝒃𝒊 − 𝒇− 𝝐 – chainable: 

The following definitions are defined in Vijeta et al. (2018) and Vijeta and Saratha 

(2018). 

Definition 1:  

           (𝑋, 𝜏1, 𝜏2), a bitopological space on set X is termed as function−𝑏𝑖 − 𝑓 − 𝜖– chainable 

if for 𝜖 > 0 there is a non-constant function 𝑓: (𝑋, 𝜏) → [0,∞), where 𝜏 = 𝜏1 ∩ 𝜏2  such that it 

is continuous and for every two points  𝑥, 𝑦 ∈  𝑋 , a sequence  𝑥 =  𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑦 of 

points exists in 𝑋 satisfying the condition  |𝑓(𝑥𝑖 ) − 𝑓(𝑥𝑖−1) ∣ < 𝜖  ; 1 ≤ 𝑖 ≤ 𝑛  .   

 

Definition 2:  

Consider (𝑋, 𝜏1, 𝜏2) as a bitopological space and assume that a continuous map f  

from (𝑋, 𝜏1 ∩ 𝜏2) to [0,∞) exists that is at the same time non-constant and satisfies the 

condition that for each positive 𝜀, the space 𝑋 is function – bi −𝑓 − 𝜖 −chainable. Then the 

bitopological space  (𝑋, 𝜏1, 𝜏2)  is termed as function – bi −𝑓 −chainable.  
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Definition 3:   

Consider 𝐴 𝑎𝑛𝑑 𝐵 to be the subsets of  𝑋.  A function – bi−𝑓 − 𝜖 −chain of length 𝑛 

from set 𝐴 to set 𝐵 is a finite collection of subsets of 𝑋 say 𝐴0,, 𝐴1, 𝐴2, … , 𝐴𝑛 with the 

restriction 𝐴 = 𝐴0,  𝐴𝑛 = 𝐵, 𝐴𝑖−1 ⊂ 𝑈𝑏𝑖−𝑓 𝜖(𝐴𝑖) and 𝐴𝑖 ⊂ 𝑈𝑏𝑖−𝑓 𝜖(𝐴𝑖−1). If there exists a 

function – 𝑓 − 𝜖 −chain amongst two sets 𝐴 and 𝐵 then < 𝐴, 𝐵 > is function – bi−𝑓 −

𝜖 −chainable and < 𝐴,𝐵 > is function– bi – 𝑓 −chainable when it is function– bi −𝑓 −

𝜖 −chainable for any 𝜖 > 0. 

Visibly each 𝑈𝑏𝑖−𝑓 𝜖(𝑥) is an open set. 

The following definition and results proved by Vijeta (2020) related to bi−𝑓 − 𝜖 −

chainablity are stated below. These terms and results established by Shrivastava et al. 

(2014) for topological space, have been extended to bitopological space. 

 

Definition 4:  

Considering a point 𝑥 ∈ 𝑋 and set 𝐴 ⊂ 𝑋,  define 

[𝑥]𝑏𝑖−𝑓𝜖 = {𝑦 ∈ 𝑋|𝑦 𝑖𝑠  𝑏𝑖 − 𝑓 − 𝜖 − chainable  𝑡𝑜  𝑥}} and 

[𝐴]𝑏𝑖−𝑓𝜖 = {𝐵 ⊂ 𝑋| < 𝐴,𝐵 > 𝑖𝑠  𝑏𝑖 − 𝑓 − 𝜖 − chainable}. 

 

Note: 𝑏𝑖 − 𝑓 − 𝜖 − chainability amongst any two elements or amongst any two subsets of X 

forms an equivalence relation on a bitopological space X and the disjoint sets signified by 

[𝑥]𝑏𝑖−𝑓𝜖 or [𝐴]𝑏𝑖−𝑓𝜖 are equivalence classes which partition the space X.  The set [𝑥]𝑏𝑖−𝑓𝜖 

is a clopen set. 

 

Theorem 1:  

Consider a subset 𝐴 and 𝑥 an element of bitopological space 𝑋.  

If < 𝐴, [𝑥]𝑏𝑖−𝑓𝜖 > are bi−𝑓 − 𝜖 −chainable then 𝐴 is a subset of [𝑥]𝑏𝑖−𝑓𝜖. 

Also [𝑥]𝑏𝑖−𝑓𝜖 is the maximal set which is bi−𝑓 − 𝜖 −chainable to the set A and   

sup[𝐴]𝑏𝑖−𝑓𝜖 = [𝑥]𝑏𝑖−𝑓𝜖 

 

Theorem 2:  

 If A is any subset of 𝑋which is a bitopological space and 𝑥, 𝑦 be any two 

elements of 𝑋 and < 𝐴, [𝑥]𝑏𝑖−𝑓𝜖 >and < 𝐴, [𝑦]𝑏𝑖−𝑓𝜖 >are 𝑏𝑖 − 𝑓 − 𝜖 −chainable sets then 

[𝑥]𝑏𝑖−𝑓𝜖 = [𝑦]𝑏𝑖−𝑓𝜖. 

 Secondly < [𝑥]𝑏𝑖−𝑓𝜖 , [𝑦]𝑏𝑖−𝑓𝜖 > are bi−𝑓 − 𝜖 −chainable iff [𝑥]𝑏𝑖−𝑓𝜖 = [𝑦]𝑏𝑖−𝑓𝜖. 
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Self−𝒃𝒊 − 𝒇 −Chainability 

Definition 5:  

 Consider A to be any subset of bitopological space X. If for any positive number 

𝜖, there happen to exist a continuous function which should also be non-constant say 𝑓 ∶

(𝑋, 𝜏) → [0,∞) satisfying the condition that any pair of elements of A can be linked by a 

bi−𝑓 − 𝜖 −chain, then in this case, A is termed as self – bi −𝑓 − 𝜖 −chainable. A is termed 

to be self– bi−𝑓 −chainable if A is self – bi−𝑓 − 𝜖 −chainable for any positive 𝜖 . 

 

Observations: 

i. The set [𝑥]𝑏𝑖−𝑓𝜖 for any element x of X is all the time self– bi−𝑓 − 𝜖 −chainable. 

ii. Any bitopological space is bi−𝑓 −chainable iff it is self– bi−𝑓 −chainable. 

 

Theorem 3:  

A bitopological space is self– bi−𝑓 −chainable if fall its subsets are self– 

bi−𝑓 −chainable.  

 

Theorem 4:  

A bitopologicalspace is bi−𝑓 −chainable iff all the subsets of the space are self– 

bi−𝑓 −chainable. 

 

Strongly Self−𝒃𝒊 − 𝒇 −Chainability 

Definition 6: 

Let  𝐴 ⊂ 𝑋. If for any positive number 𝜖, there happens to be a continuous mapping 

𝑓: (𝑋, 𝜏) → [0,∞) which is also non‐constant with the condition that any pair of elements in 

A can be linked by an bi−𝑓 − 𝜖 −chain comprising of points of A only then A is termed as 

strongly self– bi−𝑓 − 𝜖 −chainable. 

This set 𝐴 is considered to be strongly self– bi−𝑓 −chainable if it is strongly self– 

bi−𝑓 − 𝜖 −chainable for any positive number 𝜖. 

It can be seen clearly that for every positive 𝜖the notion of bi-𝑓 − 𝜖 −chainability and 

strongly self– bi−𝑓 − 𝜖 −chainability are one and the same. 

 

Theorem 5:  

Any set which is connected is strongly self– bi−𝑓 −chainable if the 𝑓 is non-

constant function on the set. 
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Corollary:  

Any connected space is always bi−𝑓 −chainable. 

 

Theorem 6:  

Conside r 𝐴 as a subset of a bitopological space (𝑋, 𝜏1, 𝜏2). If 𝐴 is self– bi−𝑓 −

𝜖 −chainable, then �̅� is self– bi−𝑓 − 𝜖 −chainable. 

 

Observation: 

Self– bi−𝑓 − 𝜖 −chainablity of any set A is a resultant of self– bi−𝑓 − 𝜖 −chainablity 

of  �̅� 

 

Theorem 7:  

For any two subsets 𝐴 and 𝐵 of a bitopological space X, following results 

hold true.  

i. If 𝐴, 𝐵 are mutually non-disjoint and are self−𝑏𝑖 − 𝑓 −chainable then its union 𝐴 ∪

𝐵) is also self−𝑏𝑖 − 𝑓 −chainable. 

ii. If {𝐴𝛼}𝛼∈Λ are self−𝑏𝑖 − 𝑓 −chainable subsets of X and ⋃ 𝐴𝛼𝛼∈Λ ≠ ∅ then ⋃ 𝐴𝛼𝛼∈Λ  is 

self −𝑏𝑖 − 𝑓 −chainable. 

iii. If C is self−𝑏𝑖 − 𝑓 −chainable and {𝐶𝑧}𝑧∈Λ be a structure of self−𝑏𝑖 − 𝑓 − chainable 

sets satisfying the condition (𝐶 ∩ 𝐶𝑧) ≠ ∅    ∀𝑧 ∈ Λ then 

𝐶 ∪ (⋃ 𝐶𝑧𝑧∈∞ ) is self −𝑏𝑖 − 𝑓 −chainable. 

iv. Consider A, B to be two mutually non-disjoint sets and are self−𝑏𝑖 −

𝑓 −chainable in X then < 𝐴,𝐵 >)is   bi−𝑓 −chainable. 

 

Strongly function−𝜺 − 𝒇 − chainablity between two sets: 

Definition 7:  

For 𝜀 > 0, consider a non‐constant continuous function𝑓: 𝑋 → [0∞) and 𝐴, 𝐵 be 

two subsets of 𝑋. Then < 𝐴,𝐵 > is believed to be strongly –  𝑏𝑖 − 𝑓 − 𝜀 −chainable if and 

only if 𝐴 and 𝐵 are self −𝑓 − 𝜀 −chainable and < 𝐴,𝐵 > is  𝑏𝑖 − 𝑓 − 𝜀 −chainable. 

 < 𝐴,𝐵 > is believed to be strongly–  𝑏𝑖 − 𝑓 −chainable if it is strongly–  𝑏𝑖 − 𝑓 −

𝜀 −chainable for every positive real number𝜀. 

Next two theorems give the characterizations of strongly−𝑏𝑖 − 𝑓 − 𝜀 −chainable 

sets. 
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Theorem 8: 

 < 𝐴,𝐵 > is strongly−𝑏𝑖 − 𝑓 − 𝜀 −chainable, if and only if there is an 𝑏𝑖 − 𝑓 −

𝜀 −chain between every point of A and every point of B, where 𝐴 and 𝐵 are two subsets 

of 𝑋. 

Proof:  

Let < 𝐴,𝐵 > be strongly−𝑏𝑖 − 𝑓 − 𝜀 −chainable sets and let 𝑥 be any element of 

𝐴 and 𝑦 in 𝐵. 

Then as< 𝐴,𝐵 > is 𝑏𝑖 − 𝑓 − 𝜀 −chainable, 𝑥 is 𝑏𝑖 − 𝑓 − 𝜀 −chainable to some 

point 𝑧 of 𝐵. 

By self −𝑏𝑖 − 𝑓 − 𝜀 −chainability of set of 𝐵 , 𝑧 is 𝑏𝑖 − 𝑓 − 𝜀 −chainable to some 

point 𝑦.  

Hence 𝑥 and 𝑦 are 𝑏𝑖 − 𝑓 − 𝜀 −chainable.  

On the other hand, let 𝑏𝑖 − 𝑓 − 𝜀 −chain exist from every point of 𝐴 to every 

point of 𝐵 and vice-versa. 

Then clearly < 𝐴,𝐵 > is 𝑏𝑖 − 𝑓 − 𝜀 −chainable.  

Next if 𝑥 and 𝑥′ are any two points of 𝐴 then both are 𝑏𝑖 − 𝑓 − 𝜀 −chainable to 

every point of 𝐵 and hence 𝑥 and 𝑥 ′ are 𝑏𝑖 − 𝑓 − 𝜀 −chainable.  

Equivalently, 𝐴 is self−𝑏𝑖 − 𝑓 − 𝜀 −chainable. 

Similarly, 𝐵 is self−𝑏𝑖 − 𝑓 − 𝜀 −chainable. 

 

Theorem 9: 

 𝑋 is strongly 𝑏𝑖 − 𝑓 − 𝜀 −chainable if and only if, for 𝐴, 𝐵 subsets of 𝑋, 𝐴 ∪ 𝐵 is 

self 𝑏𝑖 − 𝑓 − 𝜀 −chainable.  

Proof:  

Consider < 𝐴,𝐵 >to be a strongly 𝑏𝑖 − 𝑓 − 𝜀 −chainable setsand 𝑥 and 𝑦 be two 

points in 𝐴 ∪ 𝐵.  

If 𝑥 is in 𝐴 and 𝑦 in 𝐵 then by previous theorem, there is an 𝑏𝑖 − 𝑓 − 𝜀 −chain 

between these two points 𝑥 and 𝑦. If 𝑥, 𝑦 are in 𝐴 or 𝑥, 𝑦 are in 𝐵 then since 𝐴 and 𝐵 are 

self 𝑏𝑖 − 𝑓 − 𝜀 −chainable sets, a 𝑏𝑖 − 𝑓 − 𝜀 −chain exists between 𝑥 and 𝑦.  

On the other hand, assume 𝐴 ∪ 𝐵 to be self 𝑏𝑖 − 𝑓 − 𝜀 −chainable, 𝑥 belongs to 𝐴 

and 𝑦 belongs to 𝐵 then 𝑥, 𝑦 ∈ 𝐴 ∪ 𝐵 and hence a 𝑏𝑖 − 𝑓 − 𝜀 −chain exists between 𝑥 and 

𝑦. 

Equivalently, < 𝐴, 𝐵 >is strongly 𝑏𝑖 − 𝑓 − 𝜀 −chainable. 
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Theorem 10:  

If 𝐴 ⊂ [𝑥]𝑓𝜀, for a subset 𝐴 of 𝑋 then < 𝐴, [𝑥]𝑓𝜀 > is strongly 𝑏𝑖 − 𝑓 −

𝜀 −chainable. 

Proof: 

Assume 𝑦 ∈ 𝐴 and 𝑧 ∈ [𝑥]𝑓𝜀. Then 𝑦 ∈ [𝑥]𝑓𝜀 and hence 𝑦 and 𝑧 are 𝑏𝑖 − 𝑓 −

𝜀 −chainable. 

Equivalently,< 𝐴, [𝑥]𝑓𝜀 > is strongly 𝑏𝑖 − 𝑓 − 𝜀 −chainable. 

Observation:  

The result given above confirms that converse of theorem 1 stands true. 

 

Theorem 11:  

Let 𝐴be self−𝑏𝑖 − 𝑓 − 𝜀 −chainable subset of 𝑋. If < [𝑥]𝑓𝜀, 𝐴
𝑐 > is 𝑏𝑖 − 𝑓 −

𝜀 −chainable then < 𝐴, [𝑥]𝑓𝜀
𝑐 > is 𝑏𝑖 − 𝑓 − 𝜀 −chainable. 

Proof:  

Let < 𝐴, [𝑥]𝑓𝜀
𝑐 >  is 𝑏𝑖 − 𝑓 − 𝜀 −chainable, then by previous theorem, 

𝐴𝑐 ⊂ [𝑥]𝑓𝜀 or [𝑥]𝑓𝜀
𝑐 ⊂ 𝐴.  

Since 𝐴 is self−𝑏𝑖 − 𝑓 − 𝜀 −chainable then < 𝐴, [𝑦]𝑓𝜀 > is 𝑏𝑖 − 𝑓 − 𝜀 −chainable for any 𝑦 

in 𝐴.  

Equivalently, 𝐴 is a subset of[𝑦]𝑓𝜀  

Equivalently,  [𝑥]𝑓𝜀
𝑐 is a subset of [𝑦]𝑓𝜀. 

Hence by theorem 3, < [𝑥]𝑓𝜀
𝑐 , [𝑦]𝑓𝜀 > is 𝑏𝑖 − 𝑓 − 𝜀 −chainable. 

Equivalently, < 𝐴, [𝑥]𝑓𝜀
𝑐 >  is 𝑏𝑖 − 𝑓 − 𝜀 −chainable. 

 

Theorem 12:  

A bitopologicalspace is 𝑏𝑖 − 𝑓 − 𝜀 −chainable for any positive number 𝜀 if and 

only if it is strongly− 𝑏𝑖 − 𝑓 − 𝜀 −chainable for any positive number 𝜀. 

Theorem 13:  

Let 𝐴 be self−𝑏𝑖 − 𝑓 − 𝜀 −chainable, then for all 𝑦 ∈ 𝐴, 

< 𝐴, [𝑦]𝑓𝜀 > is strongly− 𝑏𝑖 − 𝑏𝑖 − 𝑓 − 𝜀 −chainable and holds true conversely. 

 

Conclusion: 

In this article, the results related to strongly function chainability between 

sets, which were studied for topological space by Shrivastava, et al. (2014) have been 

extended and generalized for bitopological space.  
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Abstract: 

In this paper some properties of annihilator semi-ideals in a semilattice with 0 and   

annihilator preserving homomorphism are furnished. 

 

Keywords: Distributive semilattice, 0- distributive semilattice, modular semilattice, semi-

ideal. 
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Introduction: 

 As a generalization of distributive semilattices introduced by Grätzer and Schmidt 

[3] and pseudo-complemented semilattices introduced by Frink [1], Varlet [7] has defined 

and studied 0-distributive semilattices.  

 Let  𝑆 = 〈𝑆 , ∧〉 be a semilattice with 0. For any non-empty subset  𝐴 of   𝑆, the set of 

all annihilators of  𝐴 is denoted by  𝐴∗. In a 0-distributive semilattice  𝑆, 𝐴∗ is an ideal in the 

sense of Grätzer [2] for  ∅ ≠ 𝐴 ⊆ 𝑆 but it is not so in general. In any semilattice  𝑆 with 0, 𝐴∗ 

is a semi-ideal in the sense of Venkatnarsimhan [8] for any  ∅ ≠ 𝐴 ⊆ 𝑆. We call them 

annihilator semi-ideals. Some properties of these annihilator semi-ideals in  𝑆 are studied 

in section 3.  

For a congruence relation  𝑅 defined on a semilattice  𝑆 with 0, by  𝑥 ≡ 𝑦(𝑅) ⟺ {𝑥}∗ =

{𝑦}∗ (𝑥, 𝑦 ∈ 𝑆) it is proved that the quotient semilattice  〈𝑆 ⁄ 𝑅 , ∧〉 is isomorphic with the 

semilattices  〈𝑆∗∗, ∩〉 and 〈𝒦, ∩〉 where 𝑆∗∗ = {{𝑥}∗∗ | 𝑥 ∈ 𝑆} and  𝒦 = {{𝑀}𝑥 | 𝑥 ∈ 𝑆}, here  

{𝑀}𝑥 = {𝑀 |𝑥 ∉ 𝑀, 𝑀 is a minimal prime semi-ideal in 𝑆 }. Further it is proved that the 

semilattice  〈𝑆∗∗, ∩〉 is a Boolean algebra if and only if for any non-empty subset  𝐴 of  𝑆, 

there exists  𝑎′ ∈ 𝑆 such that  𝐴∗∗ = {𝑎′}
∗
.  

mailto:santajikhopade@gmail.com
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 In section 4 the concept of an annihilator preserving homomorphism is introduced in 

a natural way. Some properties of annihilator homomorphism are proved. Mainly we prove 

that given a semi-ideal  𝐼 of a semilattice  𝑆 with 0 there exists a semilattice  𝑆 ′ with  0′ and 

a homomorphism   𝜃: 𝑆 → 𝑆 ′ such that  𝜃(0) = 0′ and  𝐾𝑒𝑟𝜃 = 𝐼∗.  

 

Preliminaries: 

 This section is devoted to a summary of known concepts and results which will be 

used in the subsequent sections. For basic concepts in lattice theory, the reader is referred 

to [2]. Throughout this paper we shall be concerned with ∧ − semilattice  〈𝑆 , ∧〉 which will 

be simply denoted by  𝑆 only. For notions and notations in semilattices we follow [4] and [8]. 

 The partial ordering  in  𝑆 is defined by  𝑎 ≤ 𝑏 if and only if  𝑎 ∧ 𝑏 = 𝑎. The least 

(greatest) element is denoted by  0 (1), when it exists. A semilattice  𝑆 is said to be bounded 

if both 0 and 1 exist in  𝑆. Now onwards  𝑆 will denote a meet semilattice with 0 unless 

otherwise stated. A non-empty subset  𝐴 of  𝑆 is called a semi-ideal if  𝑎 ∈ 𝐴 , 𝑏 ≤ 𝑎 (𝑏 ∈ 𝑆) 

implies  𝑏 ∈ 𝐴. A proper semi-ideal  𝐴 of  𝑆 is said to be prime if  𝑎 ∧ 𝑏 ∈ 𝐴 implies  𝑎 ∈ 𝐴 or 

 𝑏 ∈ 𝐴. A prime semi-ideal is called minimal prime semi-ideal if it does not contain any 

other prime semi-ideal. 

An ideal  𝐼 of  𝑆 is a semi-ideal  𝐼 of  𝑆 such that for any  𝑥 , 𝑦 ∈ 𝐼 there exists  𝑡 ∈ 𝐼 

such that  𝑡 ≥ 𝑥 and  𝑡 ≥ 𝑦. An ideal  𝐼 ≠ 𝑆 is called a proper ideal. A proper ideal  𝐼 is said to 

be prime ideal of  𝑆 if  𝑥 ∧ 𝑦 ∈ 𝐼 imply  𝑥 ∈ 𝐼 or  𝑦 ∈ 𝐼 ( 𝑥, 𝑦 ∈ 𝑆). A proper ideal  𝑀 of  𝑆 is said 

to be maximal if it is not contained in any other proper ideal. For any subset  𝐻 of  𝑆 the 

smallest ideal containing  𝐻 is called the ideal generated by  𝐻 and is denoted by  (𝐻]. The 

principal ideal generated by  𝑎 ∈ 𝑆 is the set  {𝑥 ∈ 𝑆 ∶ 𝑥 ≤ 𝑎} and is denoted by  (𝑎]. 

 A filter of  𝑆 is a non-empty subset  𝐹 of  𝑆 such that for any  𝑥, 𝑦 ∈ 𝐹 we have 𝑥 ∧ 𝑦 ∈

𝐹 and  𝑥 ∈ 𝐹, 𝑦 ≥ 𝑥 (𝑦 ∈ 𝑆) imply  𝑦 ∈ 𝐹. A filter  𝐹 of  𝑆 is said to be proper if  𝐹 ≠ 𝑆. A proper 

filter  𝐹 of 𝑆 is said to maximal if it is not contained in any other proper filter. For any non-

empty subset  𝐻 of  𝑆 the smallest filter containing  𝐻 is called the filter generated by  𝐻 and 

it is denoted by  [𝐻). The principal filter generated by  𝑎 ∈ 𝑆 is the set  {𝑥 ∈ 𝑆 ∶ 𝑥 ≥ 𝑎} and it 

is denoted by [𝑎). For any non-empty subset  𝐴 of  𝑆, the set 𝐴∗ = {𝑥 ∈ 𝑆 ∶ 𝑥 ∧ 𝑎 = 0 for all 𝑎 ∈

𝐴} is a called annihilator of  𝐴. 

 

Definition 1:  𝑆 is said to be pseudo-complemented if for every  𝑎 ∈ 𝑆 there exists  𝑏 ∈ 𝑆 

such that  {𝑎}∗ = (𝑏]. This  𝑏 is called the pseudo-complement of  𝑎 and is denoted by 𝑎∗.  

Definition 2: 𝑆 is said to be a * - semilattice if for any  𝑥 ∈ 𝑆 there exists  𝑥 ′ ∈ 𝑆 such that 

 {𝑥}∗∗ = {𝑥 ′}
∗
. 
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Definition 3: 𝑆 is called a modular semilattice if  𝑥, 𝑦, 𝑧 ∈ 𝑆 and  𝑥 ≥ 𝑦 ∧ 𝑧 imply the 

existence of  𝑡 , 𝑟 ∈ 𝑆 such that  𝑥 ∧ 𝑡 = 𝑥 ∧ 𝑟 = 𝑡 ∧ 𝑟. 

Definition 4:  𝑆 is said to be weakly distributive semilattice if  {𝑥}∗ is an ideal for any 𝑥 ∈ 𝑆. 

Definition 5:  𝑆 is called 0-distributive semilattice if 𝐴∗ is an ideal for any non-empty 

subset  𝐴 of  𝑆. 

Definition 6:  𝑆 is said to be disjunctive (weakly complemented) if for  𝑎, 𝑏 ∈ 𝑆 and  𝑎 ≨ 𝑏 

imply that there exists  𝑐 ∈ 𝑆 such that  𝑎 ∧ 𝑐 = 0 but  𝑏 ∧ 𝑐 ≠ 0. 

Definition 7: 𝑆 is said to be dense if  (𝑎]∗ = (0] for all  0 ≠ 𝑎 ∈ 𝑆. 

We collect below some known results used in sequel. 

 

Result 2.1: In 𝑆, a proper filter  𝐹 is maximal if and only if for  𝑥 ∉ 𝐹, there exists  𝑦 ∈ 𝐹 

such that  𝑥 ∧ 𝑦 = 0. 

Result 2.2: A non-empty proper subset  𝐹 of  𝑆 is a maximal filter if and only if  𝑆\𝐹 is a   

minimal prime semi-ideal of  𝑆. 

Result 2.3: Let  𝔐 denote the set of minimal prime semi-ideals of  𝑆. Define 

{𝑀}𝑥 = {𝑀 ∈ 𝔐 | 𝑥 ∉ 𝑀}. Then  {𝑀}𝑥 ∩ {𝑀}𝑦 = {𝑀}𝑥∧𝑦  for any  𝑥, 𝑦 ∈ 𝑆. 

Result 2.4: A prime semi-ideal  𝐴 of  𝑆 is minimal prime if and only if  𝐴 contains precisely 

one of  {𝑥} , {𝑥∗}  for every  𝑥 in  𝑆. 

 

Annihilators in semilattices: 

The aim of this section is to prove various properties of the annihilators in  𝑆. 

Obviously for any non-empty  𝐴 of  𝑆, 𝐴∗ is semi-ideal of  𝑆. This semi-ideal  𝐴∗ is called 

annihilator semi-ideal. It has following properties which can be verified directly by the 

definition. 

Lemma 3.1: Following properties hold in  𝑆 for annihilator semi-ideals in  𝑆. Let  𝐴 and  𝐵 

denote non-empty subsets of  𝑆. 

(1) 𝐴∗ = ⋂{{𝑎}∗ | 𝑎 ∈ 𝐴}. 

(2) If  𝐴 ⊆ 𝐵, then  𝐵∗ ⊆ 𝐴∗ and  𝐴∗∗ ⊆ 𝐵∗∗. 

(3)  𝐴 ⊆ 𝐴∗∗. 

(4)  𝐴∗ = 𝐴∗∗∗. 

(5)  𝐴∗ ⊆ 𝐵∗  ⟺  𝐵∗∗ ⊆ 𝐴∗∗. 

(6)  𝐴∗ ∩ 𝐴∗∗ = {0}. 

(7) If  𝐼 and  𝐽 are semi-ideals then  𝐼 ∩ 𝐽 = (0]  ⟺ 𝐼 ⊆ 𝐽∗. 

 Following is an extension of the result of Speed (see [6], Theorem 2) to semi-ideals in 

a semilattice.    
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Theorem 3.2: (𝐼 ∩ 𝐽)∗∗ = 𝐼∗∗ ∩ 𝐽∗∗ for any two semi-ideals 𝐼 and 𝐽 of 𝑆. 

Proof:  (𝐼 ∩ 𝐽)∗∗ ⊆ 𝐼∗∗ ∩ 𝐽∗∗ follows by Lemma 3.1 (2). Let  𝑥 ∈ 𝐼∗∗ ∩ 𝐽∗∗. For any  𝑎 ∈ 𝐼 and  𝑏 ∈

𝐽, 𝑎 ∧ 𝑏 ∈ 𝐼 ∩ 𝐽 since  𝐼 and  𝐽 are semi-ideals. Hence  𝑎 ∧ 𝑏 ∧ 𝑡 = 0 for each  𝑡 ∈ (𝐼 ∩ 𝐽)∗ will 

imply  𝑎 ∧ 𝑡 ∈ ⋂{{𝑏}∗ | 𝑏 ∈ 𝐽} = 𝐽∗ (see Lemma 3.1,(1)). As  𝑥 ∈ 𝐽∗∗, we get  𝑎 ∧ 𝑡 ∧ 𝑥 = 0. Thus 

 𝑡 ∧ 𝑥 ∈ ⋂{{𝑎}∗ | 𝑎 ∈ 𝐼} = 𝐼∗ (see Lemma 3.1, (1)). As  𝑡 ∧ 𝑥 ≤ 𝑥 and  𝑥 ∈ 𝐼∗∗ we get 𝑡 ∧ 𝑥 ∈ 𝐼∗∗, 𝐼∗∗ 

being a semi-ideal of  𝑆. Thus   𝑡 ∧ 𝑥 ∈ 𝐼∗ ∩ 𝐼∗∗ = {0} implies  𝑡 ∧ 𝑥 = 0 i.e. 𝑥 ∈ {𝑡}∗. As this is 

true for any  𝑡 ∈ (𝐼 ∩ 𝐽)∗, we get  𝑥 ∈ ⋂{{𝑡}∗ | 𝑡 ∈ (𝐼 ∩ 𝐽)∗} =  (𝐼 ∩ 𝐽)∗∗ by Lemma 3.1 (1). Hence 

 𝐼∗∗ ∩ 𝐽∗∗ ⊆ (𝐼 ∩ 𝐽)∗∗. Combining both the inclusions, the result follows.  

 

 More generally we have 

Corollary 3.3: If  {𝐼𝛼  | 𝛼 ∈ Δ} is a family of semi-ideals of  𝑆 (Δ is any indexing set), then 

[⋂ 𝐼𝛼
𝛼∈∞

]

∗∗

= ⋂𝐼𝛼
∗∗

𝛼∈∞

 . 

 

For any  𝑎 ∈ 𝑆, (𝑎]∗ = {𝑎}∗. As a special case of Theorem 3.2 we have  

Corollary 3.4:  {𝑎 ∧ 𝑏}∗∗ = {𝑎}∗∗ ∩ {𝑏}∗∗ for all  𝑎, 𝑏 ∈ 𝑆. 

 

Define a relation  𝑅 on  𝑆 as follows: 

𝑥 ≡ 𝑦(𝑅) ⟺ {𝑥}∗ = {𝑦}∗(𝑥, 𝑦 ∈ 𝑆). 

By Corollary 3.4, 𝑅 is a congruence relation on 𝑆. Hence the  - semilattice 〈𝑆 𝑅⁄  , ∧〉 is 

defined where 𝑆 𝑅⁄ = {[𝑥]𝑅 | 𝑥 ∈ 𝑆} and  ∧ on  𝑆 𝑅⁄  is defined by  [𝑥]𝑅 ∧ [𝑦]𝑅 = [𝑥 ∧ 𝑦]𝑅, for 

 𝑥, 𝑦 ∈ 𝑆. Also by Corollary 3.4, we get  〈𝑆∗∗ , ∩〉 is a semilattice where  𝑆∗∗ = {{𝑥}∗∗ | 𝑥 ∈ 𝑆}.  

Interestingly these two  - semilattices 𝑆 𝑅⁄  and 𝑆∗∗ are isomorphic. This we prove in the 

following theorem. 

 

Theorem 3.5: For a semilattice 𝑆,  〈𝑆 𝑅⁄  , ∧〉 is isomorphic with  〈𝑆∗∗ , ∩〉. 

Proof: Define  𝜃: 𝑆 𝑅⁄ ⟶ 𝑆∗∗ by  𝜃([𝑥]𝑅) = {𝑥}∗∗ for each  𝑥 ∈ 𝑆. Obviously  𝜃 is well defined, 

onto map. For  𝑥, 𝑦 ∈ 𝑆, let  𝜃([𝑥]𝑅) = 𝜃([𝑦]𝑅). But then {𝑥}∗∗ = {𝑦}∗∗ ⟹ {𝑥}∗ = {𝑦}∗ (by 

Lemma 3.1 (5)). Thus  𝑥 ≡ 𝑦(𝑅). Hence  [𝑥]𝑅 = [𝑦]𝑅. This shows that  𝜃 is one-one. 

Again for  𝑥, 𝑦 ∈ 𝑆,  𝜃([𝑥]𝑅 ∧ [𝑦]𝑅) = 𝜃([𝑥 ∧ 𝑦]𝑅) = {𝑥 ∧ 𝑦}∗∗ = {𝑥}∗∗ ∩ {𝑦}∗∗ (see the Corollary 

3.4). Hence  𝜃([𝑥]𝑅 ∧ [𝑦]𝑅) = 𝜃([𝑥]𝑅) ∩ 𝜃([𝑦]𝑅). This shows that  𝜃 is a homomorphism. 𝜃 

being an isomorphism we get  𝑆 𝑅⁄ ≅ 𝑆∗∗.     

 It is well known that there is a close connection between annihilator semi-ideals and 

minimal prime semi-ideals of  𝑆. To support this statement we quote some results from [8]. 
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Let 𝔐 denote the set of all minimal prime semi-ideals of  𝑆.  

1)  𝐴 ∈ 𝑆𝜇 ⟹ 𝐴∗ =∩ {𝑀 ∈ 𝔐 | 𝐴 ⊈ 𝑀}. 

2) 𝐴 ∈ 𝑆𝜇and𝐴∗ ≠ {0} ⟹ 𝐴 ⊆ 𝑀 for some 𝑀 ∈ 𝔐. 

3) If 𝑎 ∈ 𝑀 (𝑀 ∈ 𝔐), then{𝑎}∗ ≠ {0}. 

4)  𝐴 ∈ 𝑆𝜇and 𝐴 = 𝐴∗∗  ⟹ 𝐴 = ⋂{𝑀 ∈ 𝔐 | 𝐴 ⊆ 𝑀}. 

 Further we have 

 

Theorem 3.6: Let 𝐹 be a filter of 𝑆 such that {𝑥}∗ ∩ 𝐹 = ∅, for some 𝑥 ∈ 𝑆. Then there exists 

𝑀 ∈ 𝔐 containing {𝑥}∗ and disjoint with 𝐹. 

Proof: The existence of a filter 𝑄 maximal with respect to the property of containing 𝐹 and 

disjoint with {𝑥}∗ follows by Zorn’s lemma. If  𝑥 ∉ 𝑄, then [𝑄 ∨ [𝑥)] ∩ {𝑥}∗ ≠ ∅ by the choice 

of 𝑄. Hence there exists 𝑡 ∈ {𝑥}∗ such that 𝑡 ≥ 𝑞 ∧ 𝑥 for some 𝑞 ∈ 𝑄. But then 𝑡 ∧ 𝑥 = 0 will 

imply 𝑞 ∈ 𝑄 ∩ {𝑥}∗ = ∅; which is absurd. Hence  𝑥 ∈ 𝑄. Again for any 𝑦 ∉ 𝑄 we have 

[𝑄 ∨ [𝑦)] ∩ {𝑥}∗ ≠ ∅, by the choice of 𝑄. Hence there exists 𝑠 ∈ {𝑥}∗ such that 𝑠 ≥ 𝑟 ∧ 𝑦 for 

some 𝑟 ∈ 𝑄. But then  𝑠 ∧ 𝑥 = 0 implies  𝑟 ∧ 𝑦 ∧ 𝑥 = 0. As  𝑥 ∈ 𝑄 and  𝑟 ∈ 𝑄, 𝑟 ∧ 𝑥 ∈ 𝑄. Thus for 

 𝑦 ∉ 𝑄, there exists  𝑟 ∧ 𝑥 ∈ 𝑄 such that  𝑦 ∧ (𝑟 ∧ 𝑥) = 0. Hence 𝑄 is a maximal filter in  𝑆 (see 

Result 2.1). Define 𝑀 = 𝑆\𝑄. Then 𝑀 is minimal prime semi-ideal containing  {𝑥}∗ and 

disjoint with  𝐹 (see Result2.2).  

         

Define 𝒦 = {{𝑀}𝑥 | 𝑥 ∈ 𝑆} where  {𝑀}𝑥 = {𝑀 ∈ 𝔐 | 𝑥 ∉ 𝑀}. Then  〈𝒦, ∩〉 is a semilattice as 

 {𝑀}𝑥 ∩ {𝑀}𝑦 = {𝑀}𝑥∧𝑦 (see Result 2.3) for any  𝑥, 𝑦 ∈ 𝑆. 

Now we prove that for a semilattice 𝑆 the three semilattices 〈𝑆 𝑅⁄  , ∧〉 , 〈𝒦, ∩〉 and 〈𝑆∗∗, ∩〉 

are isomorphic. For this we first prove 

 

Theorem 3.7: For  𝑆, the semilattices 〈𝑆 𝑅⁄  , ∧〉 and 〈𝒦, ∩〉 are isomorphic.   

Proof: Define  𝜓 ∶ 𝑆 𝑅⁄ ⟶  𝒦 by 𝜓([𝑥]𝑅) = {𝑀}𝑥 . 

Claim 1: {𝑀}𝑥 = {𝑀}𝑦  ⟺ {𝑥}∗ = {𝑦}∗ for 𝑥, 𝑦 ∈ 𝑆. 

Let 𝑥, 𝑦 ∈ 𝑆 such that{𝑥}∗ ≠ {𝑦}∗. Without loss of generality assume that there exists 

 𝑧 ∈ {𝑥}∗ such that  𝑧 ∉ {𝑦}∗. As [𝑧) ∩ {𝑦}∗ = ∅, by Theorem 3.6, there exists a minimal prime 

semi-ideal  𝑀 containing {𝑦}∗ and not containing  𝑧. As  𝑧 ∉ 𝑀 and  𝑧 ∈ {𝑥}∗ we get {𝑥}∗ ⊈ 𝑀. 

Applying Result 2.4 we get {𝑦}∗ ⊆ 𝑀 ⟹  𝑦 ∉ 𝑀 and {𝑥}∗ ⊈ 𝑀 ⟹ 𝑥 ∈ 𝑀. Thus  𝑀 ∈ {𝑀}𝑦 and 

𝑀 ∉ {𝑀}𝑥 imply {𝑀}𝑥 ≠ {𝑀}𝑦. Thus {𝑥}∗ ≠ {𝑦}∗ ⟹ {𝑀}𝑥 ≠ {𝑀}𝑦. Let us assume that for some 

 𝑥, 𝑦 ∈ 𝑆, {𝑀}𝑥 ≠ {𝑀}𝑦. Without loss of generality assume that there exists  𝑀 ∈ 𝔐 such that 
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 𝑀 ∈ {𝑀}𝑥 but  𝑀 ∉ {𝑀}𝑦. Then  𝑥 ∉ 𝑀 ⟹ {𝑥}∗ ⊆ 𝑀 and  𝑦 ∈ 𝑀 ⟹ {𝑦}∗ ⊈ 𝑀 (see Result 2.4). 

Thus {𝑀}𝑥 ≠ {𝑀}𝑦 ⟹ {𝑥}∗ ≠ {𝑦}∗. Hence {𝑀}𝑥 = {𝑀}𝑦  ⟺ {𝑥}∗ = {𝑦}∗ for all 𝑥, 𝑦 ∈ 𝑆. 

Claim 2: 𝜓 is well defined. 

Let [𝑥]𝑅 = [𝑦]𝑅 for some 𝑥, 𝑦 ∈ 𝑆. Then  𝑥 ≡ 𝑦(𝑅) ⟹ {𝑥}∗ = {𝑦}∗ ⟹ {𝑀}𝑥 = {𝑀}𝑦 (by 

Claim 1). Therefore [𝑥]𝑅 = [𝑦]𝑅 ⟹𝜓([𝑥]𝑅) = 𝜓([𝑦]𝑅). Hence 𝜓 is a well defined map. 

Claim 3:  𝜓 is one-one and onto map . 

Obviously  𝜓 is an onto map. To prove that 𝜓 is one-one let  𝜓([𝑥]𝑅) = 𝜓([𝑦]𝑅) for  𝑥, 𝑦 ∈ 𝑆. 

Then {𝑀}𝑥 = {𝑀}𝑦 ⟹ {𝑥}∗ = {𝑦}∗(by Claim 1). By definition of 𝑅, {𝑥}∗ = {𝑦}∗ ⟹ 𝑥 ≡ 𝑦(𝑅) ⟹

[𝑥]𝑅 = [𝑦]𝑅. Thus  𝜓([𝑥]𝑅) = 𝜓([𝑦]𝑅) ⟹ [𝑥]𝑅 = [𝑦]𝑅 for  𝑥, 𝑦 ∈ 𝑆. This shows that  𝜓 is one-

one. 

Claim 4:  𝜓 is a homomorphism. 

Let  𝑥, 𝑦 ∈ 𝑆.  𝜓([𝑥]𝑅 ∧ [𝑦]𝑅) = 𝜓([𝑥 ∧ 𝑦]𝑅) = {𝑀}𝑥∧𝑦 = {𝑀}𝑥 ∩ {𝑀}𝑦 (by Result 2.3).  Thus 

 𝜓([𝑥]𝑅 ∧ [𝑦]𝑅) = 𝜓([𝑥]𝑅) ∩ 𝜓([𝑦]𝑅) for all 𝑥, 𝑦 ∈ 𝑆. This shows that 𝜓 is a homomorphism. 

Thus we get 𝜓 an isomorphism and hence the semilattices  𝑆 𝑅⁄  and 𝒦  are isomorphic.  

 

As 𝑆 𝑅⁄ ≅ 𝑆∗∗ and 𝑆 𝑅⁄ ≅ 𝒦, we get 

Corollary 3.8: For a semilattice  𝑆, the three semilattices 〈𝑆 𝑅⁄  , ∧〉,    〈𝒦, ∩〉 and 〈𝑆∗∗, ∩〉 are 

isomorphic.  

Let 𝐹 be a filter in  𝑆. Then a relation  𝜃(𝐹) defined on  𝑆 by 

𝑥 ≡ 𝑦(𝜃(𝐹)) ⟺ 𝑥 ∧ 𝑓 = 𝑦 ∧ 𝑓  for some 𝑓 ∈ 𝐹 

is a congruence relation on  𝑆.  

 

Definition: An ideal  𝐼 of  𝑆 is an α – ideal if {𝑥}∗∗ ⊆ 𝐼 for each  𝑥 ∈ 𝑆.  

In a * - semilattice for an α – ideal we have 

 

Theorem 3.9: Let 𝑆 be a * - semilattice. Then for each 𝛼 - ideal 𝐼 of 𝑆,there exists a filter 𝐹 

in 𝑆 such that 𝐼 = 𝐾𝑒𝑟(𝜃(𝐹)).  

Proof: Let  𝐼 be an  𝛼 – ideal in a * - semilattice 𝑆. 

Define 𝐹 = {𝑥 ∈ 𝑆 ∶ {𝑧}∗ ⊆ {𝑥}∗∗for some 𝑧 ∈ 𝐼}.   

Claim 1: 𝐹 is a filter in 𝑆. 

0 ∈ 𝐽 and {0}∗ = 𝑆 ⊆ {1}∗∗. Therefore 1 ∈ 𝐹. Let  𝑥 ∈ 𝐹 and 𝑥 ≤ 𝑦 for some y in 𝑆. Then 𝑥 ≤ 𝑦 

⟹ {𝑥}∗∗ ⊆ {𝑦}∗∗(see Lemma 3.1 (2)). As  𝑥 ∈ 𝐹 there exists 𝑧 ∈ 𝐼 such that {𝑧}∗ ⊆ {𝑥}∗∗. Hence 

{𝑧}∗ ⊆ {𝑦}∗∗ ⟹ 𝑦 ∈ 𝐹. Again let𝑥1 , 𝑥2 ∈ 𝐹. Then there exist 𝑓1 , 𝑓2 ∈ 𝐼 such that {𝑓1}
∗ ⊆ {𝑥1}

∗∗ 

and {𝑓2}
∗ ⊆ {𝑥2}

∗∗. As 𝐼 is ideal in  𝑆, 𝑓1 , 𝑓2 ∈ 𝐼 implies there exists  𝑡 ∈ 𝐼 such that 𝑡 ≥ 𝑓1 and 
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 𝑡 ≥ 𝑓2. But then {𝑡}∗ ⊆ {𝑓1}
∗ ∩ {𝑓2}

∗ ⊆ {𝑥1}
∗∗ ∩ {𝑥2}

∗∗ = {𝑥1 ∧ 𝑥2}
∗∗ (see Corollary 3.4). This 

shows that 𝑥1 ∧ 𝑥2 ∈ 𝐹. Hence 𝐹 is a filter in 𝑆.  

Claim 2: 𝐼 = 𝐾𝑒𝑟(𝜃(𝐹)).  

Let  𝑥 ∈ 𝐼. As  𝑆 is a * - semilattice, there exists  𝑥 ′ ∈ 𝑆 such that {𝑥}∗∗ = {𝑥 ′}
∗
. Hence 

𝑥 ∧ 𝑥 ′ = 0. Further {𝑥}∗ = {𝑥 ′}
∗∗
 ⟹ 𝑥 ′ ∈ 𝐹. Thus  𝑥 ∧ 𝑥 ′ = 0 =  0 ∧ 𝑥 ′ and 𝑥 ′ ∈ 𝐹 

⟹ 𝑥 ≡ 0(𝜃(𝐹)). Hence 𝑥 ∈ 𝐾𝑒𝑟(𝜃(𝐹)). Therefore 𝐼 ⊆ 𝐾𝑒𝑟(𝜃(𝐹)). Now let 𝑥 ∈ 𝐾𝑒𝑟(𝜃(𝐹)). Then 

 𝑥 ≡ 0(𝜃(𝐹))  ⟹  𝑥 ∧ 𝑓 = 0 for some  𝑓 ∈ 𝐹. Hence there exists  𝑧 ∈ 𝐼 such that 

{𝑧}∗ ⊆ {𝑓}∗∗. Thus  𝑥 ∈ {𝑓}∗ ⊆ (𝑧]∗∗. Since  𝐼 is an 𝛼–ideal, 𝑧 ∈ 𝐼 ⟹ (𝑧]∗∗ ⊆ 𝐼.  

Thus 𝑥 ∈ 𝐾𝑒𝑟(𝜃(𝐹)) ⟹ 𝑥 ∈ 𝐼. This shows that 𝐾𝑒𝑟(𝜃(𝐹)) ⊆ 𝐼. Combining both the inclusions 

we get 𝐼 = 𝐾𝑒𝑟(𝜃(𝐹)).          

 

Converse of Theorem 3.9 is true if  𝑆 is a 0 – distributive semilattice.  

 

Theorem 3.10: Let 𝑆 be a 0-distibutive semilattice. If for each α – ideal 𝐼 there exists a 

filter 𝐹 in 𝑆 such that 𝐼 = 𝐾𝑒𝑟(𝜃(𝐹)), then 𝑆 is a * - semilattice.  

Proof: Select 𝑥 ∈ 𝑆. As 𝑆 is a 0-distibutivesemilattice, {𝑥}∗∗ is an ideal in 𝑆. But {𝑥}∗∗ = (𝑥]∗∗ 

being an α – ideal in 𝑆, by assumption, there exists a filter 𝐹 of 𝑆 such that {𝑥}∗∗ =

𝐾𝑒𝑟(𝜃(𝐹)).  

Now 𝑡 ∈ 𝐾𝑒𝑟(𝜃(𝐹)) ⇔ 𝑡 ≡ 0(𝜃(𝐹)). 

⇔ 𝑡 ∧ 𝑓 = 0 ∧ 𝑓 for some 𝑓 ∈ 𝐹. 

⇔ 𝑡 ∧ 𝑓 = 0 for some 𝑓 ∈ 𝐹. 

⇔ 𝑡 ∈ {𝑓}∗ for some  𝑓 ∈ 𝐹. 

Hence 𝐾𝑒𝑟(θ(F)) = ⋃{{f}∗ | f ∈ F}. But then {x}∗∗ = ⋃{{f}∗ | f ∈ F}. 

As 𝑥 ∈ {x}∗∗  ⟹ 𝑥 ∈ {y}∗ for some 𝑦 ∈ F.Hence {𝑥}∗∗ ⊆ {𝑦}∗∗∗ = {𝑦}∗.  

But  𝑦 ∈ 𝐹 ⟹ {𝑦}∗ ⊆ {𝑥}∗∗. Thus {𝑥}∗∗ = {𝑦}∗. Hence 𝑆 is a * - semilattice.    

 A necessary and sufficient condition for 𝑆 to be a * - semilattice is given in the 

following theorem. 

 

Theorem 3.11: 𝑆 is a * - semilattice if and only if the semilattice 〈𝑆∗∗, ∩〉 is a Boolean 

algebra. 

Proof: To Prove that 𝑆 is a * - semilattice. Let 𝑎 ∈ 𝑆. Then {𝑎}∗∗ ∈ 𝑆∗∗. As 𝑆∗∗ is 

complemented,  [{𝑎}∗∗]′ ∈ 𝑆∗∗. Let [{𝑎}∗∗]′ = {𝑎′}
∗∗

 for some 𝑎′ ∈ 𝑆.  Then {𝑎}∗∗ ∩ {𝑎′}
∗∗
=

{0}∗∗ ⟹ {𝑎 ∧ 𝑎′}
∗∗
= {0}∗∗ = {0} (by Corollary 3.4)  
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⟹ 𝑎 ∧ 𝑎′ = 0⟹ 𝑎′ ∈ {𝑎}∗ ⟹ {𝑎′}
∗
⊇ {𝑎}∗∗ _________ (1) 

Now let 𝑏 ∈ {𝑎′}
∗
. Then 

{𝑏} ⊆ {𝑎′}
∗
⟹ {𝑏}∗∗ ⊆ {𝑎′}

∗∗∗
= {𝑎′}

∗
 (Lemma 3.1 (2) and 3.1 (4)) 

 ⟹ {𝑏}∗∗ ∩ {𝑎′}∗∗ = {0}∗∗ (by Lemma3.1 (6)) 

⟹ {𝑏}∗∗ ∩ {𝑎}∗∗ = {𝑏}∗∗ (since {𝑎′}∗∗ = [{𝑎}∗∗]′) 

⟹ {𝑏 ∧ 𝑎}∗∗ = {𝑏}∗∗ (by Corollary 3.4) 

 ⟹ 𝑏 ≤ 𝑎 ⟹ 𝑏 ∈ {𝑎}∗∗   

Thus 𝑏 ∈ {𝑎′}∗ ⟹ 𝑏 ∈ {𝑎}∗∗. Hence {𝑎′}∗ ⊆ {𝑎}∗∗ ___________ (2) 

From (1) and (2) we get {𝑎′}∗ = {𝑎}∗∗. This shows that for any  𝑎 ∈ 𝑆 there exists 𝑎′ ∈ 𝑆 such 

that {𝑎}∗∗ = {𝑎′}∗. Hence 𝑆 is a * - semilattice. 

Conversely, suppose 𝑆 is a * - semilattice. To prove that 𝑆∗∗ is a Boolean algebra.  

Let {𝑎}∗∗ ∈ 𝑆∗∗. Then  𝑎 ∈ 𝑆 ⟹ there exits 𝑎′ ∈ 𝑆 such that {𝑎}∗∗ = {𝑎′}∗.  

Define [{𝑎}∗∗]′ = {𝑎′}∗∗. As 𝑆∗∗ is a semilattice we will only verify that 

{𝑏}∗∗ ∩ [{𝑎}∗∗]′ = {0}∗∗ ⇔ {𝑏}∗∗ ∩ {𝑎}∗∗ = {𝑏}∗∗ for any 𝑏∗∗ ∈ 𝑆∗∗.  

I] {𝑏}∗∗ ∩ [{𝑎}∗∗]′ = {0}∗∗ 

⟹ {𝑏}∗∗ ∩ {𝑎′}∗∗ = {0}∗∗ (Since[{𝑎}∗∗]′ = {𝑎′}∗∗) 

⟹ {𝑏 ∧ 𝑎′}∗∗ = {0}∗∗ = {0} (See Corollary 3.4) 

⟹ 𝑏 ∧ 𝑎′ = 0  

⟹ 𝑎′ ∈ {𝑏}∗   

⟹ {𝑎′}∗ ⊇ {𝑏}∗∗(By Lemma 3.1 (2)) 

⟹ {𝑎}∗∗ ⊇ {𝑏}∗∗ (Since{𝑎}∗∗ = {𝑎′}∗) 

⟹ {𝑎}∗∗ ∩ {𝑏}∗∗ = {𝑏}∗∗  

II] Let{𝑎}∗∗ ∩ {𝑏}∗∗ = {𝑎}∗∗. Then {𝑎 ∧ 𝑏}∗∗ = {𝑎}∗∗    ______________ (3)  

Hence {𝑏}∗∗ ∩ [{𝑎}∗∗]′ = {𝑏}∗∗ ∩ {𝑎′}∗∗ 

= {𝑎 ∧ 𝑏}∗∗ ∩ {𝑎′}∗∗… (by (3)) 

= {𝑎 ∧ 𝑏 ∧ 𝑎′}∗∗. 

Now 𝑎 ∧ 𝑎′ ∈ {𝑎}∗∗ (since 𝑎 ∈ {𝑎}∗∗ and{𝑎}∗∗ is a semi-ideal).  

Similarly 𝑎 ∧ 𝑎′ ∈ {𝑎′}∗∗. Hence 𝑎 ∧ 𝑎′ ∈ {𝑎}∗∗ ∩ {𝑎′}∗∗ = {𝑎}∗∗ ∩ [{𝑎}∗∗]′ = {0} 

⟹ 𝑎 ∧ 𝑎′ ∈ {0} and hence 𝑎 ∧ 𝑎′ = 0.  

But then 𝑏 ∧ 𝑎 ∧ 𝑎′ = 0 shows that {𝑏}∗∗ ∩ [{𝑎}∗∗]′ = {0} = {0}∗∗ .  

From I] and II] we get 

{𝑏}∗∗ ∩ [{𝑎}∗∗]′ = {0}∗∗  ⇔ {𝑎}∗∗ ∩ {𝑏}∗∗ = {𝑎}∗∗ 

Therefore 𝑆∗∗ is a Boolean algebra (see Frink [1]).       

 

Using Theorem 3.11 we characterize complete Boolean algebra 𝑆∗∗as follows. 
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Theorem 3.12: For  𝑆, the semilattice 〈𝑆∗∗, ∩〉 is a complete Boolean algebra if and only if 

for any non-empty subset 𝐴 of 𝑆, there exists 𝑎′ ∈ 𝑆 such that 𝐴∗∗ = {𝑎′}∗. 

Proof: Only if part: Let 𝑆∗∗ be a complete Boolean algebra and 𝐴 ≠ ∅ be a subset of  𝑆. Then 

𝐴∗ = ⋂{{𝑎}∗ | 𝑎 ∈ 𝐴} (see Lemma 3.1 (1)). As 𝑆∗∗ is Boolean algebra, by Theorem 3.11, 𝑆 is a  

*-semilattice. Hence for every 𝑎 ∈ 𝐴 there exists 𝑎′ ∈ 𝑆 such that {𝑎}∗∗ = {𝑎′}∗ or equivalently 

{𝑎}∗ = {𝑎′}∗∗. Therefore 𝐴∗ = ⋂{{𝑎′}∗∗ | {𝑎}∗ = {𝑎′}∗∗, 𝑎 ∈ 𝐴}. As 𝑆∗∗ is complete, ⋂{{𝑎′}∗∗ | {𝑎}∗ =

{𝑎′}∗∗, 𝑎 ∈ 𝐴} ∈ 𝑆∗∗. Let ⋂{{𝑎′}∗∗ | {𝑎}∗ = {𝑎′}∗∗, 𝑎 ∈ 𝐴} = {𝑏}∗∗ for some  𝑏 ∈ 𝑆. This shows that 

𝐴∗ = {𝑏}∗∗i.e. 𝐴∗∗ = {𝑏}∗ and the result follows. 

If part: Let the condition be satisfied by 𝑆. To prove that 〈𝑆∗∗, ∩〉 is a complete Boolean 

algebra. By the given condition, 𝑆 is a * - semilattice. Hence by Theorem 3.11, 𝑆∗∗ is a 

Boolean algebra. To prove that 𝑆∗∗ is a complete lattice. For this consider any subset 

{{𝑎𝛼}
∗∗ | 𝛼 ∈ Δ} (Δ is any indexing set) of 𝑆∗∗. For every 𝛼 ∈ Δ, {𝑎𝛼}

∗∗ = {𝑎𝛼
′ }∗ for some 𝑎𝛼

′ ∈ 𝑆 

(by assumption). Hence we get ⋂{{𝑎𝛼}
∗∗ | 𝛼 ∈ Δ} = ⋂{{𝑎𝛼

′ }∗ | 𝛼 ∈ Δ}. Let 𝐴 = {𝑎𝛼
′  | 𝛼 ∈ Δ}. Then 

𝐴∗ = ⋂{{𝑎𝛼
′ }∗ | 𝛼 ∈ Δ} (by Lemma 3.1 (1)). But by assumption there exists  𝑏 ∈ 𝑆 such that 

𝐴∗ = {𝑏}∗∗. Thus 𝐴∗ ∈ 𝑆∗∗ ⟹ ⋂{{𝑎𝛼}
∗∗ | 𝛼 ∈ Δ} ∈ 𝑆∗∗. Therefore 𝑆∗∗ is a complete lattice (see 

[2] Lemma 14).           

 

Annihilator preserving homomorphism: 

            In this section we prove various properties of an annihilator 

preservinghomomorphism. 

Throughout this article 𝑆 and 𝑆′ denote semilattices with zero elements 0 and 0′ 

respectively. For a homomorphism 𝑓: 𝑆 → 𝑆′ following results can be verified easily. 

(1) If 𝑓 is onto, then for any semi-ideal 𝐼 of 𝑆, 𝑓(𝐼) is an semi-ideal of 𝑆′. 

(2) For any semi-ideal 𝐽 of 𝑆′, 𝑓−1( 𝐽 ) is a semi-ideal of 𝑆 containing 𝐾𝑒𝑟𝑓, where 𝐾𝑒𝑟𝑓 =

{𝑥 ∈ 𝑆 ∶ 𝑓(𝑥) = 0′}. 

(3) For any non-empty subset 𝐴 of 𝑆 we have 𝑓(𝐴∗) ⊆ [𝑓(𝐴)]∗. 

But [𝑓(𝐴)]∗ ⊆ 𝑓(𝐴∗) is not true in general. For this consider the semilattice 𝑆 whose 

diagrammatic representation is as shown in the Figure 1. 

Define the mapping 𝑓: 𝑆 → 𝑆  by 𝑓(𝑥) = 0 for all 𝑥 ∈ 𝑆. 

Then 𝑓 is a homomorphism on 𝑆. 

Take 𝐴 = {0, 𝑎}, then 𝐴∗ = {0, 𝑏} and  𝑓(𝐴) = {0}. 

Hence 𝑓(𝐴∗) = {0} and [𝑓(𝐴)]∗ = 𝑆. 

This shows that [𝑓(𝐴)]∗ ⊈ 𝑓(𝐴∗). 

This leads us to define annihilator preservinghomomorphism. 

b a 

0 

S 

Fig. 1 
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Definition 4.1: A homomorphism 𝑓: 𝑆 → 𝑆′ is called annihilator preserving if 𝑓(𝐴∗) =

[𝑓(𝐴)]∗ for any (0] ⊂ 𝐴 ⊂ 𝑆. 

 

Example4.2: Let 𝑆 and 𝑆′ be semilattices 

whose diagrammatic representations are as  

shown in Figure 2. 

Define  𝑓: 𝑆 → 𝑆′ by 

𝑓(0) = 0′ = 𝑓(𝑏), 𝑓(𝑎) = 1′.  

Then 𝑓 is an annihilator preserving homomorphism. 

Every semilattice homomorphism 𝑓: 𝑆 → 𝑆′ need not be an annihilator preserving but if both 

semilattices 𝑆 and 𝑆′ are dense, then we have 

 

Theorem 4.3: Let 𝑆 and 𝑆′ be two dense semilattices. Then every homomorphism from  𝑆 

into 𝑆′ is annihilator preserving. 

Proof: Let 𝑓: 𝑆 → 𝑆′ be a homomorphism. Let (0] ⊂ 𝐴 ⊂ 𝑆.  

 𝑓(𝐴∗)  = 𝑓 (⋂(𝑎]∗

𝑎∈𝐴

) ( by   Lemma 3.1, (1)). 

 = 𝑓((0]∗ ∩ (0]) (since(𝑎]∗ = (0] for all 0 ≠ 𝑎 ∈ 𝑆 ). 

 = 𝑓(𝑆 ∩ (0]) (since(0]∗ = 𝑆  ). 

 = 𝑓((0]) 

 = (0′]     _______________________________________(1). 

Further [𝑓(𝐴)]∗ = ⋂ (𝑓(𝑎)]∗𝑎∈𝐴 ( by   Lemma 3.1 (1)) 

   = (0′]∗   ∩  (0′] (since (𝑓(𝑎)]∗ = (0′] for all0′ ≠ 𝑓(𝑎) ∈ 𝑆′ ). 

   = 𝑆′  ∩   0′ (since(0′]∗ = 𝑆  ). 

   = (0′] ____________________________________________(2) .  

From (1) and (2) we get 𝑓(𝐴∗) = [𝑓(𝐴)]∗, for every (0] ⊂ 𝐴 ⊂ 𝑆. This shows that 𝑓 is 

annihilator preserving.          

Unlike in rings, if  𝑓: 𝑆 → 𝑆′ is a homomorphism such that 𝐾𝑒𝑟𝑓 = {0}, then 𝑓 need 

not be one-one. It can be seen by the following example. 

 

Example 4.4: Consider the semilattices 𝑆 and 𝑆′ as shown in Figure 3. 

Let 𝑓: 𝑆 → 𝑆′ be defined as, 

𝑓(0) = 0′ , 𝑓(𝑎) = 𝑓(1) = 1′. 

Then 𝑓 is a homomorphism. Also 𝐾𝑒𝑟𝑓 = {0}. 

But  𝑓 is not one-one. 

S 

a 

1 

0 

1’  

0 ’ 

S’ 

Fig. 3  

S 

b a 

0 

Fig. 2 

1’  

0 ’ 

S’ 
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 A sufficient condition for a homomorphism to be an annihilator preserving map is 

given in the following theorem. 

 

Theorem 4.5: Let 𝑓: 𝑆 → 𝑆′ be an epimorphism such that 𝐾𝑒𝑟𝑓 = {0}. Then both 𝑓 and 𝑓−1 

are annihilator preserving and for any (0] ⊂ 𝐴 ⊂ 𝑆 and (0] ⊂ 𝐵 ⊂ 𝑆, 𝐴∗ = 𝐵∗ if and only if 

[𝑓(𝐴)]∗ = [𝑓(𝐵)]∗. 

Proof: 

(1) Let (0] ⊂ 𝐴 ⊂ 𝑆. Always we have  𝑓(𝐴∗) ⊆ [𝑓(𝐴)]∗. As 𝑓 is onto 𝑓(𝑆) = 𝑆′. Let 

𝑓(𝑡) ∈ [𝑓(𝐴)]∗ for some 𝑡 ∈ 𝑆. Then 𝑓(𝑡) ∧ 𝑓(𝑎) = 0′ for all 𝑎 ∈ 𝐴 ⟹ 𝑓(𝑡 ∧ 𝑎) = 0′ 

⟹ 𝑡 ∧ 𝑎 ∈ 𝐾𝑒𝑟𝑓 = {0}   ⟹ 𝑡 ∧ 𝑎 = 0 ⟹ 𝑡 ∈ {𝑎}∗ for all 𝑎 ∈ 𝐴. Thus 𝑡 ∈ ⋂{{𝑎}∗ | 𝑎 ∈ 𝐴} ⟹ 𝑡 ∈ 𝐴∗ 

(see Lemma 3.1, (1)). Hence 𝑓(𝑡) ∈ 𝑓(𝐴∗) which shows that [𝑓(𝐴)]∗ ⊆ 𝑓(𝐴∗). Combining both 

the inclusions we get 𝑓(𝐴∗) = [𝑓(𝐴)]∗. This proves that 𝑓 is anannihilator preserving 

homomorphism. 

(2) Let (0] ⊂ 𝐵 ⊂ 𝑆′. Let 𝑥 ∈ [𝑓−1(𝐵)]∗ for some 𝑥 ∈ 𝑆. Then 𝑥 ∧ 𝑏 = 0 for all 𝑏 ∈ 𝑓−1(𝐵) ⟹ 𝑥 ∧

𝑏 = 0 for all 𝑏 ∈ 𝑓−1(𝐵). As  𝑓 is a homomorphism,  𝑓(𝑥) ∧ 𝑓(𝑏) = 0′ for all  𝑓(𝑏) ∈ 𝐵. 

Therefore  𝑓(𝑥) ∈  {  𝑓(𝑏)}∗  for all 𝑓(𝑏) ∈ 𝐵. 

Thus 𝑓(𝑥) ∈ ⋂{{𝑓(𝑏)}∗ | 𝑓(𝑏) ∈ 𝐵}  ⟹ 𝑓(𝑥) ∈ 𝐵∗ (see lemma 3.1, (1)) i.e.  𝑥 ∈ 𝑓−1(𝐵∗). Hence 

[𝑓−1(𝐵)]∗ ⊆ 𝑓−1(𝐵∗). 

Conversely, let  𝑥 ∈  𝑓−1(𝐵∗) and 𝑏 ∈ 𝑓−1(𝐵) for some  𝑥, 𝑏 ∈ 𝑆. Then 𝑓(𝑥) ∈ 𝐵∗ and  𝑓(𝑏) ∈

𝐵 ⟹ 𝑓(𝑥) ∧ 𝑓(𝑏) = 0′ ⟹ 𝑓(𝑥 ∧ 𝑏) = 0′ ⟹  𝑥 ∧ 𝑏 ∈ 𝐾𝑒𝑟𝑓 = {0} ⟹ 𝑥 ∧ 𝑏 = 0 for any 𝑏 ∈

𝑓−1(𝐵)  ⟹  𝑥 ∈ [𝑓−1(𝐵)]∗. Hence 𝑓−1(𝐵∗) ⊆ [𝑓−1(𝐵)]∗. Combining both the inclusions, the 

result follows. 

(3) Assume that 𝐴∗ = 𝐵∗. Then by (1) 𝑓 being annihilator preserving homomorphism, we get 

𝑓(𝐴∗) = 𝑓(𝐵∗). This will imply [𝑓(𝐴)]∗ = [𝑓(𝐵)]∗. 

Conversely, assume that [𝑓(𝐴)]∗ = [𝑓(𝐵)]∗. Let 𝑥 ∈ 𝐴∗ for some 𝑥 ∈ 𝑆. Then 𝑥 ∧ 𝑎 = 0 for all 

𝑎 ∈ 𝐴 ⟹ 𝑓(𝑥) ∧ 𝑓(𝑎) = 0′ for all 𝑓( 𝑎 ) ∈ 𝑓(𝐴). But then 𝑓(𝑥) ∈ [𝑓(𝐴)]∗ = [𝑓(𝐵)]∗ will imply 

𝑓(𝑥) ∧ 𝑓(𝑏) = 0′ for all 𝑓 (𝑏 ) ∈ 𝑓 (𝐵). Thus 𝑓(𝑥 ∧ 𝑏) = 0′ ⟹ 𝑥 ∧ 𝑏 ∈ 𝐾𝑒𝑟𝑓 = {0}. This shows 

that 𝐴∗ ⊆ 𝐵∗. Similarly we can prove 𝐵∗ ⊆ 𝐴∗. Hence 𝐴∗ = 𝐵∗.   

 

Remarks 4.6: Let  𝑓: 𝑆 → 𝑆′ be a homomorphism. Then by the definition of a normal semi-

ideal of S, we have the following. 

(1) If  𝑓 is annihilator preserving epimorphism then 𝑓(𝐼) is a normal semi-ideal of 𝑆′ for 

every a normal semi-ideal 𝐼 of 𝑆. 
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(2) If 𝑓−1 preserves annihilators, then 𝑓−1( 𝐽 ) is a normal semi-ideal of 𝑆 for every normal  

semi-ideal  𝐽 of  𝑆′. 

(3) If  𝑓 preserves annihilators, then  𝐾𝑒𝑟𝑓 is a normal semi-ideal of  𝑆. 

 

We now prove  

Theorem 4.7: For any semi-ideal 𝐼 of 𝑆, there exists a semilattice 𝑆′ with 0′ and a 

homomorphism  𝜃: 𝑆 → 𝑆′ such that 𝐾𝑒𝑟𝜃 = 𝐼∗. 

Proof: Let 𝐼 be a semi-ideal of 𝑆. Define 𝑆′ = {𝑓 | 𝑓: 𝐼 → 𝐼 is a homomorphism}. Then  𝑆′ is a 

 - semilattice where (𝑓 ∧ 𝑔)(𝑥) = 𝑓(𝑥) ∧ 𝑔(𝑥) for all 𝑥 ∈ 𝐼 and 𝑓, 𝑔 ∈ 𝑆′ with zero mapping as 

the zero element. For any 𝑎 ∈ 𝑆 define 𝜓𝑎: 𝐼 → 𝐼 by 𝜓𝑎(𝑥) = 𝑎 ∧ 𝑥 for all 𝑥 ∈ 𝐼. Obviously 𝜓𝑎 ∈

𝑆′ any 𝑎 ∈ 𝑆. Further for any 𝑥 ∈ 𝐼, 𝜓𝑎∧𝑏(𝑥) = (𝜓𝑎 ∧ 𝜓𝑏)(𝑥). This shows that  𝜓𝑎∧𝑏 = 𝜓𝑎 ∧ 𝜓𝑏. 

Define  𝜃: 𝑆 → 𝑆′ by  𝜃(𝑎) = 𝜓𝑎 for all  𝑎 ∈ 𝑆. Then 𝜃(𝑎 ∧ 𝑏) = 𝜓𝑎∧𝑏 = 𝜓𝑎 ∧ 𝜓𝑏 = 𝜃(𝑎) ∧ 𝜃(𝑏) for 

𝑎, 𝑏 ∈ 𝑆. Also 𝜃(0) = 𝜓0, where  𝜓0 is the zero element of  𝑆′. Thus  𝜃 is a homomorphism. 

Now 𝑎 ∈ 𝐾𝑒𝑟𝜃 ⟺ 𝜃(𝑎) = 𝜓0 ⇔ 𝜓𝑎 = 𝜓0 ⇔ 𝜓𝑎(𝑥) = 𝜓0(𝑥) for all 𝑥 ∈ 𝐼 

⇔ 𝑎 ∧ 𝑥 = 0 for all  𝑥 ∈ 𝐼 ⇔ 𝑎 ∈ 𝐼∗. Therefore   𝐾𝑒𝑟𝜃 = 𝐼∗.     
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Abstract:  

In this chapter we will to study about analytic continuation of different complex 

function first we will define somerelated definitions with illustrative examples. Analytic 

continuation is the addition of the domain of a given analytic function in the complex plane, 

to a larger domain of the complex plane this process has been utilized in many other areas 

of mathematics and has given mathematicians new insight into some of the world’s hardest 

problems. This chapter also covers more general form of continuation. 

Keywords: Analytic function, function element, Domain, common domain, chains of 

domains, Continuation. 

 

Introduction:  

Analytic continuation deals with the problem of properly reconsidering an analytic 

function so as to extend its domain of analycity. In other word if  f1(z) be an analytic function 

in domain  D1 , then there exist an analytic function f2(z) in different domain D2 such that 

forzϵD1 ∩ D2, f1(z) = f2(z) , in this process we find that this type extension for many function 

not possible, but whenever this type of extension is possible it is unique 

 

Funtion element:  

A function element is an order pair set{f(z), D},in which D is a domain and f(z) is a 

single-valued analytic function, is known as function element. Two function element 

{f1(z), D1} and {f2(z), D2} are said to be equal ifD1 = D2, f1(z) = f2(z). 
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Definition:  

Let {f1(z), D1} and {f2(z), D2} be the two function elements. Each function element is 

said to be a analytic continuation of the other if and only if  D1 ∩ D2 ≠ ∅ andf1(z) =

f2(z) ∀ zϵD1 ∩ D2. Symbolically it is denoted by {f1(z), D1}~ {f2(z), D2}. 

Let f1(z) be the analytic function in domain D1 and f2(z) be the analytic function in domain 

D2 .Domain D12 be the common domain ofdomain  D1and D2. Iff1(z) = f2(z) in domain  D12 , 

then f2(z) be the analytic continuation of  f1(z)  from D1into D2 in common domain D12. It  

also we  can say direct analytic continuation. 

 

Complete analytic function and natural boundary: 

Let f(z) be analytic in domain D also letf1(z) , f2(z), f3(z),........ , fn(z) analytic 

continuation in domain D1, D2,D3,…………… .Dn respectively. If there is a function G(z) such 

that 

G(z) =

{
 
 

 
 
f(z) in D
f1(z) in D1
f2(z) in D2

… . .
fn(z) in Dn

 

Then G(z) is said to be complete analytic function in the domain wider than D, 

D1, D2, D3, ……… ,Dn. 

In this analytic continuation process we may arrive at a closed curve beyond which it is not 

possible to take analytic continuation. Such type closed curve is called natural boundary of 

the complete analytic functionG(z). A point outside these domain D, D1, D2, D3, ……… ,Dn is 

called singularities of the complete analytic function G(z). 

 

Theorem (1):  

If a function analytic in domain D, vanishes over a part of D, then f(z) vanishes at 

each point of D. 

Proof:  

Let f(z) is vanishes over a domain D0 is a part of D, then we are to show that it will 

be analytic every point of remaining part  D − D0 of domain D. We prove it by contradiction 

method if possible let there be a point p in  

 D − D0 at which f(p) ≠ 0. Take any point q in the part D0 and join q to p by a curve C lying 

entirely in D clearlyf(q) = 0. 

Since f(z) is analytic in D, it is also continuous at point p; therefore there are points 

near p where f(z) does not vanish. Then there is a point r on the arc qp such that near r, f(z) 
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vanishes points on the arc on one side and not vanish on other side, implying that f(z) is not 

continuous at point r. But this contradicts to our assumption that f(z)is analytic 

everywhere in D. Hence supposition is wrong (i.e. point p in  D − D0 at which f(p)=0). 

 

Corollary:  

If two functions, which are analytic in a domain D, coincide in a part of D, they 

coincide in the whole domain D.  

Proof:  

Let If f1(z) and f2(z)be the two analytic functionin domain D and suppose  D0 is a part 

of D, in which If f1(z) and f2(z) coincide i.e. 

f1(z) = f2(z)  ∀ zϵD0  

Or                                                f1(z) − f2(z) = 0  ∀ zϵD0  

Or f(z) = 0∀ zϵD0  

⟹ f(z) = f1(z) − f2(z) = 0 ∀ zϵD0  

Since difference of two analytic function is also analytic function, therefore f(z) will 

be analytic in domain D and it will be vanish in the part D0 of D. Therefore by the above 

theorem (If a function analytic in domain D, vanishes over a part of D, then f(z) vanishes at 

each point of D)f(z)will be vanish in whole domain D. 

i. e.                 f(z) = f1(z) − f2(z) = 0 ∀ zϵD 

  Or                               f1(z) = f2(z)∀ zϵD 

Hence f1(z) and f2(z) are in whole domain D. 

 

Theorem:  

Let a function f(z)analytic in domain D. If f(z)vanishes over an arc L lying entirely 

in the domain D, then f(z)vanishes at each point of D.  

Proof: 

                Let ζ be a point on arc L. Now taking ζ as the centre draw asmall circle such that 

which is totally lying entirely in domain D. 

Since f(z) analytic at ζ, therefore f(z) vanishes everywhere within this small circle which is a 

part of D. Hence f(z) must vanish in the whole domain D. 

 

Theorem:  

There cannot be more than one analytic continuation of an analytic function f1(z) 

into the same domain. 
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Proof:  

Let D1and D2 be the two domain and D12be the common domain of D2 in D1. Also let 

f1(z)be the analytic function in domain D1 and F1(z)and F2(z) be the two analytic 

continuation of single analytic function f1(z) in Domain D12. 

Now we will have to prove F1(z)= F2(z)In domain D2.  

Now by the definition of analytic continuation  f1(z) = F1(z)∀zϵD12..........(1) 

(asF1(z) is the analytic continuation off1(z)) 

And F1(z) be the analytic function in domain D2 . 

Similarly f1(z) = F2(z)∀zϵD12.............(2) 

(asF2(z) is the analytic continuation off1(z)) 

And F2(z) be the analytic function in domain D2 

Now by equation(1) and equation (2), we have 

f1(z) = F1(z) =  F2(z)∀zϵD12 

So we can say that and F1(z)= F2(z) ∀zϵD12 

Or F1(z) − F2(z) = 0 ∀zϵD12 

Or    (F1- F2)(z) = 0 ∀zϵD12 

SinceF1(z)and F2(z) both are analytic in D2, so there difference    (F1- F2)(z) is also analytic 

in domain D2. 

Clearly    (F1- F2)(z) becomes zero in D12 part of D2 

   (F1- F2)(z) = 0 ∀zϵD2 

⇒ F1(z) =  F2(z)∀zϵD2 

 

Analytic continuation by a power series:  

Let the Taylor’s expansion of analytic function with respect to function z1 be  f1(z) =

∑ an(z − z1)
n∞

n=0                                                                ------- (1) 

Which is convergent in circle C1: |z − z1| =r1 = lim
n→∞

(an)
1

n       ----- (2) 

Now draw a contour L from z1and consider analytic continuation of the function 

along L as follows: 

Choose pointz2such that arcz1z2lie in C1.  

Now by equation (1) f1(z2) = ∑ an(z2 − z1)
n∞

n=0  

                  Therefore  f1’(z2) = ∑ ann(z2 − z1)
n−1∞

n=0  

f1"(z2) = ∑ ann(n − 1)(z2 − z1)
n−2

∞

n=0

 

                   ---------------- and so on 
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        Suppose that  f2(z) = ∑ bn(z − z2)
n∞

n=0              ---------- (3) 

         Where   bn =
f1
n(z2)

n!
                                                       ------- (4) 

 

 

 

 

 

 

 

 

Now the Power series (3) will be convergent in circle  

C2: |z − z2| =r2 = lim
n→∞

(bn)
1

n                    ---------- (5) 

Again f1(z) = f2(z) ∀ zϵ in common domain of C1and C2 and f2(z)will be the analytic 

continuation of f1(z)from  C1 → C2. 

Again on L choose point  z3such that arcz2z3lie entirely in C2, then on differentiating  (3), we 

can get 

g(z3), g’(z3), g"(z3),− − −−, g
n(z3) 

Now let f3(z) = ∑ cn(z − z2)
n∞

n=0                     --------------- (6) 

Where   cn =
gn(z3)

n!
                                                -------------- (7) 

Again the Power series (6) will be convergent in circle  

C3: |z − z3| =r3 = lim
n→∞

(cn)
1

n 

Now since  f2(z) = f3(z) ∀ zϵ in common domain of C2and C3 so f3(z)will be the analytic 

continuation of f2(z) fromC2 → C3 . 

On repeating this process function f1(z) 

 

Conclusion:  

This chapter has covered just enough about analytic continuation of complex 

function in analytic continuation process we analyze continuity of analytic function in 

common closed domain analytic continuation along the any arc and found there cannot be 

more than be more than one analytic continuation of an analytic function  into the same 

domain. We have presented it in a pedagogical way, in order to allow researchers to take 

full advantage of the methodology. Moreover, knowledge about the typical features of the 

considered spectra helps in choosing the rate at which appropriate operators are 

𝑧1𝑧2𝑧3 

L 
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preferentially called, thus hybridizing a Genetic Algorithm with standard iterative 

methods, it is possible to outperform the phase retrieval capabilities of the algorithms used 

as memes to assist the genetic stochastic search  
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Abstract:  

In the present study the concept to learners in this field and further to improve the 

literature for knowledge of students which help to better understanding  to mathematical 

formulation used which helps in understanding to derive it.It is shown that time dependent 

Schrodinger’s Wave Equation (TDSE) may be derived using wave mechanics, time 

dependent equation,in classical. 

Keywords: Simple harmonic motion, Schrödinger’s Wave Equation, The wave function 

Ѱ(x, y, z, t) 

 

Introduction:  

In our study,Schrödinger’s Wave Equation is a mathematical expressionlike a 

differential equations that describes the behaviours of de-Broglie’s matter wave associated 

with moving particle.Schrödingerproposed that a free particle is a similar to the motion of a 

simple harmonic progressive plane wave constant amplitude. Schrödingerassumed a 

variable Ѱ called wave function for matter waves of a free particle. The wave function Ѱ is a 

function of space variables (x, y, z) and time (t). 

 

Derivation: 

The time-dependent Schrödinger Wave Equation derivation is provided here so that 

students can learn the concept more effectively 

The wave function Ψ(x, t) = A ei(kx-ωt)    represents a valid solution to the Schrödinger 

equation. The wave function is referred to as the free wave function as it represents a 

particle experiencing zero net force (at constant V ). 
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The equation for wave function Ѱ along positive X-direction is given by; 

Ѱ=Ae-iω(t-x/v) 

                                   Ѱ=Ae-i(ωt-ωx/v)        ………………..(1) 

Where Ѱ is a function of (x,t) 

But from according to Plank’s hypothesis 

                                 E = hν =
ℎ

2𝜋
    (Since ν =

𝜔

2𝜋
  and    ħ= 

ℎ

2𝜋
  ) 

                                   E= h 
𝜔

2𝜋
 = ħω 

                                  Thus ω =
𝐸

ħ
      ……………..(2) 

According to de-Broglie hypothesis 

                                         P =
ℎ

𝜆
 

On multiplying and divide by 2𝜋 in above equation 

                                         P =
ℎ

2𝜋
 .
2𝜋

𝜆
 = ħk      (Since k =  

2𝜋

𝜆
 ) 

                                          k =
𝑃

ħ
 

Now the wave velocity v is given by 

v = ν λ 

On multiplying and divided by 2𝜋 

                                              v =  2𝜋𝜈 .
𝜆

2𝜋
 = 

𝜔

𝑘
  ……………….(3) 

On putting the values of  𝜔 and v from equation (2) and (3) in equation(1) 

                                   Ѱ=Ae-i(
𝐸 

ħ
t - ωx

𝑘

𝜔
)         

On putting the value of k from above 

                                   Ѱ=Ae-i(
𝐸 

ħ
t - x

𝑝

ħ
)       

   Ѱ=Ae-
𝑖

ħ
  (Et – px)    ……………………..(4) 

 Equation (4) represents the matter waves for a freeparticle of total energy E and 

momentum p moving along positive X-direction. 

 To find the equation of motion under the action of force, so the differentiating twice 

with respect to x, we get 

𝜕Ѱ

𝜕𝑥
 = A( -

𝑖

ħ
  ) .(-p) e -

𝑖

ħ
  (Et – px)  =( 

𝑖𝑝 

ħ
)Ѱ 

𝜕2Ѱ

𝜕𝑥2
=

𝜕

𝜕𝑥
(
𝜕Ѱ

𝜕𝑥
) = 

𝜕

𝜕𝑥
( 
𝑖𝑝 

ħ
)Ѱ = 

𝑖𝑝 

ħ

𝜕Ѱ

𝜕𝑥
  =   

𝑖𝑝 

ħ
( 
𝑖𝑝 

ħ
)Ѱ = i2

𝑝2

ħ2
 Ѱ 

𝜕2Ѱ

𝜕𝑥2
= −

𝑝2

ħ2
 Ѱ   (Since i2 = -1) 

 

𝑝2Ѱ = −ħ2
𝜕2Ѱ

𝜕𝑥2
 ……………………(5) 
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Now differentiating equation(4) with respect to time, we get 

 

𝜕Ѱ

𝜕𝑡
= A( -

 𝑖

ħ
  )E e-

𝑖

ħ
  (Et – px)    = ( -

 𝑖 𝐸

ħ
  )Ѱ 

EѰ = i ħ 
𝜕Ѱ

𝜕𝑡
…………………...(6) (Since i2 = -1) 

 

We know that total energy E= K.E. + P.E. 

E= 
 𝑝2

2𝑚
 + V 

On multiplying by Ѱ both side in above equation, we get 

EѰ = 
 𝑝2

2𝑚
  Ѱ+ V Ѱ      …………………………………(7) 

On putting the value of 𝑝2Ѱ and EѰ from equation (5) and (6) in equation (7),we get 

 

i ħ 
𝜕Ѱ

𝜕𝑡
= - 

 ħ2

2𝑚

𝜕2Ѱ

𝜕𝑥2
 + + V Ѱ ……………………………….(8) 

The equation (8) is the time dependent equation for a particle in one dimension. 

Now in three dimensional time dependent Schrodinger equation is given by 

i ħ 
𝜕Ѱ

𝜕𝑡
= - 

 ħ2

2𝑚
 (
𝜕2Ѱ

𝜕𝑥2
+
𝜕2Ѱ

𝜕𝑦2
+
𝜕2Ѱ

𝜕𝑧2
) +  V Ѱ 

But,
𝜕2Ѱ

𝜕𝑥2
+
𝜕2Ѱ

𝜕𝑦2
+
𝜕2Ѱ

𝜕𝑧2
 = ▽2 Ѱ  and Ѱ = f(x,y,z,t) 

i ħ 
𝜕Ѱ

𝜕𝑡
= - 

 ħ2

2𝑚
 ▽2 Ѱ  + V Ѱ……………………….(9) 

Thus, the time dependent Schrödinger equation, TDSE, can be derived from the 

wave mechanics considering the equations for a particle describing S.H.M.  

 

Physical significance of wave function Ѱ:  

The most satisfactory interpretation by a wave function Ѱassociated with the 

moving particle was given by Max Born in 1926. 

Each moving particle is a wave function Ѱ which is a function of space variables (x, 

y, z) and time‘t’. 

According to Max Born, square of the magnitude of the wave function i.e. ‖Ѱ‖2  or Ѱ⁕ 

Ѱ evaluated in a particular region represent the probability of finding the particle at that 

position and at that time. 

Where, Ѱ⁕ = complex conjugate of Ѱ 

Hence, ‖Ѱ‖2   is known as Probability density. 

Let the complex wave function Ѱ with real and imaginary parts is given by 

Ѱ = x+ i y Where, x and y are real functions. 
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Ѱ⁕ = x –i y 

Now, Ѱ⁕ Ѱ = (x –i y) (x+ i y) = x2 + y2 = Real  

Hence Ѱ⁕ Ѱ is always a positive real quantity. 

So the probability density, ‖Ѱ‖2 which must be appositive real quantity is given by 

product Ѱ⁕ Ѱ. 

The probability of finding a particle is certainly found somewhere in the space, the 

integral of ‖Ѱ‖2 dV over all the space must be equal to unity. 

∫ |Ѱ| 2𝑑𝑉
∞

−∞
= 1          or    ∫ Ѱ⁕ Ѱ 𝑑𝑉

∞

−∞
= 1 

Where dV= dx.dy.dz 

If  ∫ |Ѱ| 2𝑑𝑉
∞

−∞
= 0 

This show that particle does not exist. 

 

Conclusions: 

In this expression, Schrödinger’s Wave Equation is plays a very important role to 

find permitted energy levels of atoms. The solution of time dependent equation of a wave 

that describes the quantum aspects of a system. In quantum mechanics thisarticle have an 

insight into SE and varieties of way to derive. 
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Statistics is the science of data. Data are the numerical values containing some 

information. Statistical tools can be used on a data set to draw statistical inferences. These 

statistical inferences are in turn used for various purposes. For example, government uses 

such data for policy formulation for the welfare of the people, marketing companies use the 

data from consumer surveys to improve the company and to provide better services to the 

customer, etc. Such data is obtained through sample surveys. Sample surveys are 

conducted throughout the world by governmental as well as non- governmental agencies. 

For example, “National Sample Survey Organization (NSSO)” conducts surveys in India, 

“Statistics Canada” conducts surveys in Canada, agencies of United Nations like “World 

Health Organization (WHO), “Food and Agricultural Organization (FAO)” etc. conduct 

surveys in different countries. 

Sampling theory provides the tools and techniques for data collection keeping in 

mind the objectives to be fulfilled and nature of population. 

There are two ways of obtaining the information 

1. Sample surveys 

2. Complete enumeration or census 

Sample surveys collect information on a fraction of total population whereas census 

collects information on whole population. Some surveys e.g., economic surveys, agricultural 

surveys etc. are conducted regularly. Some surveys are need based and are conducted when 

some need arises, e.g., consumer satisfaction surveys at a newly opened shopping mall to 

see the satisfaction level with the amenities provided in the mall. 

Sampling unit: 

  An element or a group of elements on which the observations can be taken is called a 

sampling unit. The objective of the survey helps in determining the definition of sampling 

mailto:Prchava83@gmail.com
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unit. For example, if the objective is to determine the total income of all the persons in the 

household, then the sampling unit is household. If the objective is to determine the income 

of any particular person in the household, then the sampling unit is the income of the 

particular person in the household. So the definition of sampling unit depends and varies as 

per the objective of the survey. Similarly, in another example, if the objective is to study the 

blood sugar level, then the sampling unit is the value of blood sugar level of a person. On 

the other hand, if the objective is to study the health conditions, then the sampling unit is 

the person on whom the readings on the blood sugar level, blood pressure and other factors 

will be obtained. These values will together classify the person as healthy or unhealthy. 

Population: 

Collection of all the sampling units in a given region at a particular point of time or 

a particular period is called the population. For example, if the medical facilities in a 

hospital are to be surveyed through the patients, then the total number of patients 

registered in the hospital during the time period of survey wills the population. Similarly, if 

the production of wheat in a district is to be studied, then all the fields cultivating wheat in 

that district will be constitute the population. The total number of sampling units in the 

population is the population size, denoted generally by N. The population size can be finite 

or infinite (N is large). 

Census: 

The complete count of population is called census. The observations on all the 

sampling units in the population are collected in the census. For example, in India, the 

census is conducted at every tenth year in which observations on all the persons staying in 

India is collected. 

Sample: 

One or more sampling units are selected from the population according to some 

specified procedure. A sample consists only of a portion of the population units. Such a 

collection of units is called the sample. 

In the context of sample surveys, a collection of units like households, people, cities, 

countries etc. is called a finite population. 

A census is a 100% sample and it is a complete count of the population. 

Representative sample: 

 When the entire salient features of the population are present in the sample, then 

it is called a representative sample, It goes without saying that every sample is considered 

as a representative sample. For example, if a population has 30% males and 70% females, 

then we also expect the sample to have nearly 30% males and 70% females. 
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In another example, if we take out a handful of wheat from a 100 Kg. bag of wheat, 

we expect the same quality of wheat in hand as inside the bag. Similarly, it is expected that 

a drop of blood will give the same information as all the blood in the body. 

Sampling frame: 

The list of all the units of the population to be surveyed constitutes the sampling 

frame. All the sampling units in the sampling frame have identification particulars. For 

example, all the students in a particular university listed along with their roll numbers 

constitute the sampling frame. Similarly, the list of households with the name of head of 

family or house address constitutes the sampling frame. In another example, the residents 

of a city area may be listed in more than one frame - as per automobile registration as well 

as the listing in the telephone directory. 

 

Ways to ensure representativeness: 

There are two possible ways to ensure that the selected sample is representative. 

1. Random sample or probability sample: 

The selection of units in the sample from a population is governed by the laws of 

chance or probability. The probability of selection of a unit can be equal as well as unequal. 

2. Non-random sample or purposive sample: 

The selection of units in the sample from population is not governed by the 

probability laws. 

For example, the units are selected on the basis of personal judgment of the 

surveyor. The persons volunteering to take some medical test or to drink a new type of 

coffee also constitute the sample on non-random laws. 

Another type of sampling is Quota Sampling. The survey in this case is continued 

until a pre-determined number of units with the characteristic under study are picked up. 

For example, in order to conduct an experiment for rare type of disease, the survey is 

continued till the required number of patients with the disease is collected. 

Advantages of sampling over complete enumeration: 

1. Reduced cost and enlarged scope: 

Sampling involves the collection of data on smaller number of units in comparison to 

the complete enumeration, so the cost involved in the collection of information is reduced. 

Further, additional information can be obtained at little cost in comparison to conducting 

another separate survey. For example, when an interviewer is collecting information on 

health conditions, then he/she can also ask some questions on health practices. This will 
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provide additional information on health practices and the cost involved will be much less 

than conducting an entirely new survey on health practices. 

2. Organization of work: 

It is easier to manage the organization of collection of smaller number of units than 

all the units in a census. For example, in order to draw a representative sample from a 

state, it is easier to manage to draw small samples from every city than drawing the sample 

from the whole state at a time. This ultimately results in more accuracy in the statistical 

inferences because better organization provides better data and in turn, improved 

statistical inferences are obtained. 

3. Greater accuracy: 

The persons involved in the collection of data are trained personals. They can collect 

the data more accurately if they have to collect smaller number of units than large number 

of units. 

4. Urgent information required: 

The data from a sample can be quickly summarized. 

 For example, the forecasting of the crop production can be done quickly on the basis 

of a sample of data than collecting first all the observation. 

5. Feasibility: 

Conducting the experiment on smaller number of units, particularly when the units 

are destroyed, is more feasible. For example, in determining the life of bulbs, it is more 

feasible to fuse minimum number of bulbs. Similarly, in any medical experiment, it is more 

feasible to use less number of animals. 

 

Type of surveys: 

There are various types of surveys which are conducted on the basis of the objectives 

to be fulfilled. 

1. Demographic surveys: 

These surveys are conducted to collect the demographic data, e.g., household 

surveys, family size, number of males in families, etc. Such surveys are useful in the policy 

formulation for any city, state or country for the welfare of the people. 

2. Educational surveys: 

These surveys are conducted to collect the educational data, e.g., how many children 

go to school, how many persons are graduate, etc. Such surveys are conducted to examine 

the educational programs in schools and colleges. Generally, schools are selected first and 

then the students from each school constitue the sample. 
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3. Economic surveys: 

These surveys are conducted to collect the economic data, e.g., data related to export 

and import of goods, industrial production, consumer expenditure etc. Such data is helpful 

in constructing the indices indicating the growth in a particular sector of economy or even 

the overall economic growth of the country. 

4. Employment surveys: 

These surveys are conducted to collect the employment related data, e.g., 

employment rate, labour conditions, wages, etc. in a city, state or country. Such data helps 

in constructing various indices to know the employment conditions among the people. 

5. Health and nutrition surveys: 

These surveys are conducted to collect the data related to health and nutrition 

issues, e.g., number of visits to doctors, food given to children, nutritional value etc. Such 

surveys are conducted in cities, states as well as countries by the national and international 

organizations like UNICEF, WHO etc. 

6. Agricultural surveys: 

These surveys are conducted to collect the agriculture related data to estimate, e.g., 

the acreage and production of crops, livestock numbers, use of fertilizers, use of pesticides 

and other related topics. The government bases its planning related to the food issues for 

the people based on such surveys. 

7. Marketing surveys: 

These surveys are conducted to collect the data related to marketing. They are 

conducted by major companies, manufacturers or those who provide services to consumer 

etc. Such data is used for knowing the satisfaction and opinion of consumers as well as in 

developing the sales, purchase and promotional activities etc. 

8. Election surveys: 

These surveys are conducted to study the outcome of an election or a poll. For 

example, such polls are conducted in democratic countries to have the opinions of people 

about any candidate who is contesting the election. 

9. Public polls and surveys: 

These surveys are conducted to collect the public opinion on any particular issue. 

Such surveys are generally conducted by the news media and the agencies which conduct 

polls and surveys on the current topics of interest to public. 

10. Campus surveys: 

These surveys are conducted on the students of any educational institution to study 

about the educational programs, living facilities, dining facilities, sports activities, etc. 
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Principal steps in a sample survey: 

The broad steps to conduct any sample surveys are as follows: 

1. Objective of the survey: 

The objective of the survey has to be clearly defined and well understood by the 

person planning to conduct it. It is expected from the statistician to be well versed with the 

issues to be addressed in consultation with the person who wants to get the survey 

conducted. In complex surveys, sometimes the objective is forgotten and data is collected on 

those issues which are far away from the objectives. 

2. Population to be sampled: 

Based on the objectives of the survey, decide the population from which the 

information can be obtained. For example, population of farmers is to be sampled for an 

agricultural survey whereas the population of patients has to be sampled for determining 

the medical facilities in a hospital. 

3. Data to be collected: 

It is important to decide that which data is relevant for fulfilling the objectives of the 

survey and to note that no essential data is omitted. Sometimes, too many questions are 

asked and some of their outcomes are never utilized. This lowers the quality of the 

responses and in turn results in lower efficiency in the statistical inferences. 

4. Degree of precision required: 

The results of any sample survey are always subjected to some uncertainty. Such 

uncertainty can be reduced by taking larger samples or using superior instruments. This 

involves more cost and more time. So it is very important to decide about the required 

degree of precision in the data. This needs to be conveyed to the surveyor also. 

5. Method of measurement: 

The choice of measuring instrument and the method to measure the data from the 

population needs to be specified clearly. For example, the data has to be collected through 

interview, questionnaire, personal visit, combination of any of these approaches, etc. The 

forms in which the data is to be recorded so that the data can be transferred to mechanical 

equipment for easily creating the data summary etc. is also needed to be prepared 

accordingly. 

6. The frame: 

The sampling frame has to be clearly specified. The population is divided into 

sampling units such that the units cover the whole population and every sampling unit is 

tagged with identification. The list of all sampling units is called the frame. The frame 

must cover the whole population and the units must not overlap each other in the sense 
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that every element in the population must belong to one and only one unit. For example, 

the sampling unit can be an individual member in the family or the whole family. 

7. Selection of sample: 

The size of the sample needs to be specified for the given sampling plan. This helps 

in determining and comparing the relative cost and time of different sampling plans. The 

method and plan adopted for drawing a representative sample should also be detailed. 

8. The Pre-test: 

It is advised to try the questionnaire and field methods on a small scale. This may 

reveal some troubles and problems beforehand which the surveyor may face in the field in 

large scale surveys. 

9. Organization of the field work: 

How to conduct the survey, how to handle business administrative issues, providing 

proper training to surveyors, procedures, plans for handling the non-response and missing 

observations etc. are some of the issues which need to be addressed for organizing the 

survey work in the fields. The procedure for early checking of the quality of return should 

be prescribed. It should be clarified how to handle the situation when the respondent is not 

available. 

10. Summary and analysis of data: 

It is to be noted that based on the objectives of the data, the suitable statistical tool 

is decided which can answer the relevant questions. In order to use the statistical tool, a 

valid data set is required and this dictates the choice of responses to be obtained for the 

questions in the questionnaire, e.g., the data has to be qualitative, quantitative, nominal, 

ordinal etc. After getting the completed questionnaire back, it needs to be edited to amend 

the recording errors and delete the erroneous data. The tabulating procedures, methods of 

estimation and tolerable amount of error in the estimation need to be decided before the 

start of survey. Different methods of estimation may be available to get the answer of the 

same query from the same data set. So the data needs to be collected which is compatible 

with the chosen estimation procedure. 

11. Information gained for future surveys: 

The completed surveys work as guide for improved sample surveys in future. Beside 

this they also supply various types of prior information required to use various statistical 

tools, e.g., mean, variance, nature of variability, cost involved etc. Any completed sample 

survey acts as a potential guide for the surveys to be conducted in the future. It is generally 

seen that the things always do not go in the same way in any complex survey as planned 
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earlier. Such precautions and alerts help in avoiding the mistakes in the execution of future 

surveys. 

 

Variability control in sample surveys: 

The variability control is an important issue in any statistical analysis. A general 

objective is to draw statistical inferences with minimum variability. There are various types 

of sampling schemes which are adopted in different conditions. These schemes help in 

controlling the variability at different stages. Such sampling schemes can be classified in 

the following way. 

1. Before selection of sampling units 

• Stratified sampling 

• Cluster sampling 

• Two stage sampling 

• Double sampling etc. 

 

2. At the time of selection of sampling units 

• Systematic sampling 

• Varying probability sampling 

 

3. After the selection of sampling units 

• Ratio method of estimation 

• Regression method of estimation 

Note that the ratio and regression methods are the methods of estimation and not the 

methods of drawing samples. 

 

Methods of data collection: 

There are various ways of data collection. Some of them are as follows: 

1. Physical observations and measurements: 

The surveyor contacts the respondent personally through the meeting. He observes 

the sampling unit and records the data. The surveyor can always use his prior experience to 

collect the data in a better way. For example, a young man telling his age as 60 years can 

easily be observed and corrected by the surveyor. 
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2. Personal interview: 

The surveyor is supplied with a well prepared questionnaire. The surveyor goes to 

the respondents and asks the same questions mentioned in the questionnaire. The data in 

the questionnaire is then filled up accordingly based on the responses from the respondents. 

3. Mail enquiry: 

The well prepared questionnaire is sent to the respondents through postal mail, e-

mail, etc. The respondents are requested to fill up the questionnaires and send it back. In 

case of postal mail, many times the questionnaires are accompanied by a self addressed 

envelope with postage stamps to avoid any non-response due to the cost of postage. 

4. Web based enquiry: 

The survey is conducted online through internet based web pages. There are various 

websites which provide such facility. The questionnaires are to be in their formats and the 

link is sent to the respondents through email. By clicking on the link, the respondent is 

brought to the concerned website and the answers are to be given online. These answers are 

recorded and responses as well as their statistics are sent to the surveyor. The respondents 

should have internet connection to support the data collection with this procedure. 

5. Registration: 

The respondent is required to register the data at some designated place. For 

example, the number of births and deaths along with the details provided by the family 

members are recorded at city municipal office which are provided by the family members. 

6. Transcription from records: 

The sample of data is collected from the already recorded information. For example, 

the details of the number of persons in different families or number of births/deaths in a 

city can be obtained from the city municipal office directly. 

The methods in (1) to (5) provide primary data which means collecting the data 

directly from the source. The method in (6) provides the secondary data which means 

getting the data from the primary sources. 
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Abstract: 

In this chapter, our goal is to expound the importance of Baire’s Category Theorem 

in mathematics. In achieve this goal; we study a very famous result of functional analysis, 

namely, the Open Mapping Theorem.  The Open Mapping Theorem and Baire Category 

Theorem are foundational results in functional analysis, particularly related to the study of 

Banach spaces (complete normed vector spaces). The Open Mapping Theorem states that a 

surjective bounded linear operator between Banach spaces is an open map, meaning it 

maps open sets to open sets. This theorem's proof heavily relies on the Baire Category 

Theorem, which states that a complete metric space cannot be expressed as a countable 

union of nowhere dense sets. 

 

1. Introduction:  

In mathematics, the Baire’s category theorem is an important tool in the study of 

complete spaces, such as Banach spaces and Hilbert spaces that arise in topology and 

functional analysis. In functional analysis, two of the most powerful theorems, the open 

mapping theorem and uniform boundedness principle are direct consequences of the Baire’s 

category theorem.   The principle of uniform boundedness by S. Banach and Hilbert 

Steinhaus (1927) is of great importance. In fact, throughout analysis there are many 

instances of results related to this principle, the earliest being an investigation by H. 

Lebesgue (1909). The principle of uniform boundedness is often regarded as one of the 

cornerstones of functional analysis in normed spaces, the others being the Hahn –Banach 

theorem, the open mapping theorem and the closed graph theorem. Unlike the Hahn –

Banach theorem, other three of these four theorems require completeness. Indeed, they 

characterize some of the most important properties of Banach spaces which normed spaces 

in general may not have. But we obtain all three theorems from a common source, which is 

mailto:abhijitkonch100@gmail.com
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Baires category theorem. From the Baire’s category theorem, we can derive the principle of 

uniform boundedness and the open mapping theorem. On the other hand, the closed graph 

theorem is an application of the open mapping theorem. 

 

2. Preliminaries:  

The open mapping theorem will be concerned with open mappings. These are 

mappings such that the image of every open set is an open set (definition below). It is well 

known that open mappings are of general interest. As in the uniform boundedness theorem 

we again need completeness and present theorem exhibits another reason why Banach 

spaces are more satisfactory than incomplete normed spaces. The theorem also gives 

conditions under which the inverse of a bounded linear operator is bounded. The proof of 

the open mapping theorem is based on Baire’s category theorem. To establish this result, 

we need a lemma and the proof of this lemma depends on Baire’s category theorem. 

Lemma 2.1: Let  X  and  Y  be two Banach spaces, and let  YXT →:  be an onto 

continuous linear operator. If zero is an interior point of a subset A  of X   , then zero is 

also an interior point of  )(AT . 

Proof: Set }1:{ = xXxV  and observe that  }:{ VxrxrV =  is the closed ball with 

center at zero and radius  r . Since zero is assumed to be an interior point of  A , there 

exists 0r  with  ArV  . By the linearity of  T  we must have  )()()( ATVrTrVT = . 

Hence to establish the result it is enough to show that zero is an interior point of  )(VT . 

 Clearly,  


=

=
1n

nVX  holds and since  T  is an onto linear operator,  


=

=
1

)(
n

VnTY   

also holds. By Baire’s category theorem, there exists some  K  such that )(VkT  has a 

nonempty interior. Since   ,)()( VTkVkT =  it follows that  )(VT   has an interior point. That 

is, there exists some  )(0 VTy   and  0r  such that  ,)()2,( 0 VTryB  . Now if  Yy  

satisfies  ry 2 , then  )(0 VTyy − . 

Therefore    ,)(2)()()( 00 VTVTVTyyyy =++−=  

where the last inclusion follows from the identity VVV 2=+ . That is, 

).(2}:{ VTryYy   

By the linearity of  T , it follows that,  )2()(2}2:{ VTVTryYy nnn −−− =  

holds for each  n . 
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Now let  Yy   be fixed such that  .2 1− ry . Since )2( 1VTy − , there exists some  

Vx 1

1 2−  such that 
2

1 2)( −− rxTy . Now proceed inductively. 

Assume that  nx   has been selected such that Vx n

n

−2  and  .2)( 1

1

−−

=

−
n

n

i

i rxTy . 

Clearly  VTxTy n
n

i

i )2()( 1

1

−−

=

−  and so there exists some  Vx n

n

1

1 2 −−

+   with  

.2)( 2
1

1

−−
+

=

−
n

n

i

i rxTy   Thus, a sequence }{ nx  is selected such that  
n

nx − 2  and 

1

11

2)()( −−

==

−=− 
n

n

i

i

n

i

i rxTyxTy  holds for all n . 

 Next define nn xxxs +++= ....21 for each n , and note that


+

+=

−
+

+=

+ =−
pn

ni

n

i

pn

ni

inpn xxss
11

2  for all n  and   p  shows that }{ ns  is a Cauchy sequence 

.Since  X  is Banach, so  }{ ns  is convergent. Let  nsx lim=  in  X . Then  1
1




=n

nxx   (i.e  

Vx  ) and by the continuity and linearity of  T , we get  yxTsTxT
n

i

in
n

=== 
=

→
1

)(lim)(lim)( . 

That is, )(VTy , and so  )(}
2

:{ VT
r

yYy  .The proof of the lemma is now complete. 

Definition 2.2: Let  X and Y  be metric spaces. Then YXf →:   is called an open mapping 

if  )(Af  is open in  Y  whenever A   is open in X . 

 

3.Main Theorem (Open Mapping Theorem):  

Let  X  and Y   be two Banach spaces, and let  YXT →:   be a bounded linear 

operator .If  T   is onto, then T  is an open mapping. 

Proof: Let   O  be an open subset of  X  and let  )(OTy . Pick a point  Ox  such that 

)(xTy = , and  note that )()( OxTOTy −=−  holds. Now observe that zero is an interior 

point of  Ox −  hence, by lemma 2.1,  zero is also an interior point of  )()( OxTOTy −=− . 

This implies that y   is an interior of   )(OT . Since  y  is arbitrary,  )(OT  is an open set, 

and the proof of the theorem is complete. 

Remark: In addition  T   is one to one, then  T  is a homeomorphism. Because if  T   is one 

to one, then  T   will be a bijection and hence  
1−T  is exists. By open mapping theorem  T   is 
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open and hence 
1−T  is bounded as  if   M  is open in  X  then  )()()( 11 MTMT =−−

is open in 

Y  . Thus if  YXT →:   , where  X  and Y   are Banach spaces, is a bijection then  
1−T  is 

bounded and this result is known as Bounded Inverse Theorem. 

Theorem 3.1. Let  X  be a linear vector space that is complete in each of the norms  
1
 

and  
2
, and suppose that there is a constant c  such that 

21
xcx   for all  Xx . Then 

the norms are equivalent. That is, there is second constant  
1c  such that 

1

1

2
xcx    for all  

Xx . 

Proof: Consider the identity mapping ).,(),(:
12

XXI →  Clearly  I  is one to one and 

onto. Since  
21

xcx   for all Xx  so  I   is bounded. Again by open mapping theorem I  

is open. Hence 
1−I  is bounded. This implies that there exists some  

1c  such that  

1

1

2
xcx    for all Xx . 

Theorem 3.2: Let  YXT →:   be a bounded linear operator where X  and Y  are Banach 

spaces. If  T  is bijective then there exists 0, ba  such that xbTxxa   for all Xx  

Proof: Since T  is bounded so there exists 0b   such that xbTx   for all . Xx …….(1) 

Since T  is bijective, i.e. YXT →− :1
 exists and  TTITT 11 −− == . 

 Therefore by open mapping theorem, 
1−T  is bounded so there exists 0  such that 

   yyT −1
 for all Yy  

   yxTT  − )(1
 

   Txx    for all Xx  

   Txx 


1
 

Txxa    where  a=


1
……(2) 

Therefore (1), (2)  xbTxxa    for all  Xx  

This completes the proof. 

We know that   1,0C , the collection of all real valued continuous functions defined 

on  1,0  is a vector space over  R . Now we define two norms in   1,0C  as  

 }1,0:)(sup{ =


xxff  and 



Bhumi Publishing, India 

106 
 

   =
1

0

1
)( dxxff  for   1,0Cf  . 

Theorem 3.3:   ),1,0(


fC  is a Banach space. 

Proof: See page 35, example 5.16 in [2].  

Theorem 3.4:    ),1,0(
1

C  is not a Banach space. 

Proof: Define the identity operator    →


),1,0(: CI   ),1,0(
1

C  

Then  }1,0,1:)(sup{
1

CfffII ==


 

Now  
==

1

0

11
)()( fdxxfffI  so 1I . 

Also  1)( =xf  for all  1,0x   is a continuous function and  1=


f , so  1=I . 

Hence  I   is bounded, i.e., continuous operator. 

Again consider the identity operator     ),1,0(),1,0(:
1

1



− → CCI . 

  Define 
n

n xnxf )1()( += for each n  

                                          Then          =+=+=

1

0

1

0

1
1)1()1( dxxndxxnf nn

n  

Also 1+=


nfn         
Now }1:)(sup{

1

11 ==


−− ffII  

                   })(sup{ 1



− nfI  

                 }sup{


= nf  

                 }:1sup{ Nnn +=  

                 =  

Hence 
1−I is bounded and therefore  I  is not open. But I  is bounded, onto. Therefore by 

open mapping theorem either   ),1,0(


fC or   ),1,0(
1

C is not Banach. But by theorem 3.3  

  ),1,0(


fC  is a Banach space. Hence    ),1,0(
1

C   is not Banach. 

In connection with the openness property of a linear map, the following result is useful. 

Proposition 3.5: Let T  be a bounded linear map from a normed linear space X  on to a 

normed linear space Y .Then T  is open if and only if there is 0  such that for each Yy  

, there is Xx  where yxT =)(  and yx  . 

Remark: The above result enables us to obtain a partial converse of the open mapping 

theorem. 
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Theorem 3.6: Let X  and Y  be Banach spaces. Then the set of all surjective maps in 

),( YXL  is open in ),( YXL . 

Proof: Let T  be a surjective map in ),( YXL . Let ),( YXLU   and 
,2

1
k

UT −  where k  is 

a real number with the property as in above proposition. We have prove that U  is 

surjective. 

 Let Yy  and 1y  , it follows from above proposition that there exists   Xx  

such that  yxT =)( and kx  . Let ).()(1 xUxTy −=  Then 
2

1
1 y  and there exists Xx 1

   

such that 
11)( yxT =  and 

2
1

k
x   .Let   ).()( 112 xUxTy −= then 

22
2

1
y . Continuing 

inductively, we can find nx   such that nn yxT =)( and    )()(1 nnn xUxTy −=+   

  
nny

2

1
 ,         

nn

k
x

2
     

It then follows that ).(.......)()( 1 nxUxUxUy +++=              

Thus yzU =)(     where 


=

=
1n

nxz . This proves the theorem.                                                            

Now we move to another consequence of open mapping theorem. i.e.  Open mapping 

theorem is used in Factor spaces.  The results on factor spaces and direct sums represent 

important auxiliary tools for the investigation of linear and nonlinear operator equations.       

But to show this, we need some definitions. 

Let L  be a linear subspace of the linear space X  over K . For all  Xvu , , we define 

 )(modLvu    iff  )1..(....................Lvu −  

This is an equivalence relation. In fact, for all Xzwvu ,,,  and K , we have the 

following   

 )(modLvu   

)(mod)(mod LuvLvu   

 )(modLvu  , )(mod)(mod LwuLwv   

This equivalence relation is compatible with the linear structure of L : 

 )(mod)(mod LvuLvu  = …………(2) 

 )(modLwu  , )(mod)(mod LzwvuLzv ++  



Bhumi Publishing, India 

108 
 

Definition 3.7: The factor space 
L

X  consists of all the equivalence classes  u  with 

respect to (1), that is     uv  iff  )(modLvu  .  Explicitly, this means that   Luu +=  

The elements v  of the class  u are called the representatives of  u . Obviously    = vu

)(modLvu  ……..(3) 

If we introduce the linear operations        uu  =  

        )4......(..........vuvu +=+  

the factor space 
L

X  becomes a linear space. The operations in (4) are well defined namely; 

they are independent of the chosen representatives. This follows from (2) and (3). For 

example, if    vu = then )(modLvu   and hence     )(modLuu  =  that is    vu  = . 

 In other words, the factor space 
L

X  consists of all the different sets Lu +  where 

Xu  and linear operations on 
L

X  are given through LvuLvLu ++=+++ )()()(
 and

LuLu +=+  )(   which corresponds to the usual operations BA +  and A  for subsets A  

and B  of linear spaces. 

Proposition 3.8: Let L  be a closed linear subspace of the normed space X  over K .Then 

the following are true. 

(1) The factor space 
L

X  becomes a normed  space over K  with respect to the 

norm  
 

vu
uv

= inf  

(2) If X  is a Banach space then so is  
L

X  

Since   Luu +=  we get   ),(),0( LudistLudistu =+=  

Definition 3.9: Let L  be a linear subspace of the linear space X  over K . Then the 

canonical mapping 
L

XX → :  is defined through  uu = )(  for all Xu  where 

  Luu +=  

Proposition 3.10: If L  is a closed linear subspace of the normed space X  over K , then 

the canonical mapping 
L

XX → :  is  linear, continuous  and surjective. 

Proof: See page 187 in [10]. 

Remark: Let YXA →:  be a linear continuous operator, where X  and Y  are Banach 

spaces over K . We define the operator   )(
)(

: AR
AN

XA → …………(A) through     AuuA =

. 
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This definition is independent of the selected representatives. In fact let    vu = . 

Then )(ANvu −  that is 0)( =− vuA  and hence AvAu =  

Proposition 3.11: Let the range )(AR  of the operator A  be closed. 

(1) The operator ][ A  from (A) ids a linear homeomorphism. 

(2) There exists a number 0c  such that 

AuANudistc ))(,(..  for all Xu  

Proof (1) : The null space }0:{)( == AuXuAN  is closed. In fact, if 0=nAu  and uun →  

as →n  then 0=Au  . Thus 
)(AN

X  is Banach space. Obviously, the operator ][ A  is 

linear. Since vAAvuA =]][[  for all ][uv  

 We have ][]][[ uAuA   and thus ][ A  is continuous. 

Furthermore, the operator ][ A  is bijective. Infact, if 0]][[ =uA then )(ANu  and hence

0][ =u . 

Since )(AR  is closed linear subspace of the Banach space Y  the range )(AR  is also 

Banach space. The Bounded inverse theorem tells us that the inverse operator  

)(
)(:][ 1

AN
XARA →−

 is continuous. 

(2) By (1) there is a constant 0d  such that ][][][ 1 uduA −
 for all 

)(
][

AN
Xu  . Hence ]][[][ vAdv   for all 

)(
][

AN
Xv  . 

Hence (2) where 
1−= dc   

Now move to direct sum and projections- where Bounded inverse theorem is used. 

Definition 3.12: Let X  be linear space over K  and let 
1L and 

2L  be linear subspaces of X

. 

 (1) We write 31 LLX =  iff each Xu  allows the following unique representation: 

31 uuu +=  where 
11 Lu   and 

22 Lu  ………(B) 

We say that X   is the direct sum of 
1L and 

2L  and that 
2L  is an algebraic complement of 

1L  in X . 

 (2) The operator XXp →:  is called an algebraic projection iff  p  is linear and 

pp =2
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 (3) If X  is normed space, then the operator XXp →:  is called an continuous 

projection iff  p  is a continuous algebraic projection. Obviously 31 LLX =  iff 
12 LLX = . 

Moreover, let 31 LLX = , then 
21 LLu   implies 0=u . 

This follows from uuu +=+= 00  and from the uniqueness of the decomposition in (B). 

 Now if we consider the linear operator equation bAu = ,  Xu . Then we have the 

following theorem— 

Theorem 3.13:  Supposed that the operator XXA →:  is linear, where X  and Y   are 

linear spaces over K . Let  L  bee any fixed algebraic complement of the null space )(AN , 

namely L  is a linear subspace of X  such that LANX = )( ……(**) 

Then the following statements are true. 

 (1) The restriction )(: ARLA →  is linear and bijective. Hence codim =)(AN dim )(AR  

 (2) In addition, suppose that X  and Y  are Banach spaces L  and )(AR  are closed, 

and the operator YXA →: is continuous. Then the operator from (c) is a linear 

homomorphism. 

 [Since ).()( XAAR =  The number dim )(AR  is called the rank of A . We denote this as 

rank A =dim )(AR ] 

Proof: (1) It follows from 0=Au  with Lu  that LANu  )( . Hence 0=u  by (**). 

(2) This follows from the Bounded inverse theorem. 

Theorem 3.14: Let X  and Y  are Banach spaces and YXF →:  be a one to one bounded 

linear map. Then its range )(FR  is closed in Y  iff XFRF →− )(:1
 is bounded. 

Proof: Let )(1 FRY =  be closed in Y . Then )(1 FRY =  is Banach, since  Y  is Banach. 

Moreover 
1: YXF →  is a bijective bounded linear map and X  is Banach. Therefore the 

Bounded inverse theorem gives the continuity of 
1−F  

Theorem 3.15: Suppose X  is a Banach space, A  and B  are closed subspaces of X   and 

XBA =+ . There exists a constant   such that every Xx  has a representation

bax += , where Aa ,  Bb  and xba + . 

Proof: Let Y  be the vector space of al ordered pairs ),( ba  with Aa ,  Bb   and 

component wise addition and scaler multiplication, normed by  baba +=),(  

Since A  and B  are complete, Y  is Banach space. The mapping XY → :  defined 

by baba += ),(  is continuous, since ),( baba +  and maps Y  onto X . By the open 
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mapping theorem, there exists   such that each Xx  is ),( ba  for some ),( ba  with 

xba ),( . 

Theorem 3.16: Let X  be separable Banach space. Then there exists a closed linear 

subspace L  of the sequence space 
1l  such that X  is topologically isomorphic to the quotient 

space 
L

l1  

Proof: Let }{ nx  be a dense sequence in X . Define the mapping XlT →1:  by 

= nnxayT )( , 


== 1}{ nnay . 

 Clearly yyT )(  Let }0{1−=TL . Define now the mapping   by )()( yTLy =+ . 

This map is well defined and is continuous, linear, one to one mapping from 
L

l1  into X . If 

T  is surjective, then   is surjective. By applying the open mapping theorem the proof will 

be complete in this case. Then it is sufficient to prove that  T  is surjective. Let Xx  and  

1x . Choose 
0nx  such that 

2

1
0
− nxx  then choose 01 nn   such that 

2

1
)(2

10
−− nn xxx . 

 Arguing inductively, we can finds subsequence }{
knx  such that 



=

=
0 2k

k

nk
x

x . 

Let }{ jay =  be defined so that  
ija

2

1
=  if inj =  

                                  0=  if inj   all i  

Then 
1ly  and xyT =)(  . This shows that T  is surjective. 

Now we can mention an application of the open mapping theorem to obtain result 

about perturbations in different equations. 

Example 3.17: Consider the differential equation,  )()()()()()( 2

/

1

// tytxtatxtatx =++

……(*) 

Here  
21,aa  and y  are members of ].,[ baC  An initial value problem (For details see 

ordinary differential equation by Coddington) for (*) calls for finding a twice continuously 

differential function x  on ],[ ba  satisfying (*) and satisfying the initial conditions 

0)()( / == axax   

A standard theorem in differential equations asserts that this initial value problem has a 

unique solution. We wish to study the dependency of the function x  on y  and vice-versa. 
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Let 
2CX = , the space of twice continuously differential functions. Then X  becomes 

a Banach space under the norm },,max{ ///


= xxxx  where 


 denotes the usual 

supremum norm in ].,[ baC  Let ].,[ baCY = Let YXT →:  be defined by yTx =  where 

)()()()()()( 2

/

1

// tytxtatxtatx =++ . The standard theorem in differential equations that we 

mention before asserts that T   is one to one on X  and maps X  onto Y . We show that T  is 

a continuous operator. 

 Let 


++= 211 aaA .  Then xAxaxaxyTx ++=
 2

/

1

//  so T  

is a continuous. By the open mapping theorem, 
1−T  is also continuous. We can interpret 

this as saying that small perturbations of the function y  will result in small perturbations 

of the solution    
2Cx . This means that such a perturbed solution 

1x  will be ‘
2C -close’ to 

x ,  that is, 
/

11, xx  and 
//

1x  will be (uniformly) close to   
/, xx  and 

//x  respectively. 

 

4. Conclusion:    

Here, the open mapping theorem exhibits the reason why Banach spaces are more 

satisfactory than incomplete normed spaces. The theorem also gives conditions under which 

the inverse of a bounded linear operator is bounded.  Moreover, Bounded Inverse theorem 

has shown that just as the inverse of a bijective linear map from a linear space to a linear 

space is linear and the inverse of a bijective closed map from a metric space to a metric 

space is closed, the inverse of a bijective, linear and continuous map from a Banach space to 

a Banach space is linear and continuous.  The theorem 4, have shown that open mapping 

theorem can be used to obtain a theorem showing how to check that two norms on Banach 

space are equivalent.  
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