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PREFACE

We are delighted to publish our book entitled "Advances in
Mathematical and Statistical Science". This book is the compilation of
esteemed articles of acknowledged experts in the fields of basic and applied

mathematical science.

This book is published in the hopes of sharing the excitement found in
the study of mathematics and statistical science. Mathematical science can
help us unlock the mysteries of our universe, but beyond that, conquering it
can be personally satisfying. We developed this digital book with the goal of

helping people achieve that feeling of accomplishment.

The articles in the book have been contributed by eminent scientists,
academicians. Our special thanks and appreciation goes to experts and
research workers whose contributions have enriched this book. We thank our

publisher Bhumi Publishing, India for taking pains in bringing out the book.

Finally, we will always remain a debtor to all our well-wishers for their

blessings, without which this book would not have come into existence.

- Editors
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Abstract:

Factorization of a graph G is a set of spanning subgraphs of G that are pairwise edge
disjoint. A graph is called k-factorizable if it can be represented as a union of edge-disjoint k
factors. In this paper we obtain factorization of complete graph and its application.

AMS Subject Classification: 05C69

Keywords: factorization, factors

1. Introduction

Graphs are the mathematical structure which consists of vertex set V and edge set E. It
isused to model pair-wise relation between objects from a certain collection. Vertices
are represented as points in the plane edges are represented as the line segments connecting
them. Graphs are ever-present miniature of both from nature and man-made structures.

When any two vertices are joined by more than one edge, the graph is called a multi-
graph. A graph without loops and with at most one edge between any two vertices is called a
simple graph. Unless stated otherwise, graph is assumed to refer a simple graph. When each
vertex connected by an edge to every other vertex, the graph is called a complete graph.

If two graphs G and G; have the same vertex set, then the union G; U Gy has the same
vertex set and the edge set E (G1 U G2) is E(G1) U E(G2). If E(G1) N E(G2) = @ then E(G1) U
E(G2) may be termed the edge-disjoint union of E(Gi) and E(G2). If two graphs Gi and G2
have disjoint vertex sets then the union of Gi and Gz is V (G1 U G2) =V(G1) U V(Gz). Partition
[7] of G into edge - disjoint sub-graphs Gi, Gz... Gr such that E(G) = E(G1) U E(G2) U ... U
E(Gr) is called decomposition of G and we write G=G1 P G2 D ... PG..

If every pair of vertices are joined by an edge, we say that the graph is complete and if,
in addition, |V (G)| = n, we denote this graph by K.

There is a vast body of work on factors and factorizations and this topic has much in

common with other areas of study in graph theory. For example, factorization significantly
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overlaps the topic of edge coloring.Indeed, any color class of a proper edge coloring of a graph is
just a matching. Moreover, the Hamilton cycle problem can be viewed as the search for
a connected factor [1].

In the most general sense, a factor of a graph G is just a spanning sub-graph of G and a
graph factorization of G is a partition of the edges of G into factors.

A factor F described in terms of its degrees will be called a degree factor. For example, if
a factor F has all its degrees equal to 1, it is called a 1-factor (or a perfect matching). If the factor
is described in some other graphical concept, it is called a component factor. If the edge set of a
graph G can be represented as the edge-disjoint union of factors Fi, Fa, F3...Fx. We refer to {Fi,
F», F3...Fk} as a factorization of graph G.

Factor of a graph G is a spanning sub-graph, k-factor of a graph is a spanning k-regular
sub graph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A
graph G is said to be k-factorable if it admits a k-factorization.

1-factor is a sub-graph of a graph G where each of the vertices is of degree one and
union of these sub-graphs forms the original graph. Suppose K4 is a complete graph then the 1-

factor as follows

v V.
’ o—0
I><] . >< U U
[ ]
VJ \/_J

2. Factorization of Complete Graph
Theorem 2.1:

The Complete graph Key-2, v> 1has 2v—1 number of 3-factor sub-graphs.
Proof:

Let us use induction method to prove this theorem. Consider the complete graph Key-2
with v= 1. Then we have the complete graph Ks, which has 4 vertices and 6 edges. So, it has
one 3-factor, which means it has one three regular sub-graph. Therefore, the theorem is true
for v= 1. Next, we should prove that the theorem is true for v=2.If v=2, then we get a
complete graph Ko, with 10 vertices and 45 edges. For this Ko the number of three factor sub-
graphs is clearly three, and each three factor sub-graph has fifteen edges. As a result, the

theorem holds for v=2.
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If the process continues as same then the case is true for v=n. So we have the complete
graph as Ken-2, in which the number of vertices is 6n—2 and total number of 3-factor sub-graphs
are 2n—1. The theorem is true for v=n. Now our aim is to prove that the theorem is true for
v=n+1.The following step is to prove that the theorem is true for v=n+1.Take v=n+1 then we get
the graph Ken+4. Let E(G) be the edge set of Kenra.we must give the partition of the edge set
E(G) into the 3-factors. Let V(G) ={vi, v2, V3...Vn, Ven+4} be the vertex set of Ken+4.

The set G={G1, G2...Gk} be the spanning sub-graph of Ken+4. A Graph Ken-+4 is said to be
factorable into Gi, G2...Gk if each Gj where 1 =1,2,3.... k is a spanning sub-graph of Ken+4.Then
the set E(G) ={E(G1), E(G2), E(G3), ...E(Gi)} is pair-wise disjoint. Also, we get the following

form

| B <Eca
t=1

For the complete graph K4 (Keyv-2, where v= 1) there exist one (2v—1=2(1)—1=1) 3-factor
sub-graph. For Kio (Kev-2, where v=2) there exist three (2v—1=2(2)—1=3) 3-factor sub graphs.
For Kis (Kev-2, where v=3) there exist five (2v—1=2(3)—1=5) 3-factor sub-graph and so on. For
Keén-2 (Kev-2, where v=n) there exist 2n—1 (2v—1=2n—1) 3-factor sub graphs. So for Ken+4 (Kev-2,
where v=n+1) there exist 2n+1(2v—1=2(n+1)—1=2n+1) 3-factor sub-graphs.

Therefore, a complete graph with 6n+4 vertices is factorized into 2n+Inumber of 3-
factor sub-graphs and this 3-factorization partitions the edge set E(G) into disjoint 3-factors. As

a result, the theorem is true for all v> 1.
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Theorem 2.2:

The Complete graph K¢y where v> 1has 2v—1 number of 3- factor sub-graph and one 2-
factor sub-graph.
Proof:

With the use of the mathematical induction method, we will establish this theorem.
Consider the Complete graph Key with v=1. Then there is the complete graph Ke, which has six
vertices and fifteen edges. It has one 2-factor sub-graph and one 3-factor sub-graph, and when
these two graphs are combined, we get K¢. As a result, the theorem holds for v=1.

Vi

V. Ve

Next, we should prove that the theorem is true for v=2.When we put v=2 we get the
complete graph Ki> which has 12 vertices and 66 edges. There are exactly three 3-factor sub
graphs and one 2-factor sub-graph. There are 18 edges in each three-factor graph and 12 edges in
each two-factor graph. As a result, the theorem holds for v=2.

If this process continues in this manner, then the theorem is true for v=n. So, we
have complete graph Ke,, in which the number of vertices is 6n and the total number of 3-
factor sub-graphs are 2n—1 and there exist one 2-factor sub-graph. Then the theorem is true for v
=1n. Our aim is to prove that theorem is true for v =n+1.

If we substitute v = n+1, then we get Kents. Let E(G) be the edge set of Kents. We have
to give the partition of the edge set E(G) into the 3-factors and 2-factor. Let V(G) ={ vi, v2,
V3,...Vn,Ven+6 } be the vertex set of Ken+s . The set G={G1,G2,...Gx} be the spanning sub graph of
Ken+s . A graph Ken+s is said to be factorable into Gi, Gz ...Gk if each G; where i=1,2,3.... k is a
spanning sub-graph of Kents. The set E(G) ={E(G1), E(G2), E(G3), ...E(Gi)} is pair-wise
disjoint.

For the complete graph K (Ksv, where v= 1) there exist one (2v—1=2(1)—1=1) 3-factor
sub-graph and one 2-factor sub-graph. For Ki» (K¢, where v=2) there exist three
(2v—1=2(2)—1=3) 3-factor sub-graphs and one 2-factor sub-graph. For Kis (K¢v, where v=3) there
exist five (2v—1=2(3)—1=5) 3-factor sub-graphs and one 2-factor sub-graph and so on. For Ken
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(Kev, where v=n) there exist 2n—1 (2v—1=2n—1) 3-factor sub-graphs and one 2-factor sub-graph.
For Ken+s (Kev where v=n+1) there exist 2n+1 (2v—1=2(n+1)—1=2n+1) 3-factor sub-graphs and
one 2-factor sub-graph.

Therefore, a complete graph with 6n+4 vertices is factorized into 2n+1 number of 3-
factor sub-graphs and one 2-factor sub-graph. This 3-factorization and 2-factorization partitions
the edge set E(G) into disjoint 3-factors and 2-factors

Hence the theorem is true for all v> 1.

Theorem 2.3:

The Complete graph Key+2, where v> 1has 2v number of 3- factor sub-graphs and one 1-
factor sub-graph.
Proof:

With the use of the mathematical induction method, we will verify this theorem. Consider
the complete graph Kev+2 with v=1 there is the complete graph Ks, which has eight vertices
and twenty-eight edges. It has one I-factor sub-graph and two 3-factor sub- graphs, and the
union of these two graphs yields Ks. As a result, the theorem holds for v=1.

Next, we should prove that the theorem is true for v=2. Let v=2 then we get complete
graph Ki4 with 14 vertices and 91 edges. It is obvious that the complete graph Ki4 has four 3-
factor sub-graphs and one 1-factor graph. Each three-factor sub-graph has 21 edges, while
each factor graph has seven. As a result, the theorem is true for v=2.Let us assume that
the theorem is true for v=n. The complete graph thus takes the form Ken+2, where the number
of vertices is 6n+2 and the number of 3- factor sub-graphs is 2n and one 1-factor sub-graph.
The theorem is true for v=n. Our aim is to prove that theorem is true for v=n+1.

Now, if we substitute v=n+1 then the complete graph becomes Kgn+1)+2, with the number
of vertices equaling 6(n+1)+2=6n+8. Let E(G) be the edge set of Kenis.We have to give the
partition of the edge set E(G) into the 3-factors and 1-factor.V(G) ={vi1, v2, v3,...... Vi, Vénts } be
the vertex set of Ken+s. The set G={G1,G2 ,...Gx} be the spanning sub-graph of Ken+g . A Graph
Ken+g 1s said to be factorable into Gi1,G2,.....Gk if each Gi where i=1,2,3....k is a spanning sub-
graph of Ken+g. The set E(G) ={E(G1), E(G2), E(G3), ...E(Gj)} is pair-wise disjoint.

For the complete graph Ks (Kev+2, where v= 1) there exist two (2v=2(1)=2) 3-factor sub
graph and one 1-factor sub-graph. For Ki4 (Kev+2, where v=2) there exist four (2v=2(2)=4) 3-
factor sub-graphs and one 1-factor sub-graph. For Kz (Kev+2, where v=3) there exist five
(2v=2(3)=6) 3-factor sub-graphs and one 1-factor sub-graph and so on. For Ken+2 (Keév+2, where

v=n) there exist 2n (2v=2n) 3-factor sub-graphs and one 1-factor sub-graph. For Ken+s (Kev+2,

5



Bhumi Publishing, India

where v=n+1) there exist 2n+2 (2v=2(n+1)=2n+2) 3-factor sub-graphs and one 1-factor sub-
graph.

Therefore, a complete graph with 6n+8 vertices is factorized into 2n+2 number of 3-
factor sub-graphs and one 1-factor sub-graph. This 3-factorization and 2-factorization partitions

the edge set E(G) into disjoint 3-factors and 1-factors.

Theorem 2.4:

For the Complete graph Kay+1, v>1, there exist v number of 4-factor sub-graph.
Proof:

We prove this theorem with the help of mathematical induction method. Here, the
complete graph Kayv+1 with v=1, we get Ks, which has five vertices and ten edges. Then the
complete graph Ks itself becomes one 4-factor sub-graph of Ks. Thus, a result, the theorem holds
for v=1. Next, we should prove that the theorem is true for v=2.Take v=2, we get a complete
graph Ko, with 9 vertices and 36 edges. The number of 4-factor sub-graphs is clearly two, and
each 4-factor sub-graph has eighteen edges. As a result, the theorem is true for v=2.

If the process continues as same then the case is true for v=n. So we have complete graph
as Kun+1,1in which the number of vertices is 4n+1 and the total number of 4-factor sub-graphs is
v. The theorem is true for v=n. Our aim is to prove that the theorem is true for v=n+1.

Now, if we take v=n+1 then we get K4n+1)+1. Let E(G) be the edge set of Kun+s.we have
to give the partition of the edge set E(G) into the 4-factors. V(G) ={ v1, v2, v3...... Vn, Van+s } be
the vertex set of Kan+s. The set G={G1, G2 ...Gk} be the spanning sub-graph of K4n+s. A Graph
Kuan+s 1s said to be 4-factorable into Gi, Gz ...Gk if each Gj where i=1,2,3.... k is a spanning sub-
graph of Kun+s. then E(G) ={E(G1), E(G2), E(G3), ...E(Gi)} is pair-wise disjoint.

For K5(Kav+1, where v= 1) there exist one (v=1) 4-factor sub-graph. For Ko(Ka4v+1, where
v=2) there exist two (v=2) 4-factor sub-graphs.Ki3 (K4v+1, where v=3) there exist three (v=3) 4-
factor sub-graphs and so on. For Kun+1(K4v+1, where v=n) there exist n (v=n) 4- factor sub-
graphs.Kan+s (Kav+1, where v=n+1) there exist n+1 (v=n+1) 4-factor sub graphs.Therefore, a
complete graph Kun+s is factorized into n+1 number of 4-factor sub graphs and this 4-

factorization partitions the edge set E(G) into disjoint 4-factors.

Theorem 2.5:
The Complete graph Kayv+3, v> lhas v number of 4-factor sub-graphs and one 2- factor

sub graph.
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Proof:

We prove this theorem with the help of mathematical induction method. Consider, the
complete graph Kav+3, v> land it has 4v+3 number of vertices.

Suppose v=1, then there is the complete graph K7, which has seven vertices and twenty-
one edges. Obviously, it has one 4-factor graph and one 2-factor sub-graph and union of
these two graphs gives us K7. As a result, the theorem holds for v=1.Next, we should prove
that the theorem is true for v=2. If we put v=2, then we have the complete graph K;i in which
the number of vertices equals to 11 and the number of edges equals to 55. Clearly it has two 4-
factor sub-graphs and one 2-factor sub-graph. Hence the theorem is true for v=2.

If this process continues in this manner then the theorem is true for v=n. so we have
complete graph Kaun+3,in which the number of vertices is 4n+3 and the total number of 4- factor
sub-graphs are n and there exist one 2-factor sub-graph. Then theorem is true for v=n. Our aim
is to prove that theorem is true for v=n-+1.

Now, if we substitute v=n+1 then the complete graph becomes Ksn+1)+3, with the number
of vertices equals to 4(n+1)+3=4n+7. Let E(G) be the edge set of Kun+7.we have to give the
partition of the edge set E(G) into the 4-factors and 2-factor. V(G) ={ vi, v2, v3...... Vn, Van+7 | be
the vertex set of Kun+7. The set G={Gi, G2...Gk} be the spanning sub-graph of K4n+7. A Graph
Kun+7 1s said to be factorable into Gi, Ga....Gk if each Gi where 1=1,2,3....k is a spanning sub-
graph of Ken+s . The set E(G) ={E(G1), E(G2), E(G3), ...E(Gi)} is pair-wise disjoint.

For the complete graph K7 (K4y+3, where v= 1) there exist one (v=1) 4-factor sub-graph
and one 2-factor sub-graph. For K (K4v+3, where v=2) there exist two (v=2) 4-factor sub graphs
and one 2-factor sub-graph. For Kig (K4y+3, where v=3) there exist three (v=3) 4- factor sub-
graphs and one 2-factor sub-graph and so on. For Ksn+3 (K4v+3 , where v=n) there exist n (v=n) 3-
factor sub-graphs and one 2-factor sub-graph. For K4n+7 (K4v+3 where v=n+1) there exist n+1
(v=n+1) 3-factor sub-graphs and one 2-factor sub-graph.

Therefore, a complete graph Kan+7 is factorized into n+1 number of 4-factor sub-graphs
and one 2-factor sub-graph. This 4-factorization and 2-factorization partitions the edge set E

(G) into disjoint 4-factors and 2-factors

3. Application of complete graph factorization

Graph is an abstract idea of representing any objects which are connected to each other in
a form of relation. Graph partition is a technique to distribute the whole graph data as a
disjoint subset to a different device. The need of distributing huge graph data set is to process

data efficiently and faster the process of any graph related applications. It always aims to reduce

7
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the communication between machines in their distributed environment and distribute vertices
roughly equal to all the machines [2].
3.1. Hamiltonian circuit

A graph structures can be extended by assigning a weight to each edge of the graph.
Graphs with weights or weighted graphs are used to represent structures in which pair wise
connections have some numerical values. For example, if a graph represents a road network, the
weight could represent the length of the road. A digraph with weighted edges in the context of
graph theory is called a network. In case of modeling and analyzing the traffic signals networks.

In 2010, Dutta et al developed some theorems about the application of regular planar sub
graphs of the complete graphs and he studied various types of Hamiltonian circuits and
edge disjoint Hamiltonian circuits of different types of regular sub-graphs of complete graphs. A
Hamiltonian circuit in a graph is a closed path that visits every vertex in the graph exactly once.
(Such a closed loop must be a cycle). A Hamiltonian circuit ends up at the vertex from where it
started [8, 9].

Hamiltonian graphs are generally found to be very important in graph theory in which
one must study the Hamiltonian circuit with weights related to minimum distance, time, cost etc.
from the weighted graphs. Finding the Hamiltonian circuit with least cost route optimization
problem in graph theory in which the nodes (cities) of a graph are connected by edges (routes),
where the weight of an edge indicates the distance between two cities. The problem is to find a
path that visits each city once, returns to the starting city, and minimize the distance traveled
[6,10].

Here we formulate algorithm for its application. That is to find the Hamiltonian circuit
with least distance for the given complete graph in which nodes (schools) are connected by the
edges (route) where the weight of an edge indicates the distance between two schools. When we
do the factorization, the given complete graph is reduced into regular sub-graph. From the

obtained factors we can find the Hamiltonian circuit with least distance.

3.2. Algorithm:
This case includes the complete graph of the form Kay+3, K4v+1 where v> 1 having the odd
number of vertices.
Input:
Let G be the complete graph having vertex 4v+3 or 4v+1, v> 1.
Output:

To find the Hamiltonian Circuit with least distance.

8
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Stepl:

Assign weights for all the non-repeated edges for the complete graph Kasy+3, where v> 1.
Step2:

If there exist at least one 4-factor sub-graph and one 2-factor sub-graph for graph having
4v+3 number of vertices, then select two edges which should be minimum weighted.
Step3:

Draw the 2-factor sub-graph with the minimum weighted edges obtained in step2.
Step4:

Find the Hamiltonian circuit with the least distance. Stop the procedure. Suppose that the
complete graph is of the form Kay+1, where v> 1then go to step 5.
Step 5:

Assign the weights for all the non-repeated edges for the complete graph Kay+1, where v>
1.
Step 6:

If there exist at least one 4-factor sub-graph having 4v+1 vertex, then select four edges
which should be minimum weighted among all the weighted edges.
Step7:

Draw the 4-factor sub-graph with the minimum weighted edges obtained in step number
6, and then find the Hamiltonian circuit with the least distance.
Example:

The squads are going for an inspectional visit at Government and Corporation Schools
located in the Coimbatore district.

Here are the schools and the distance (in KM) between each school is tabulated. There
are seven alphabets assigned to represent the name of the schools.
A-Corporation Girls Higher Secondary School, R.S. Puram
B- Corporation Girls Higher Secondary School, Ram Nagar
C-- Corporation Girls High School, Sundakamuthur road, Selvapuram.
D-C.C.H. S, Variety Hall Road, Town Hall
E- Coimbatore Corporation Girls Secondary School, Arokiyasamy road, R.S. Puram
F-Government Girls Higher Secondary School, ThermuttiVeethi, Town Hall

G- Coimbatore Corporation Girls Secondary School, Oppanakarastreet, Town hall
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SCHOOL A B C D E F G

A - 1.9 3.5 3.2 1.1 23 33

1.9 - 24 3.3 2.5 4.3 3
C 3.5 24 - 3 3.1 2.6 1.2
D 3.2 33 3 - 1.3 1.2 1.5
E 1.1 2.5 3.1 1.3 - 2.7 3.5
F 2.3 4.3 2.6 1.2 2.7 - 0.9

G 33 3 1.2 1.5 3.5 0.9 -

Table 3.1

From the Table-3.1, we have a complete graph of seven vertices, which is shown in
Figure 3.3 and we apply the statement of the algorithm and find the least cost route we get

complete graph for this table as follows

Now, applying the algorithm we obtain the 2-factor sub-graph which is give below

We have the minimum weighted Hamiltonian circuit as follow:

A—apE—5D—aF—G p C—pB—p A

The total weight calculated as 1.1+1.3+1.2+0.9+1.2+2.4+1.9=10 kilometers.

10



Advances in Mathematical and Statistical Science
(ISBN: 978-93-91768-62-1)

Conclusion:

We obtained factorization of complete graphs with odd and even number of vertices into

1 — factor, 2—factor, 3 —factor and 4-factor sub-graphs. Also we discussed about some

application of factorization of complete graphs and by the results obtained, we focused to find a

least cost Hamiltonian circuit. The research of factorization of complete graphs is purely

mathematical perspective so that all the definitions and theorems described in this section are

accessible to Applied Mathematicians and Engineers for developing its practical applications.
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Abstract:

This paper is devoted to the study of intuitionistic fuzzy topological spaces. In this paper
nfgeneralized closed sets in intuitionistic fuzzy topological spaces is introduced. The main
objective of this paper is to find the relationship between basic intuitionistic fuzzy sets and
intuitionistic fuzzy 8 generalized closed and open sets. Also, we have analyzed some properties
of mf generalized closed sets in intuitionistic fuzzy topological spaces.

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy mf generalized closed sets,

intuitionistic closed sets.

1. Introduction:

In 1965, the concept of Fuzzy sets was introduced by Lofti A. Zadeh [10] and in 1968,
Chang[2] introduced and developed fuzzy topology. After the introduction of fuzzy set and fuzzy
topology, several authors conducted researchers on the generalization of these notions. In the
year 1986, the notion of intuitionistic fuzzy sets was introduced by Atanassov[l] as a
generalization of fuzzy sets and Coker[3] introduced the concept of intuitionistic fuzzy
topological spaces in 1997. In the year 2014, Jayanthi D [5] has introduced intuitionistic fuzzy
generalized 3 closed sets and Saranya M and Jayanthi D[7], has introduced intutionistic fuzzy
generalized closed sets in 2016. In this paper, we have introduced the concept of intuitionistic
fuzzy mf generalized closed sets and investigated some of their properties and obtained some

interesting characterizations.

2. Preliminaries

Definition 2.1: [1] Let X be a non empty fixed set. An intuitionistic fuzzy set(IFS in short) A in
X is an object having the form A = {<x,uA(x),vA(x)>/x € X}where the functionspuA(x) :X
—[0,1] and vA(x):X—[0,1] denote the degree of membership (namely pA(x) ) and the

degree of non — membership (namely vA(x) ) of each element x € X to the set A,
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respectively, and 0 < pA(x)+vA(x)<1 for each x € X. Denote by IFS(X), the set of all
intuitionistic fuzzy sets in X.

Definition 2.2: [1] Let A and B be IFSs of the form A= {<x,(x),vA(x)>/x € X} and B=
{<x,uB(x),vB(x)>/x € X}. Then

a) A € B if and only if pA(x)<uB(x) and vA(x)>vB(x) for all x € X

b) A=Bifand onlyif AS Band BS A

c) Ac = {<x,VA(x),uA(x)>/x € X}

d) A NB = {<x,uA(x)AuB(x),VA(x)V vB(x)>/x € X}

e) A UB = {<x,uA(x)VuB(x),vA(x)A vB(x)>/x € X}

For the sake of simplicity, we shall use the notation A= <x,(u4,uB),(vA,vB)> instead of
A= <x,(A/uA,B/uB),(A/VA,B/vB)>.
The intuitionistic fuzzy sets 0~ = {<x,0,1)>/x € X} and 1~ = {<x,0,1)>/x € X} are respectively
the empty set and the whole set of X.
Definition 2.3.: [2] An intuitionistic fuzzy topology (IFT in short) on X is a family t of IFSs in
X satisfying the following axioms.
1 1.0~ 1~€e1
i . GI N G2 e, forany G1, G2 e ©
il iil. U Gie t for any family {Gi/ieJ} S 1.

In this case the pair (X, 7) is called an intuitionistic fuzzy topological space (IFTS in
short) and any IFS in t is known as an intuitionistic fuzzy open set (IFOS in short) in X.
The complement Ac of an IFOS A in an IFTS (X, 1) is called an intuitionistic fuzzy closed set
(IFCS in short) in X.
Definition 2.4: [3] Let (X, 1) be an IFTS and A =<x,,,>be an IFS in X. Then the intuitionistic
fuzzy interior and an intuitionistic fuzzy closure are defined by
int(A)=U {G/Gisan [FOSin Xand G € A },
cllA)=N {K/KisanI[FCSin Xand A € K }.
Note that for any IFS A in (X, 1), we have cl(Ac) = (int(A))c and int(Ac) = (cl(A))c.
Definition 2.5.: [6] An IFS A of an IFTS (X, 1) is an
(1) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)),
(11) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)).
Definition 2.6: [6] An IFS A of an IFTS (X, 1) is an
(1) intuitionistic fuzzy semi open set (IFSOS in short) if A € cl(int(A),
(11) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) S A.
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Definition 2.7: [6] An IFS A of an IFTS (X, 1) is an

(1) intuitionistic fuzzy a-open set (IFaOS in short) if A € int(cl(int(A))),

(11) intuitionistic fuzzy o-closed set (IFaCS in short) if cl(int(cl(A)) € A.

Definition 2.8: [6] An IFS A of an IFTS (X, 1) is an

(1) intuitionistic fuzzy pre open set (IFPOS in short) if A € int(cl(A)),

(11) intuitionistic fuzzy pre closed set (IFPCS in short) if cl(int(A)) € A.

Definition 2.9: [9] The union of IFROSs is called intuitionistic fuzzy m-open set (IFTOS in short)
of an IFTS (X, 1). The complement of IFOS is called intuitionistic fuzzy n-closed set (IFCS in
short).

Definition 2.10: [5] An IFS A of an IFTS (X, 1) is an

(1) intuitionistic fuzzy P -open set (IFBOS in short) if A € cl(int(cl(A))) .

(1) intuitionistic fuzzy B-closed set (IFFCS in short) if int(cl(int(A))) S A.

Definition 2.11: [5] Let A be an IFS in an IFTS in (X,1). Then the intuitionistic fuzzy [- interior
and intuitionistic fuzzy f-closure of A are defined by

i 1. fint(A)=U {G/G is an IFBOS in X and GE A},

il ii. Bcl(A) =N{K/K is an I[FFCS in X and ACSK}.

Note that for any IFS A in (X,t), we have Scl(Ac) = (Bint(A ))c and Sint(Ac)= (Scl(A))c.
Definition 2.12: [5] Let A be an IFS in (X,7), then
i i. Bcl(A)=2 A U int(cl(int(A)))

i ii. Bint(A)S AN cl(int(cl(A)))
Definition 2.13: [8]

An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy generalized closed set (IFGCS in
short) if cl(A) € U whenever A € U and U is an [FOS in X. The complement of IFGCS is called
intuitionistic fuzzy generalized open set (IFGOS in short).

An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy generalized open set (IFGOS in
short) if Ac is an [FGCS in X.

Definition 2.14: [8] An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy generalized open set
(IFGOS in short) if Ac is an IFGCS in X.

Definition 2.15: [5] An IFS A in an IFTS (X,7) is said to be an intuitionistic fuzzy generalized
closed sets(IFGSCS for short) if fcl(A)SU and U is an IFOS in (X,t). The familyof all IFGSCSs
of an IFTS (X,7) is denoted by IFGSC(X).

Definition 2.16: [7] An IFS A is an IFTS (X,7) is said to be an intuitionistic fuzzy f generalized
closed set (IFSGCS for short) if fcl(A) € U whenever A € U and U is an IFFOS in (X,t). The
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complement Ac of an IFBGCS A is an IFTS (X, 1) is called intuitionistic fuzzy f generalized
open set (IFFGOS in short) in X.

Definition 2.17: [4] An IFS A in (X,7) is called an intuitionitic fuzzy nowhere dense set if there
exist no [IFOS U such that U Scl(A). That is int(cl(A))=0~

Definition 2.18: [8] Two IFSs are said to be g-coincident (AgB in short) if and only if there
exists an element x € X such that (x) > (x) or VA(x) < uB (x).

Definition 2.19: [5] For any two IFSs A and B are said to be not g- coincident (Aq B) if and only
if A € Be.

Definition 2.20: [4] An intuitonistic fuzzy point (IFP in short) written as («,) is defined to be an
IFS of X given by

(a,p)= {(a,) if x=p (0,1) otherwsie

An intuitionistic fuzzy point (a,) is said to belong to as a set A if a<uA and f>JA.

Definition 2.21: [3] Let (X, 7) be an IFTS and A, B be IFSs in X. Then the following properties
hold:

i i.int(A) € A

i ii. A € cl(A)

iii iii. AC B =cl(A) C cl(B)

v iv. A€ B = int(A) € cl(B)

\% v. int(int(A)) = int(A)

vi vi. cl(cl(A)) = cl(A)

vii vii. int(ANB) = int(A) N int(B)

viii  viii. cl(AUB) =cl(A) U cl(B)

X ix.int(1~) =1~

X x. cl(0~) =0~

3. Intuitionistic fuzzy 8 generalized closed sets
In this section we have introduced intuitionistic fuzzy mff generalized closed sets and
studied some of its properties.
Definition 3.1:
An IFS A in (X, ) is said to be an intuitionistic fuzzy nf} generalized closed sets (IFTPGCS in
short) if fcl(A)ES U whenever A € U and U is an [Fr0S in (X, 7).
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Example 3.2:

Let X ={ab} and let 7 ={0~,6G1,G2,1~} is an IFT on X, where
G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,(0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A
=<x,(0.4a,0.5b),(0.6a,0.5b)> is an IFTBGCS in (X, 7).

Theorem 3.3:

Every intuitionistic fuzzy closed set (IFCS in short) in (X, ) is an [IFrfGCS in (X, 7 ) but
not conversely.
Proof:

Let A be an IFCS and let A € U and U be an [Fz0S in (X, ). As (A)Scl(A) = A €U. We
have (A)CU. Therefore A is an IFtfGCS.
Example 3.4:

Let X ={a, b} and let t ={0~,G1,G2,1~} is an IFT on X, where
G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,(0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A
=<x,(0.4a,0.5b),(0.6a,0.5b)> is an IFrBGCS in (X, 7 ) but not an IFCS in X as cl(A)=Glc # A.
Theorem 3.5:

Every intuitionistic fuzzy regular closed set (IFRCS in short) in (X, ) is an IFrSGCS in
(X, ) but not conversely.

Proof:

Since every IFRCS is an IFCS.Hence A is an [FrSGCS in (X, ).
Example 3.6:

Let X ={ab} and let 7 ={0~,6G1,G2,1~} is an IFT on X, where
G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,(0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A
=<x,(0.4a,0.5b),(0.6a,0.5b)> is an IFrfGCS in (X, T ) but not an IFRCS in X as
cl(int(A))=cl(G1)= Glc # A.

Theorem 3.7:

Every intuitionistic fuzzy semi closed set (IFSCS in short) in (X, 7) is an [FrfGCS in (X,
) but not conversely.

Proof:

Let A be an IFSCS and let A € U and U be an [F0S in (X, ). As (A)SScl(A) = A CU,
by hypothesis . Hence (A)SU. Therefore A is an IFrfGCS in (X, ).
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Example 3.8:

Let X ={ab} and let 7 ={0~,6G1,G2,1~} is an IFT on X, where
G1=<x,(0.5a,0.6b),(0.5a,0.4b)> and G2=<x,(0.2a,0.2b),(0.8a,0.8b)> . Then the IFS A
=<x,(0.4a,0.6D),(0.6a,0.4b)> is an IFrBGCS in (X, 7 ) but not an IFSCS in X as
int(cl(A)=int(G2¢c)= G1Z A.

Theorem 3.9:

Every intuitionistic fuzzy a closed set (IFaCS in short) in (X, ) is an [FrfGCS in (X, 1)
but not conversely.
Proof:

Let A be an [FaCS and let A € U and U be an I[F70S in (X, ). As (A)Sacl(A) = ACU.
By hypothesis (A)SU. Therefore A is an IFtBGCS in (X, ).

Example 3.10:

Let X ={ab} and let t ={0~,G1,G2,1~} is an IFT on X, where
G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,(0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A
=<x,(0.4a,0.5b),(0.6a,0.5b)> is an IFrfSGCS in (X, T ) but not an [FaCS in X as
cl(int(cl(A)))=cl(int(G1c)=cl(Gl)= Glc ZA.

Theorem 3.11:

Every intuitionistic fuzzy pre closed set (IFPCS in short) in (X, ) is an [FrfGCS in (X,7)
but not conversely.
Proof:

Let A be an IFPCS and let A € U and U be an [FrOS in (X, ). As (4) S pcl(A)= ACU.
By hypothesis (A) € U. Therefore A is an [FrfGCS in (X, ).

Example 3.12:

Let X ={ab} and 1 ={0~,61,G2,1~} is an IFT on X, where
G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,(0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A
=<x,(0.4a,0.5b),(0.6a,0.5b)> is an IFrfGCS in (X, 7) but not an IFPCS in (X, 7) as
cl(int(A))=cl(G1)= GlcZ A .

Theorem 3.13:

Every intuitionistic fuzzy nclosed set (IFZCS in short) in (X,) is an IFrBGCS in (X, ) but
not conversely.
Proof:

Let A be an IFtCS in (X, 7) and let A € U.Since every IFtCS is an IFCS. Therefore A is
an I[FtBGCS (X, 7).
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Example 3.14:

Let X ={ab} and let t ={0~,G1,G2,/~}is an IFT on X, where
G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A
=<x,(0.4a,0.5b),(0.6a,0.5b)> is an IFTSGCS in (X, 7 ) but not an [FrCS in (X 7) as cl(int(A)) =
cl(Gl)=Glc #A.

Theorem 3.15:

Every Intuitionistic fuzzy S closed set (IFSCS in short) in (X, 7) is an [FrBGCS in (X,
7) but not conversely.

Proof:

Let A be an IFBCS in (X, 7) and let A €U and U be an [F0S in (X, 7) . As (A)=Ac U,
by hypothesis. Therefore A is an IFrfGCS in (X, 1)

Example 3.16:

Let X ={ab} and let t ={0~,G1,G2,I~} is an IFT on X, where
G1=<x,(0.4a,0.3b),(0.6a,0.7b)> and G2=<x,(0.5a,0.4b),(0.5,0.6b)> . Then the IFS A
=<x,(0.4a,0.6b),(0.6a,0.4b)> is an IFrfGCS in (X, T ) but not an IFFCS in (X,r) as
int(cl(int(A)))= int(cl(G1)) = int(G2c)=G2 € A .

Theorem 3.17:

Every intuitionistic fuzzy generalized closed set (IFGCS in short) in (X, 7) is an
[FBGCS in (X, ) but not conversely.

Proof:

Let A be an IFGCS and let A € U and U be an IF0S in (X, 7). As (A)Scl(A) CU. We
have (A)CU. Therefore A is an IFTtBGCS in (X, ).
Example 3.18:

Let X ={ab} and let 7 ={0~,Gl1,G2,/~} is an IFT on X, where
G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,(0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A
=<x,(0.4a,0.5b),(0.6a,0.5b)> is an IFBGCS in (X, 7 ) but not an IFGCS in X as cl(A)=Glc &
G1,G2 where A € G1, G2.

Theorem 3.19:

Every intuitionistic fuzzy generalized pre closed set (IFGPCS in short) in (X, 7) is an
IFrGCS in (X, ) but not conversely.

Proof:

Let A be an IFGPCS and let A € U and U be an IF0S in (X, 7). Now (A) € pc(4) € U,
by hypothesis, which implies S(cl(A) SU. Therefore A is an [FrfGCS in (X, 7).
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Example 3.20:

Let X ={ab} and let t ={0~,G1,G2,I~}is an IFT on X, where
G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,(0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A
=<x,(0.4a,0.5b),(0.6a,0.5b)> is an IFrGCS in (X,7) but not an IFGPCS in (X, 7).

Theorem 3.21:

Every intuitionistc fuzzy generalized semi closed set (IFGSCS in short) in (X, 7) is an
[FrSGCS in (X, ) but not conversely.

Proof:

Let A be an IFGSCS in X. Let A € U and U be an IFrOS in (X, 7). Therefore scl(A) = A
U int(cl(A)) € U, by hypothesis. This implies int(cl(A)) € U. Now int(cl(int(A)) € cl(int(A)) N
Uccl(A)NUCccl(U)NUCc U. Hence A is an [FrSGCS in (X, 7).

Example 3.22:

Let X ={ab} and let t ={0~,G1,G2,1~}is an IFT on X, where
G1=<x,(0.5a,0.3b),(0.5a,0.7b)> and G2=<x,(0.4a,0.3b),(0.6a,0.7b)> . Then the IFS A
=<x,(0.3a,0.2b),(0.7a,0.8b)> is an IFrGCS in (X,7) but not an IFGSCS in (X, 1) as scl(A)=
AU int(cl(A)) =AU G1=G1 € G2, but A € G2.

In the following diagram, we have provided relationship between various types of

intuitionistic fuzzy closed sets.

Remark 3.23:
The intersection of any two IFrGCS need not be an [FrfGCS in (X, 7) in general.
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Example 3.24:

Let X={a,b}, G1=<x,(0.4,0.2),(0.6,0.8)> and G2 =<x, (0.4,0.4),(0.5,0.5)>. Then 7 =
{0~,G1, G2, I~} is an IFT on X. Here the IFSs A=<x,(0.4,0.5),(0.5,0.4)> and B=<x,
(0.5,0.2),(04,0.6)> are IFrSGCS in (X,7) but A N B =<x,(0.4,0.2),(0.5,0.6)> is not an [FrfGCS
in (X,7).

Theorem 3.25:

Let (X, 7) be an IFTS. Then for every A € IFrfGC(X) and for every B € IFS(X), A €B
C (A) implies B € I[IFrfGC(X)

Proof:

Let B € U and U be an IFm0S. Since A ©B, A CU, by hypothesis BS (A4). Therefore
(B)S Bcl(Bcl(A))= Pcl(A)< U. since A is an [FrfGCS. Hence B € IFfGC(X).

Theorem 3.26:

If A is an IFBOS and IFrSGCS in (X, 7) then A is an IFSCS in (X, 7).
Proof:

Since AC A and A is an [FSOS ,by hypothesis S(cl(A)) € A. But A € (cl(A). Therefore
(cl(A))= A. Hence A is an I[FSCS in (X, 7).

Theorem 3.27:

Let F € A € X where A is an IFFOS and an I[FrSGCS in X. Then F is an [FrfGCS in A
if and only if F is an [FrfGCS in (X, 7).

Proof:
Necessity:

Let U be an [IFrOS in X and F € U. Also let F be an I[IFrSGCS in A. Then clearly F € A
N Uand A N U is an [F7OS in A. Hence (clA(F))S A N U and by theorem 2.1.24 , A is an
IFBCS. Therefore (cl(A))= A. Now Bcl(F)E Scl(F)NBcl(A)= Bcl(F) N A =BclA(F) €AN U.That
is Bcl(F)E U, whenever F € U. Hence F is an I[FrSGCS in (X,).

Sufficiency:

Let V be an IFFOS in A such that FEV. Since A is an I[FSOS in X, V is an [FOS in X.
Therefore Scl(F) €V as F is an I[IFrfGCS in (X,7). Thus, BclA(F) = fc(FIN A S VN A C V.
Hence F is an IFfGCS in A.

Theorem 3.28:
Let A €Y X and suppose that A is an [FrfSGCS in X then A is an I[FrSGCS relative to
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Proof:

Given that A €Y € X and A is an [FzfGCS in X. Now let A €Y N U where U is an
IFrOS in X. Since A is an [FryGCS in X, A € U implies fycl(A) € U. It follows that
YNBcl(A)=Bcl(A) € Y N U=U. Thus A is an IFrfGCS relative to Y.

Theorem 3.29:

If an IFS A of an IFTS (X, 1) is an intuitionistic fuzzy nowhere dense then A is an
[FrfGCS in X.

Proof:

If A is an intuitionistic fuzzy nowhere dense, then by definition int(cl(A))= 0~. Let A €
U where U is an [FrOS in X. The fcl(A) =0~ € U and hence A is an [FrfGCS in X.

Theorem 3.30:

For an IFS A, the following conditions are equivalent:

1 (1) A is an IFOS and an IFzfGCS
i (i1) A is an IFROS.
Proof:

(1) = (ii) Let A be an IFOS and an IFrSGCS. Then fcl(A) € A and A € Scl(A). This
implies that fcl(A)= A. Therefore A is an IFSCS, Since int(cl(int(A))) € A. Since A is an [FOS ,
int(A)=A. Therefore int(cl(A))=A .Since A is an IFOS and IFPOS. Hence A < int(cl(A)).
Therefore A=int(cl(A)). Hence A is an IFROS.

(i1)) = (i) Let a be an IFROS .Therefore A=int(cl(A)). Since every IFROS is an IFOS and
AC A . This implies int(cl(A)) € A. That is int(cl(int(A))) € A. Therefore A is an IFSCS. Hence
A is an [FtfCS.

Theorem 3.31:

If A is both an [FaOS and an IFrSGCS in (X,). Then A is an IFSCS in (X, 7).
Proof:

Let A be an IFaOS .Then A is an I[FFOS. As AC A, by hypothesis Scl(A) € A € Scl(A),
A is an IFBCS in (X,7).

4. Intuitionistic fuzzy f generalized open sets

In this section we have introduced intuitionistic fuzzy mfgeneralized open sets and

studied some of the properties.
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Definition 4.1:
An IFS A is said to be an intuitionistic fuzzy mfgeneralized open sets (IFZfGOS in short)
in (X, 1) if the complement Ac is an [FrfGOS in X.
The family of all IFTfGOSs of an IFTS (X, 7) is denoted by [FrfGO(X).
Example 4.2:
Let X={a,b} and 7 = {0 ~ ,G1,G2,I~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2=
<x.(0.7,0.8),(0.3,0.2)>.Then IFS A= <x,(0.5,0.5),(0.5,0.5)> is an IFrfGOS in (X, 7).
Theorem 4.3:
For any IFTS (X, 1) ,we have the following:
e Every IFOS in [FrfGOS in (X, 7) .
e Every [FaOS in [FrfGOS in (X, 7).
e Every IFROS in IFrfGOS in (X, 7).
e Every IFPOS in [FrfGOS in (X, 7).
e Every [FBOS in [FrfGOS in (X, 7).

e Every IFzfOS in I[FrfGOSin (X, 7). But the converse are not true in general.

Proof: Straight forward.
Example 4.4:

Let X={a,b} and 7 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2=
<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.5a,0.5b)> is an [FrfGOS in (X ,
7),but not an IFOS in (X, 7) as cl(A) = G1 £ A.

Example 4.5:

Let X={a,b} and 7 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2=
<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.52,0.5b)> is an IFrfGOS in (X,7),
but not an IFaOS in (X, 1) as int(cl(int(A)))=int(cl(G1))=int(Glc)=G1 , A € G1.

Example 4.6:

Let X={a,b} and 7 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2=
<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.5a,0.5b)> is an [FrfGOS in (X ,
7),but not an IFROS in (X, 1) as int(cl(A))=int(G1c)=G1,#A.

Example 4.7:

Let X={a,b} and 7 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2=
<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x.(0.5a,0.5b),(0.5a,0.5b)> is an [FrfGOS in (X ,
7),but not an IFPOS in (X, 7) as int(cl(A))=int(Glc)=G1 ,A € G1.
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Example 4.8:

Let X={a,b} and 7 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2=
<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.5a,0.5b)> is an

[FrSGOS in (X,7),but not an IFFOS in (X,7) as cl(int(cl(A)))=cl(int(G1c)=cl(G1) =Glc ,A
Z Gl.
Example 4.9:

Let X={a,b} and 7 = {0 ~ ,G1,G2,I~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2=
<x.(0.7a,0.8b),(0.3a2,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.5a2,0.5b)> is an [FrSGOS in (X ,
7),but not an IFOS in (X, 7) as int(cl(A))=int(G1c)=G1, A#GlI.

Theorem 4.10:

Let (X, 7) be an IFTS. Then for every A € IFrfGO(X) and for every B € IFS(X), S int
(A)S B €A = B € I[FnfGO(X).

Proof:

Let A be an [FrSGOS of X and B be any IFS on X. Let § int (A)SB CA. Then Ac is an
[FBGCS and Ac € BcC [ (Ac). Therefore Be is an IFrBGCS which implies B is an [FzfGOS
in X. Hence B € IFrGO(X).

Theorem 4.11:

If A is an IFRCS and B is an IFBOS, then AUB is an IFzGOS in (X, 7).
Proof:

Let B be an IFBOS and A be an IFRCS. Then BCcl(int(cl(B))) and cl(int(4))= A
Therefore AUB < A < cl(int(cl(B)))= cl(int(A)) uUcl(int(cl(B))) < cl(int(cl(A)))U
cl(int(cl(B)))=cl(int(cl(A)) U int(cl(B))) € cl(int(cl(A) U cl(B)) . Therefore AUB is an IFSOS
and hence by theorem 2.2.3, AUB is an IFzfGOS in X.

Theorem 4.12:

If an IFS A of an IFTS in both an IFCS and an IFGOS, then A is an [FrfGOS in (X, 7).
Proof:

Suppose A is both an IFCS and IFGOS. Then as A © A, by hypothesis A € int(A). But
int(A) € A. Therefore int(A) = A. We have A is an [FtOS, since every IFmOS is an [FzfGOS.
Hence A is an [IFrfGOS in X.

Theorem 4.13:

Let (X, 7) be an IFTS. Then for every A € IFS(X) and for every B € IFfO(X), BS€ A ©

int(cl(int(B) ) ) = A€ IFapGO(X).
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Proof:

Let B be an IFFOS. Then B < cl(int(cl(B))). By hypothesis A € int(cl(int(B))) S

int(cl(int(cl(int(cl(B)))))< int(cl(cl(int(cl(B)))))= int(cl(int(cl(B)))) S int(cl(cl(A))) Sint(cl(A))
as B € A. Therefore A is an IFPOS. By theorem 2.2.3, A is an [FBGOS . Hence A elFafGO(X).
Theorem 4.14:

If A is an IFBCS and an IFzGOS in (X, 1), then A is an [FFOS in (X, 7).

Proof:

As A2A ,by hypothesis fint(A) 2A. But we have A2 Sint(A). This impiles A= Sint(A).

Hence A is an IFFOS in (X, 7).
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Abstract:

This paper is devoted to the study of intuitionistic fuzzy topological spaces. In this paper
my generalized continuous mappings in intuitionistic fuzzy topological spaces is introduced.
Also, we have analyzed some properties of i y generalized continuous mappings in intuitionistic
fuzzy topological spaces.

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy my generalized continuous

mappings.

1. Introduction:

In 1965, the concept of Fuzzy sets was introduced by Lofti A. Zadeh [10] and in 1968,
Chang [3] introduced and developed fuzzy topology. After the introduction of fuzzy set and
fuzzy topology, several authors conducted researchers on the generalization of these notions. In
the year 1986, the notion of intuitionistic fuzzy sets was introduced by Atanassov [1] as a
generalization of fuzzy sets and Coker [4] introduced the concept of intuitionistic fuzzy
topological spaces in 1997. In 2017, Prema S and Jayanthi D [9] has introduced intuitionistic
fuzzy y generalized continuous mappings. In this paper we have introduced my generalized
continuous mappings in intuitionistic fuzzy topological spaces and investigated some of their

properties and obtained some interesting characteristics.

2. Preliminaries:
Definition 2.1: [1]

Let X be a non-empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an
object having the form A = { <x,uA(x),vA(x)>/x € X} where the functions pa(x) : X —[0,1] and
v4(x):X—[0,1] denotes the degree of membership (namely pa(x) ) and the degree of non —
membership (namely va(x) ) of each element x € X to the set A, respectively, and 0 < pa(x)+

va(x) <1 for each x € X. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.
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Definition 2.2: [1]
Let A and B be IFSs of the form A= {<x,(x),va(x)>/x € X} and B= {<x,us(x),ve(x)>/x € X}.
Then

a) A € B if and only if ua (x)<us(x) and va (x)>vs(x) for all x € X

b) A=Bifand onlyif AC Band BC A

c) Ac = {<x,va (x),us (x)>/x € X}

d) A N B = {<x,ua (x)Aus(x),va (x)V ve(x)>/x € X}

e) A UB = {<x,usa (x)Vus(x),va (x)A ve(x)>/x € X}

For the sake of simplicity, we shall use the notation A= < x, (u4,),(va,ve)> instead of A=
<x,(A/pa,B/us),(A/va,B/ve)>.

The intuitionistic fuzzy sets 0~ = {<x,0,1)>/x € X} and 1~ = {<x,0,1)>/x € X} are
respectively the empty set and the whole set of X.
Definition 2.3: [4]

An intuitionistic fuzzy topology (IFT in short) on X is a family t of IFSs in X satisfying
the following axioms.
1.0~ 1~€e1
1. GI N G2 e, forany G1, G2 € 1
iii. U G; € 1 for any family {G;/1€J} C 1.

In this case the pair (X, 1) is called an intuitionistic fuzzy topological space (IFTS in
short) and any IFS in t is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement A° of an IFOS A in an IFTS (X, 1) is called an intuitionistic fuzzy
closed set (IFCS in short) in X.
Definition 2.4: [6]

Let A be an IFS in an IFTS in (X,1). Then the intuitionistic fuzzy y- interior and
intuitionistic fuzzy y-closure of A are defined by
1. yint(A)= U {G/G is an [FyOS in X and GE A},
it. ycl(A) = N{K/K is an IFyCS in X and ACK}.

Note that for any IFS A in (X,1), we have ycl(A°®) = (yint(A))° and yint(A°)= (ycl(A))".
Definition 2.5: [8]

Let A be an IFS in (X,7), then
1. yint(A)S AN((cl(int(A)) Nint(cl(A)))
ii. ycl(A)2 A U((cl(int(A)) Nint(cl(A)))
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Definition 2.6: [8]

An IFS A is an IFTS (X,7) is said to be an intuitionistic fuzzy y generalized closed set
(IFyGCS for short) if ycl(A) € U whenever A € U and U is an IFyOS in (X,1).

Definition 2.7:[2]

An IFS A in (X, ) is said to be a intuitionistic fuzzy wy generalized closed sets (IFmyGCS
in short) if ycl(A)S U whenever A € U and U is an [FtOS in (X, 7).

Definition 2.8:[5]

Let f be a mapping from an IFTS (X, 7) into an IFTS (Y, o). Then f is said to be an
intuitionistic fuzzy continuous (IF continuous) mapping if f -1 (V) is an IFCS in(X,) for every
IFCS V of (Y,)

Definition 2.9:[7]

Let f be a mapping from an IFTS (X,) into an IFTS (Y,). Then fis said to be an

i. intuitionistic fuzzy semi continuous (IFS continuous) mapping if £! (V) is an IFSCS in (X, 1)
for every IFCS V of (Y, o),

ii. intuitionistic fuzzy a continuous (IFa continuous) mapping if £' (V) is an IFaCS in (X, 1)
for every IFCS V of (Y, o),

iii. intuitionistic fuzzy pre continuous (IFP continuous) mapping if f! (V) is an IFPCS in (X, 7)
for every IFCS V of (Y, o).

Definition 2.10:[6]

Let f be a mapping from an IFTS (X, 1) into an IFTS (Y, o). Then f is said to be an
intuitionistic fuzzy vy continuous (IFy continuous) mapping if £ (V) is an IFyCS in (X, 1) for
every IFCS V of (Y, o).

Definition 2.11:[9]

A mapping f: (x, T) — (y,0) is called an intuitionistic fuzzy y generalized continuous
(IFyG continuous) mapping if f! (V) is an IFyGCS in (X, 1) for every IFCS V of (Y, o).
Definition 2.12: [8]

An intuitionistic fuzzy point (IFP in short) written as (a,) is defined to be an IFS of X
given by

[ @B Hx=p
P(a,pB) (0,1) otherwsie

An intuitionistic fuzzy point («,) is said to belong to a set A if a< pua and >va.

3. INTUITIONISTIC FUZZY m y GENERALIZED CONTINUOUS MAPPINGS
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In this section we have introduced intuitionistic fuzzy my generalized continuous
mappings and examined some of the properties.
Definition 3.1:

A mapping f: (X,t) — (Y,0) is called an intuitionistic fuzzy m y generalized continuous
(IFyG continuous for short) mappings if f! (V) is an IFryGCS in (X,7) for every IFCS V of
(Y,0).

For the sake of simplicity, we shall use the notation A= < x,(u4,us),(va,ve)> instead of
A= <x,(a/ua,b/us),(a/va,b/ve)> in the following examples. Similarly, we shall use the notation
B= <y,(tu,tv),(vu,vv)> instead of B= <y,(a/uu,b/uv),(a/vu,b/vv)> in the following examples.

The intuitionistic fuzzy sets 0~ = {<x,0,1)>/x € X} and 1~= {<x,0,1)>/x € X} are
respectively the empty set and the whole set of X.

Example 3.2 :

Let X={a,b}, Y={u,v} and Gl= <X, (0.42,0.20),(0.64,0.8p)>,
(G2=<x,(0.54,0.41),(0.54,0.60)>,G3=<y,(0.54,0.6,),(0.54,,0.4y)>. Then 7 = {0~,,G2,1~} and
0={0~,G3,1~} are IFTs on X and Y respectively. Define a mapping f: (X,t) — (Y, o) by f(a)=u
and f(b) = v. The IFS G3° =<y,(0.5,,0.41),(0.5,,0.6v)> is an [FCS in Y.

Then f1(Gs°) = <x,(0.54,0.45),(0.54,0.65)> is an IFS in X.
Hence (Gs®) is an IFryGCS in (X,). Therefore, fis an IFryG continuous mapping.
Theorem 3.3:

Every IF continuous mapping is an IFmyG continuous mapping in (X,) but not conversely
in general.
Proof:

Let f: (X,) — (Y,) be an IF continuous mapping. Let V be an IFCS in Y. Then ! (V) is
an IFCS in X. Since every IFCS is an IFmyGCS, f! (V) is an IFryGCS in X. Hence f is an IFTyG
continuous mapping.

Example 3.4:

Let X={a,b}, Y={u,v} and G1=<x,(0.44,0.2),(0.64,0.8,)>,

Gy =<x,(0.54,0.4),(0.54,0.60)>,G3=<y,(0.54,0.61),(0.54,0.4y)>. Then 1= {0~,1,G2,1~} and
0={0~,G3,1~} are IFTs on X and Y respectively. Define a mapping f: (X,7) — (Y, o) by f(a)=u
and f(b) = v. The IFS (G3°) = <y,(0.54,0.4v),(0.54,0.6v)> is an [IFCS in Y.

Then f1(G3%) = <x,(0.54,0.4v),(0.54,0.65)> is an IFS in X.
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Hence f1(G3°) is an IFTyGCS in (X,). Therefore f is an IFryG continuous mapping but
since  f!(Gs®) is not an IFCS in X, as cl(f'(Gs%)) = G # f1(Gs°), f is not an IF continuous
mapping.

Theorem 3.5:

Every IFS continuous mapping is an IFmyG continuous mapping in (X,) but not
conversely in general.
Proof:

Let f: (X,) — (Y,) be an IFS continuous mapping. Let V be an IFCS in Y. Then (V) is
an IFSCS in X. Since every IFSCS is an IF myGCS, f!(V) is an IFryGCS in X. Hence f is an
[FmyG continuous mapping.

Example 3.6:

Let X={a,b}, Y={u,v} and G = <x,(0.52,0.6p),(0.52,0.4p)>,
G2=<x,(0.44,0.3p),(0.64,0.7v)>,G3=<y,(0.74,0.8+),(0.34,0.2y)>. Then t ={0~,G1,G2,1~} and
0={0~,G3,1~} are IFTs on X and Y respectively. Define a mapping f: (X,t) — (Y, o) by f(a)=u
and f(b) = v. The IFS G’; = <y, (0.3,,0.2y),(0.7,,0.8,)> is an IFCS in Y. Then f-1(G%;) = <x,
(0.32,0.25),(0.72,0.85)> is an IFS in X. Hence f'(G3°) is an IFmyGCS in (X,). Therefore f is an
IFyG continuous mapping but since f!(G3°) is not an IFSCS in X, as int(cl(f''(Gs®)) = int(G:°) =
Gl € f-1(G3°), fis not an IFS continuous mapping.

Theorem 3.7:

Every IFP continuous mapping is an IFmyG continuous mapping in (X,) but not
conversely in general.
Proof:

Let f: (X,) — (Y,) be an IFP continuous mapping. Let V be an IFCS in Y. Then (V) is
an IFPCS in X. Since every IFPCS is an IFryGCS, (V) is an IFryGCS in X. Hence f is an
[FyG continuous mapping.

Example 3.8:

Let X={ab} ,  Y={uv} and Gl = <X,  (0.44,0.2b),(0.64,0.8)>,
G2=<x,(0.52,0.45),(0.52,0.60)>,G3=<y,(0.54,0.6v),(0.54,,0.4y)>. Then 7 ={0~,G1,G2,1~} and
0={0~,G3,1~} are IFTs on X and Y respectively. Define a mapping f: (X,7) — (Y, o) by f(a)=u
and f(b) = v. The IFS G3° = <y,(0.5y,0.4v),(0.54,0.6v)> 1s an [IFCS in Y.

Then £1(G3°) = <x,(0.52,0.4v),(0.54,0.65)> is an IFS in X.
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Hence f1(G3°) is an IFTyGCS in (X,). Therefore f is an IFryG continuous mapping but
since 1(Gs°) is not an IFPCS in X, as cl(int(f'(G3%))) = cl(G2)=G2® & (G3°), f is not an IFP
continuous mapping.

Theorem 3.9:

Every IFR continuous mapping is an IFmyG continuous mapping in (X,) but not
conversely in general.
Proof:

Let f: (X,) — (Y,) be an IFR continuous mapping. Let V be an IFCS in Y. Then (V) is
an IFRCS in X. Since every IFRCS is an IFtyGCS, (V) is an IFryGCS in X. Hence f is an
[FmyG continuous mapping.

Example 3.10:

Let X={ab} ,  Y={uv} and G = <x, (0.44,0.2b),(0.64,0.8p)>,
G2=<x,(0.52,0.4v),(0.52,0.65)>,G3=<y,(0.54,0.61),(0.54,0.4v)>. Then t ={0~,G1,G2,1~} and
0={0~,G3,1~} are IFTs on X and Y respectively. Define a mapping f: (X,7) — (Y, o) by f(a)=u
and f(b) = v. The IFS G;° = <y,(0.54,0.4y),(0.54,0.6v)> is an IFCS in Y.

Then £1(Gs3°) = <x,(0.54,0.45),(0.54,0.65)> is an IFS in X.

Hence f1(G3°) is an IFryGCS in (X,). Therefore f is an IFmyG continuous mapping but
since f-1(G3c) is not an IFRCS in X, as cl(int(f"'(G3%))) = cl(G2)=G2° # f!(Gs°), f is not an IFR
continuous mapping.

Theorem 3.11:

Every IFa continuous mapping is an [FryG continous mapping in (X,) but not conversely
in general.
Proof:

Let f: (X,) — (Y,) be an IFa continuous mapping. Let V be an IFCS in Y. Then (V) is
an IFaCS in X. Since every IFaCS is an IFryGCS, f!(V) is an IFryGCS in X. Hence f is an
[FyG continuous mapping.

Example 3.12:

Let X={ab} ,  Y={uv} and G = <x, (0.44,0.2b),(0.64,0.8p)>,
G2=<x,(0.52,0.45),(0.52,0.60)>,G3=<y,(0.54,0.6v),(0.54,,0.4y)>. Then 7 ={0~,G1,G2,1~} and
0={0~,G3,1~} are I[FTs on X and Y respectively. Define a mapping f: (X,7) — (Y, o) by f(a)=u
and f(b) = v. The IFS G;° = <y,(0.54,0.4y),(0.54,0.6y)> is an IFCS in Y.

Then £1(G3°) = <x,(0.52,0.4v),(0.54,0.65)> is an IFS in X.
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Hence f1(G3°) is an IFTyGCS in (X,). Therefore f is an IFryG continuous mapping but
since f-1(G3c) is not an IFaCS in X, as cl(int(f'(G3°))) = cl(G2)=G2° # f1(Gs°), f is not an IFR
continuous mapping.

Theorem 3.13:

Every IFm continuous mapping is an [FmyG continous mapping in (X,) but not conversely
in general.
Proof:

Let f: (X,) — (Y,) be an IFm continuous mapping. Let V be an IFCS in Y. Then f!(V) is
an IFnCS in X. Since every IFnCS is an IFmyGCS, (V) is an IFryGCS in X. Hence f is an
[FyG continuous mapping.

Example 3.14:

Let X={a,b}, Y={u,v} and Gi = <X,(0.54,0.31),(0.52,0.7v)>,
(G2=<x,(0.44,0.31),(0.64,0.7p)>,G3=<y,(0.74,0.8+),(0.34,0.2y)>. Then t ={0~,G1,G2,1~} and
0={0~,G3,1~} are I[FTs on X and Y respectively. Define a mapping f: (X,7) — (Y, o) by f(a)=u
and f(b) = v. The IFS G°; = <y, (0.34,0.2),(0.7,,0.8y)> is an IFCS in Y. Then f-1(G’.) = <x,
(0.34,0.2b),(0.72,0.85)> is an IFS in X.

Hence f1(G3°) is an IFryGCS in (X,). Therefore f is an IFmyG continuous mapping but
not an IFm continuous mapping, since f1(Gs°) is not an IFnCS in X, as cl(int(f'(G3%))= 0~ f-
1(G39).

Theorem 3.15:

Every IFy continuous mapping is an [FryG continous mapping in (X,) but not conversely
in general.
Proof:

Let f: (X,) — (Y,) be an IFy continuous mapping. Let V be an IFCS in Y. Then (V) is
an IFyCS in X. Since every IFyCS is an IFTyGCS, (V) is an IFryGCS in X. Hence f is an
[FyG continuous mapping.

Example 3.16:

Let X={a,b}, Y={u,v} and G = <x,(0.52,0.41),(0.52,0.6p)>,
G2=<x,(0.44,0.3p),(0.64,0.75)>,G3=<y,(0.54,0.6+),(0.4,,0.4y)>. Then t ={0~,G1,G2,1~} and
0={0~,G3,1~} are IFTs on X and Y respectively. Define a mapping f: (X,7) — (Y, o) by f(a)=u
and f(b) = v. The IFS G’ = <y, (0.4,0.4,),(0.5,,0.6y)> is an IFCS in Y. Then f!(Gs%) =
<x,(0.44,0.41),(0.52,0.6p)> is an IFS in X. Hence f-1(G3c) is an [FmyGCS in (X,). Therefore f is
an IFmyG continuous mapping but since f'(Gs®) is not an IFSCS in X, as int(cl(f'(Gs%))) N
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cl(int(f1(G3%)) = int(Gi°) N cl(G2) = G1 N G & £1(Gs°), £1(G5°) is not an IFS continuous
mapping.
Theorem 3.17:

Every IFG continuous mapping is an IFmyG continous mapping in (X,) but not
conversely in general.
Proof:

Let f: (X,) — (Y,) be an IFG continuous mapping. Let V be an IFCS in Y. Then (V) is
an IFGCS in X. Since every IFGCS is an IFryGCS, f!(V) is an IFryGCS in X. Hence f is an
[FmyG continuous mapping.

Example 3.18:

Let X={a,b} , Y={u,v} and Gy = <x,(0.52,0.41),(0.52,0.61)>,

(G2=<x,(0.44,0.31),(0.64,0.7p)>,G3=<y,(0.54,0.6+),(0.44,0.4y)>.Then 7 = {0~,G1,G2,1~} and o

{0~,G3,1~} are IFTs on X and Y respectively. Define a mapping f: (X,7) — (Y, o) by f(a)=u
and f(b) = v. The IFS G3° = <y, (0.44,0.4,),(0.5,,0.6y)> is an IFCS in Y. Then f!(Gs%) =
<x,(0.44,0.4p),(0.5,,0.6p)> is an IFS in X. Hence f!(G5°) is an IFryGCS in (X,). Therefore f is an
IFTyG continuous mapping but since f!(Gs3°) is not an IFGCS in X, as cl(f'(G:%) =Gi° € G, f
1(G5°) is not an IFG continuous mapping.

Theorem 3.19:

Every IFGS continuous mapping is an IFmyG continous mapping in (X,) but not
conversely in general.
Proof:

Let f: (X,) — (Y,) be an IFGS continuous mapping. Let V be an IFCS in Y. Then f(V) is
an IFGSCS in X. Since every IFGSCS is an IFryGCS, (V) is an IFryGCS in X. Hence fis an
[FyG continuous mapping.

Example 3.20:

Let X={a,b} , Y={u,v} and G = <x,(0.52,0.41),(0.54,0.6p)>,
(G2=<x,(0.44,0.35),(0.64,0.7)>,G3=<y,(0.54,0.6+),(0.44,0.4y)>.Then 7 = {0~,G1,G2,1~} and o =
{0~,G3,1~} are IFTs on X and Y respectively. Define a mapping f : (X,7) — (Y, o) by f(a)=u
and f(b) = v. The IFS G3° = <y,(0.44,,0.4y),(0.5,,0.6,)> is an IFCS in Y. Then f(Gs%) =
<x,(0.44,0.4p),(0.5,,0.65)> is an IFS in X. Hence f!(G3°) is an IFTyGCS in (X,). Therefore fis an
IFTyG continuous mapping but since f1(Gs®) is not an IFGSCS in X, as f!(G3%) U int(cl(f
1(G3%)) = £1(Gs%) U int(G1°) = £1(Gs°) U G1 =G1 & G2, f'(G3°) is not an IFGS continuous
mapping.
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Theorem 3.21:

Every IFGP continuous mapping is an IFmyG continous mapping in (X,) but not
conversely in general.
Proof:

Let f: (X,) — (Y,) be an IFGS continuous mapping. Let V be an IFCS in Y.

Then (V) is an IFGPCS in X. Since every IFGPCS is an IFryGCS, (V) is an IFryGCS in X.
Hence f'is an IFryG continuous mapping.
Example 3.22:

Let X={a,b} , Y={u,v} and Gi = <x,(0.54,0.4),(0.54,0.64)>,
G2=<x,(0.44,0.3),(0.64,0.7v)>,G3=<y,(0.54,0.6v),(0.44,,0.4,)>.Then 7 = {0~,G1,G2,1~} and o =
{0~,G3,1~} are IFTs on X and Y respectively. Define a mapping f : (X,7) — (Y, o) by f(a)=u
and f(b) = v. The IFS G3° = <y,(0.44,0.4y),(0.5,,0.6,)> is an IFCS in Y. Then f(Gs%) =
<x,(0.44,0.4p),(0.5,,0.6p)> is an IFS in X. Hence f!(G5°) is an IFryGCS in (X,). Therefore f is an
IFTyG continuous mapping but since '(G3°) is not an IFGPCS in X, f''(Gs®) is not an IFGP
continuous mapping.

The relationship between various types of intuitionistic fuzzy continuity is given in the

following figure. In this figure ‘cts’ means continuous.

IFR cts IF cts
IFa cts // IFm cts
IFP cts
IFmyG cts

/ IFG cts

IFGP cts \
IFGS cts

IFy cts IFS cts
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Theorem 3.23

A mapping f: (X,) — (Y,) is an [FryG continuous mapping if and only if the inverse
image of each IFrOS in Y is an [FmryGOS in (X,).

Proof:
Necessity:

Let A be an IFTOS in Y. This implies Ac is an IFrCS in Y. Then f! (Ac) is an IFryGCS
in X, by hypothesis. Since f'!(Ac) = (f!(A)c), f'(A) is an IFryGOS in X.

Sufficiency:

Let A be an IFZCS in Y. Then Ac is an IFTOS in Y. By hypothesis f!(Ac) is an
IFTyGOS in X. Since f!(Ac) = (f'(A)c), (f-1(A)c) is an IFryGOS in X. Therefore f!(A) is an
IFryGCS in X. Hence f is an IFryG continuous mapping.

Theorem 3.24:

Iff: (X,t) — (Y,0) is an [FryG continous mapping then for each IFP pp)of X and each
A € o such that f(p«,p) q A, there exists an I[FryGOS B of X such that p«,g) q B and f(B) € A.
Proof:

Let (a,) be an IFP of X and A € o such that f(p@gp)q A. Put B= f!(A). Then by
hypothesis, B is an IFryGOS in X such that («)q B and f(B) =f(f'1(A)) € A.

Theorem 3.25:

A mapping f : (X,t) — (Y,0) is an IFmyG continous mapping if cl(int(cl(f'(A)))) S
f1(cl(A)) for every IFSAin Y.

Proof:

Let A be an IFTOS in Y then A° is an IFTCS in Y. By hypothesis, cl(int(cl(f!(Ac)))) S
f1(cl(Ac))= f!(A°). Now (int(cl(int(f'(A)))))¢ = cl(int(cl(f'(Ac)))) € f!(Ac) = f!(cl(A)). This
implies that f1(A) € (int(cl(int(f'(A))))). Hence f!(A) is an IFeOS and hence it is an IFryGOS.
Therefore fis an [FryG continuous mapping.

Theorem 3.26:

Let f: (X,) — (Y,) be an [FryG continuous mapping and g: (Y,) — (Z,6) is an IF
continuous mapping then g ° f: (X,t) — (Z,9) is an IFmy continuous mapping.
Proof:

Let V be an IFCS in Z. Then g-1(V) is an IFCS in Y, by hypothesis. Since f is an [FryG
continuous mapping, f'(g!(V)) is an IFryGCS in X. Hence g ° f is an IFmyG continuous

mapping.
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Theorem 3.27:

Let f: (X,) — (Y,) be an mapping from an IFTS X into an IFTS Y that satisfies f

!(int(B)) = int(cl(f(B))) for every IFS B in Y. Then fis an IFTyG continuous mapping.

Proof:

Let B be an IFmOS in Y. Then int(cl(B))= B, by hypothesis f''(B) = int(cl(f'(B))). This

implies f'(B) is an IFROS in X. Therefore it is an IFryGOS in X. Hence f is an IFmyG

continuous mapping.
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Abstract:

This paper discusses the problem of estimation of finite population mean in stratified
random sampling. In fact, in this paper two ratio type estimators of population mean have been
proposed using known parameters of auxiliary variable. Biases and mean squared errors of
proposed estimators have been obtained upto the first degree of approximation. The suggested
estimators have been compared with usual unbiased estimator, combined ratio estimator and
estimators given by Kadilar and Cingi (2003). An empirical study has been carried out to

demonstrate the performance of the proposed estimators.

1. Introduction:

Many times, the information on a variable x closely related to the study variable y is
easily available or it can be collected at very cheap cost. For example, in estimating the total
production of any crop, information on production of the same crop for previous year may be

available for all units of the population. This previous year production of a crop can be

considered as an auxiliary variable (x). In this situation, estimator for population mean (Y ) of
study variabley based on information on x would be more efficient than the estimator based on
information only on the study variable y.

Use of auxiliary information has been in practice for improving the efficiency of the
estimators. The basic concept behind the use of auxiliary information is that the correlation
coefficient between the study variable and auxiliary variable helps in improving the efficiency of
the estimators of parameters of the study variable. Cochran (1940) envisaged a ratio method of
estimation that provides classical ratio estimator for population mean. Ratio estimator given by
Cochran (1940) has better efficiency as compared to the simple mean estimator when the study

variable and auxiliary variable are positively correlated and the correlation coefficient is greater
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than half of the ratio of coefficient of variation of the auxiliary variable to the coefficient of
variation of the study variable.

Major disadvantage of the ratio type estimators is that these do not perform better in
terms of efficiency in case of negative correlation between the study variable and auxiliary
variable.

For the case of negative correlation coefficient between the study variable and auxiliary
variable, Robson (1957) suggested a product method of estimation that provides product
estimator for population mean.

Many researchers used auxiliary information in the form of known parameters for the
estimation of unknown parameters. Sisodiya and Dwivedi (1981) used coefficient of variation of
the auxiliary variable. Singh and Upadhyaya (1999) utilized both coefficient of variation as well
as coefficient of kurtosis. Singh and Tailor (2003) used correlation coefficient between the study
variable and auxiliary variable for the estimation of population mean.

Hansen et al. (1946) developed combined ratio estimator using auxiliary information at
estimation stage in stratified random sampling. Later Kadilar and Cingi (2003) utilized known
parameters of auxiliary variable and developed many ratio type estimators in stratified random
sampling. Singh et al. (2008) studied properties of Bahl and Tuteja (1991) ratio type estimator in
stratified random sampling.

Consider a finite population U of size N consisting of units U,,U,,...,U . Associated
with the unit U,, there are two real quantities (yl., X, ), i=12,...,N, representing the values of

the study variabley and a positively correlated auxiliary variablex. Population U is divided into k

homogeneous strata of size N, (h = 1,2..., k). A sample of size n, is drawn from each stratum

k
following the simple random sampling without replacement method. Let 3, =>w,y, and
h=1

k — —
X, = ZWh)_ch be the unbiased estimators of the population mean Y and X of the study variable

and auxiliary variable, respectively, where

W,=(N,/N): weightof h™ stratum,

v,=01/n, )Zh: y;; - sample mean of the study variable y for h™ stratum and

J=1

WA
x, =1/ nh)z x,, - sample mean of the auxiliary variable x for h™ stratum.
J=l
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Assuming that X is known, the combined ratio estimator for estimating the population

mean Y is defined as

A

YRc:ysz()?/)_cst)- (1.1)

The bias and mean squared error expressions of the combined ratio estimator YRC upto the

first degree of approximation are

~ _ K
Bias(Ype) = (11 X)) W, 7, (RS3, =S ) (1.2)
h=1
A k
MSE (Yoe) =D W'y, (S, + R*SS, —2RS ). (1.3)
h=1
where

N, —n,

R=T/X, y,,:[ 1=
h'"h

J, S5 = (1 (N, =) (= F

th =(1/(N, _1))2(% _)_(h)z andSyxh =(1/(N, _1))%(%]‘ _Z)(xhj _)_(h)'

J=1

Sisodia and Dwivedi (1981) suggested a modified ratio estimator of ¥ using coefficient

of variation of auxiliary variable x in simple random sampling as
K=y[(X+C)/x+C)]. (1.4)

Here, ()_C,)_/) are the sample means for (x, y) and C_ is the coefficient of variation present
in auxiliary characteristic x.

Singh et al. (2004) proposed another ratio estimator for Y, using the coefficient of

kurtosis f,(x) of auxiliary variablex in simple random sampling as

V=3[ (X + B0/ (x+5,x) . (1.5)
Upadhyaya and Singh (1999) used coefficient of kurtosis and coefficient of variation of

auxiliary variable and suggested estimators of population mean Y in simple random sampling as

Y, =¥[(XB,(x)+C)/ (FA,(x)+C,)] and (1.6)
¥, = 5[(XC, + B,(x) [ (RC, + By (x)) ]. (1.7)

Kadilar and Cingi (2003) defined Y, ¥,, ¥, and Y, in stratified random sampling as

~ k _ k
Ystlz.)_}st|:zVVh(Xh+cxh)/zVVh(fh+th):|’ (1.8)
h=1 =1
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(1.9)

ZW ()?h + 5y, (x))/ZW;l (X, + By (x))}
| (1.10)

-

of

ZW (X IBZh(x)+th)/zVI/lz (%, B0 () +C,)
(1.11)

squared errors

B

ZW (X Co + B (X))/ZVVh x,C, + B, (x)
i and mean

4 :.)_}st
L A=l
first degree of approximation, biases

To the
Zrl»Zzzv Y,;and zm are given by
L 2
—-S,0)> (1.12)
(1.13)

Bias( stl) (1/XSD)ZWh27h(RSDth

>

h=1
~ k
Bias(Y,,)=(1/ X )z W2y, (RS2 —
h=1

BlaS(st) (I/XUS1)Z Wh V1P (x)(RUSIﬂZh(x)S

o)
(1.14)

Syxh) >
(1.15)

yxh ) 4

BlaS(Ym) (I/XUS2)Z Wh 71Cu (RUS2thth
(1.16)

2RSDSyxh) 4
(1.17)

MSE(Y,,) = Zm V(S5 + R3S, —
h=1

MSE(Y,,) = ZW,f;/h(SZ +R.S% —

MSE(Ym) th27h(S +Rl2/S1ﬂ2h(x) xh 2RUS1ﬂ2h(x)Syxh)

2IeSK‘S'yxh) >
(1.18)

(1.19)

MSE(Ym) ZWh 7h(S2 +R552C2 S2 2RUS2thSyxh)'

where X, zk: W (X, +C,)» Xge =D W, (X, +B,,(x))
Xyss ZW (X Cy+ B (%),

Xysi z (Xh:Bz;, (X)+C,),
(ZWh Z)/(ZWIL ()?h +,,(x)

RSD:(iWhZ)/Zk:Wh (‘)?h+cxh)’ RSE
Us1 (ZW Y)/Zk:W ()? ﬂ211(x)+cxh)andRUS2 :(ZW Y)/ZW (X Crh+ﬂ2h(x))
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2. Proposed Ratio Estimator
Kadilar and Cingi (2006) suggested two ratio type estimators using information on

coefficient of kurtosis f,(x) and correlation coefficient (p) between study variable and

auxiliary variable in simple random sampling as

Ve =7 (XB,(x)+p) / (XB,(x)+ ) |. 2. 1)
Here we propose YKSl in stratified random sampling as
~ k _ k
Yy =y, {z W, (X, B, (x)+p,)/ z W, (X,5,,(x)+ ph):| > (2. 2)
h=1 h=1

To obtain the bias and mean squared error expressions of the proposed estimator, we
assume y, = 17,,(1 +e0h) and X, = )?h(1+e1h) such that

E(ey,)=E(e,)=0, E(egh)zyhcjh ) E(elzh ):7hcjh and E(e,,e, ):7hpyxhcyhcxh .
In terms of e;’s, Y, 1 can be written as

Z_: w, ()?hﬂZh (x)+ ph)

Wh)7h(1+eOh P — >
th {Xh (1 tey, )ﬂZh (x)+ p, }
h=l

N k
Yy, =
-1

h

A

Y, =Y(l+e, )l +e)".

k k _
Z W,Y,e, Z W, X, By (x)ey,
where ¢, :”:lTand e =—- .
> W,(X, 8,0+ p,)
=1
Now
. 2
ZWtheOh 1 &
2 Z 2 Q2
E(ey) = E| +5—=—— ZWZ‘W” Sy o
. B 2
thXhIBZh (xX)ey, | &
E(e})=E T — :X2 Zthyhﬂzzh(x)th and
Z w, (XhﬂZh (x)+ ph) it
=l
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(i W,Y,e,, J(iWh)?hﬂZh (x)elhj L
E(eje) = E = . = = Y); Z W, (), -
Y(ZWh)?h (18211 (x)+ o, )] e

To the first degree of approximation the bias and mean squared error of ?Ml are obtained

as
- k
Bias(Y,,) =1/ XMI)Z W, 1B (R, o), (X)S 1, — Sy ) s (23)
=l
~ k
MSE(Y,,) = Z Wh27h (Syzh + Rz%ﬂﬂzzh (x)th = 2Ry By (X)S 1) (2.4)
7=l
k p—
k _ th h
where X, =2Wh(XhIBZh(x)+ph) andR,,, =— hj :
i Z (Wh X, By (xX)+ p, )
=1

Expressions 2.3 and 2.4 contains population parameters such as population mean,

population mean squares, coefficients of kurtosis and covariances for each stratum. Hence

A

expressions for bias and mean squared error of the suggested estimator Y, 1 10 (2.3) and (2.4) can

not be used in real situation so estimator for the bias and mean squared error of the Bias and

MES of the suggested estimator are given below:

N k
Bias(Y,,)=(1/ X, )ZVthVhﬂzh ()R B (X)th _Syxh) (2.5)
h=l1
N k
MSE(Yy,) = Z Wiy (Syzh + Ry B2, ()S5, — 2R, By (X)S 1) (2.6)

h=1

3. Efficiency Comparisons

In stratified random sampling variance of usual unbiased estimator y_, is given by

L
V()= W 7S5 3.1)

h=1

From (1.3), (1.16), (1.17), (1.18), (1.19), (2.4) and (3.1), it follows that
() MSE(Y,,) <V (3,) if

2C
R, <3, (3.2)

(ii) MSE(Y,,,) < MSE(Y,.) if
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R,,(R,,D—2C)—-R(RB—24)<0, (3.3)
(iii) MSE(Y,,) < MSE(Y ) if
R,,(R,,D—2C)- Ry, (Ry,B—24) <0, (3.4)

(V)MSE(Y,, ) < MSE(Y,) if
Ry, (R D=2C)— Ry (R B—24) <0, (3.5)
(VMSE(Y,,) < MSE(Y.,) if

R,,(R,,D—2C) =Ry (R, D—2C) <0, (3.6)

(V) MSE(Y,,) < MSE(Y.,) if

RMl (RMID_2C) _RUSZ (RL/SZF_zE) <0 > (3-7)
k k
where 4 = Z Wh27hSyxh > B = z thyhsfh >
h=1 h=1
£ 2 o 2 2 2
C:ZVVh yhﬂZh(x)Syxh’ D :ZWh VB (XS5,
h=1 h=1

k k
E= ZWhZVthhSyxh and F= ZVVhZ}/ththh‘
h=1 h=1

4. Bias Comparisons
Comparing (1.2) with (2.3), it is observed that the bias of proposed estimator Y 1 would
if

be less than the bias of combined ratio estimator YRC ie. |B(Y,,)

< \B(YRC)

2

(R,,D-Cf <%(RB—A)2 . (4.1)

From (1.12) and (2.3)it follows that the bias of proposed estimator )%Ml would be less

than the bias of estimator }_’Sﬂ 1.e. B(IL’ 1) if

<|B7)

2
XMI

2

SD

(R, D-C) <=2 (Ry,B— 4. (4.2)

Comparison of (1.13) and (2.3)shows that the bias of suggested estimator would be less

than the bias of ¥, i.e. |B(Y,,) it

< ‘B(th )
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XZ
(R, D-CY < X—"Z“(RSKB —Af . (4.3)

SK

From (1.14) and (2.3), it can be concluded that the suggested estimator has less bias than

the bias of Kadilar and Cingi (2003) estimator 2,3 1e. B(}% i) if

<8

(R, D-C) < X—Z}I(RUSID—C)Z. (4.4)

US1

From (1.15) and (2.3), it can be seen that proposed estimator I%Mlhas less bias in

comparison to the bias of Kadilar and Cingi (2003) estimator Ysm ie. B(?Ml) < ‘B()%M) if
2
(R, D—CJ <Xm (r, F-Ef. (4.5)

Us2

5. Generalized Version of Proposed Estimator

Using power transformation in (2.1) the generalized version of Y, 118 defined as

~ k _ k al

Y =Yy {Z W, (X, By (x)+p,)/ Z W, (X, B,,(x) + ph):| 5 (5.1
h=1 h=1

where ¢, is a suitably chosen scalar.

The bias and mean squared error of Y, 1, to the first degree of approximation are obtained

as
.2 a, IR, (1 + al) 5
Bias(Yy,,)=——FE z Wi v wBa () B (RS — S (5.2)
X h=1 2
and
~ k
MSE(Y,,,) = {z Vthyh (Syzh + alzRAz/Il/BZzh (x)th - 2a1RM1ﬂ2h (X)Syxh ):| . (5.3)
h=1

A

The value of «,,for which mean squared error of Y,,, would be minimum, can be

obtained using principle of maxima and minima

OMSE(y,) _
o,

1.€.

which provides
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k k
a, = [Z Wh27hﬂ2h (¥)S ., / RMlZ Wh27hﬂ22h (X)th] .
h=1 h=1 (5_4)

This is the value of ¢, for which we get minimum value of MSEY,,,, )

Substituting the value of ¢, in (5.3), we get minimum mean squared error of Y, as

~ k k k
min MSE(Y,,,,) = {Z W27,S2 =W, By (08,00 | Wi, B2, (x)th)} (5.5)
h=1 h=1 h=1

Efficiency Comparisons for Generalized Version of Proposed Estimator Y, w1

Comparing (3.1)and (5.3), it is observed that the proposed estimator Y, 1. Would be more

efficient than usual unbiased estimator y, if

either O<a, < 2C
M1
5.6
e (3.6)
or <a, <0
M1

Condition for which the proposed estimator Y,,,, would be more efficient than combined

ratio estimator 7RC can be obtained by comparing (1.3) and (5.3) as
C c ) R
- +——(RB-24) <«
DR, DR, R,,D

: :

R 5.7
PRSI LS —(RB-24) G-
DR, DR, R, D

From (1.16) and (5.3), it can be seen that the proposed estimator YMM is more efficient

than estimator zm if

2
R
¢ Sl o (RSDB—ZA)<a
DR, DR,,, R, D

2
R
PRI ¢ + == (RSDB—ZA)
DR, DR, R, D

Comparison of (1.17) and (5.3) shows that the proposed estimator Y, 1. 18 more efficient

(5.8)

than estimator }_’S,z ,if
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2
R
¢ —J( ¢ j+ K (R B-24) <«
DRMI DRMI RMID ) (5.9)
2
R
<L +\/( ¢ J+ X (RSKB—zA)
DR, DR, R, D

From (1.18) and (5.3), it can be seen that the proposed estimator Y, 1. 18 more efficient

than estimator )_’Sﬁ , 1f

2
R
¢ —\/( ¢ J+ o (RUSID—2C)<a
DR, DR, R, D ' (5.10)
2
R
< ¢ +\/( ¢ j+ T (RUSID—ZC)
DR, DR, R, D

From (1.19) and (5.3) it is observed that proposed estimator YMW would be more

efficient than estimator Zm, if
C c Y R
—\/( j + U2 (R, F-2E)<a
DRMI DRMI RMID (511)

2

R

< ¢ +\/[ ¢ J+ us2 (R F—2E)
DR, DR, R, D

From (2.4) and (5.3), it can be seen that the proposed estimator YMW is more efficient

than estimator Y,,,, if

either l<a < -1
M1
5.12
C (5.12)
or -l<axl
DR,,,
6. Empirical Study

To compare the proposed estimator numerically with other estimators, we are considering
two real populations. Descriptions of the populations are given below:
Population I [Source: Singh and Mangat (1996)]

Y: Weight of juce in grams

X : Weight of sugar canes in grams
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X, =366.6667 | X, =310.8333 | X, =317.1429
Y =135 Y>=99.1667 | Y3 =80.7142
B, =2.2865 B.,=32689 | p.=3.1306
C,=0.1419 C,=0.1395 | C,=0.1695
C,, =0.0662 C,=0.1518 | C,=0.1358
S, =520256 | S,=433712 | S, =53.7631
S, =8.9443 S,,=15.0504 | S ,=10.9653
P, =0.9456 p,=0.9482 | p, =0.7532

7, =0.1267 7,=0.0433 | »,=0.1028

o’ =0.0576 @ =02304 | w?=0.0784

Population II [Source: Kadilar and Cingi (2003)]
Y: Apple production as a study variable
X: No. of Apple trees
In this population data were collected from 854 villages of Turkey in 1999 (Source:

Institute of Statistics, Republic of Turkey).

X, =24375 | X,=27421 | X,=72409 | X,=74365 | X,=26441 | X, =9844
Y, =1536 Y, =2212 Y, =9384 Y, =5588 Y, =967 Y, =404
B, =2571 | B,=3457 | p,=2614 | B.,=97.60 Bs=2747 | B..=28.10
C,=202 |[C,=210 |C,=222 |C,=3.84 C,=172 | C, =191
C,=418 |C,=522 |C,=319 |C, =513 Cs=247 | C,=234
S,=49189 | S,=57461 | S,=160757 | S, =285603 | S =45403 | S, =18794
S,=6425 | S,=11552 | S ,=29907 |S,6=28643 |S,=2390 |S =946
p,=0.82 P, =0.86 P, =0.90 P, =099 P, =0.71 P, =0.89
7,=0.102 | 7,=0049 | »,=0.016 | y,=0.009 7,=0.138 | y,=0.006
@l =0.015 | @ =0015 | ©!=0.012 | @ =0.04 @ =0.057 | & =0.041
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A A A

Table 6.1: Percent Relative Efficiencies of ¥, Yoe, Yoy, Y, , Y5, Y., Y, and Y, with

respectto y,,

Estimators | Percent Relative Efficiency (e, y, ,)
Population I Population II
¥y 100.00 100.00
st
d 214.84 317.65
Yie
v 215.07 317.55
st1
v 219.38 317.37
Yo
v 240.73 2356
st3
v 206.85 326.38
-
v 241.17 2356
YMI
7 383.70 248.10
Mla(am,[,[))

Table 6.2: Percent Relative Efficiencies of Y, 1, for different values of ¢, .

a PopulationI | Population II
0.00 100.00 100.00
0.25 178.70 144.31
0.50 317.22 201.76
0.75 374.64 245.12
1.00 241.17 2356
1.25 131.85 178.03
383.70 248.10
Gom | g, =0.6866 | a, =0.8248

47



Bhumi Publishing, India

Table 6.3: Range of @, in which generalized estimator Y, 1. Would be more efficient than y_,

?RC’ ﬁtl’ ASIZ > Ast?»’ ?sm and }A’Ml
Estimator POPULATION 1 POPULATION II
7, (0.00, 1.37) (0.00,1.36)
i (0.32, 1.05) (0.50,1.14)
Y, (0.32, 1.04) (0.50,1.14)
Y, (0.34,1.03) (0.50, 1.14)
Y, (-0.21, 1.58) (0.01,1.63)
Y, (0.31,1.06) (049 1.15)
Y, (0.37, 1.00) (0.64,1.00)

Table 6.1 exhibits that there is substantial gain in efficiency by using the suggested

A

estimator Y,,, over unbiased estimator y;, combined ratio estimator Y., and estimators Y, ,,

Eal A 2

Y., Y, and Y, given by Kadilar and Cingi (2003). Table 6.2 demonstrates that the larger

st2°

gain in efficiency in the vicinity of the optimum value of the scalar ¢, is observed and the

maximum gain in efficiency at the optimum value of ¢, (say ¢, ).

Table 6.2 shows the range of «, in which proposed generalized estimator Y, 1o performs

n A A

Aty Eak A

better than ?RC, Y, .Y, Y and Y ,.

stl1> T st2°

At the end, we concl4’ude that there is enough scope of selecting the values of ¢, to obtain
better estimators from the proposed estimators even when the scalar ¢, departs from its exact

optimum value &, -
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Abstract:

This chapter deals with the estimation of population mean in stratified random sampling.
A separate ratio cum product estimator using coefficient of kurtosis and coefficient of variation
of auxiliary variable is proposed. The bias and mean squared error of the proposed estimator
have been derived under large sample approximations. Theoretical conditions for which the
proposed estimator is more efficient than other estimators considered are obtained. Empirical
study is also carried out to support the theoretical results.
MSC: 94A20
Keywords: Population mean, Mean squared error, Bias, Coefficient of kurtosis, Coeftficient of

variance, Stratified random sampling.

1. Introduction

It is well known that if information on auxiliary varaiate (s) is suitably used then it may
provide more efficient estimators. It is also established that stratified random sampling prove to
be more efficient than simple random sampling in planning surveys. Many researchers including
Singh (1967), Sisodia and Dwivedi (1981), Singh and Kakran (1993), Upadhyaya and Singh
(1999) and Singh et al. (2004), Kadilar and Cingi (2003, 2005, 2006), Singh and Vishvakarma
(2005, 2006) etc. made use of auxiliary information at estimation stage. In stratified random
sampling ratio estimators can be defined in two ways: Combined ratio estimators and Separate

ratio estimators. In cases when line of regression on y on x passes through origin within each

stratum, the separate ratio estimator will be more precise than combined one. In this paper a
separate ratio- cum product estimator of population mean in stratified random sampling is

suggested.

Consider a finite population U =U,,U,.,...,U,, of size N and it is divided into L strata of
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Size N, (h=12,.....L). Let y and x be the study variate and auxiliary variate respectively taking

values y,;and x,, (h=1,2,....L; i=1,2,...,N,). A sample of size n,is drawn from each stratum

L
which constitutes a sample of size n = Z n,
h=1

Notations:

y : Study variate, x : Auxiliary variate,

¥, Observation on i unit of 2" stratum on study variate,

X, : Observation on i” unit of A" stratum on auxiliary variate,
¥, :Sample mean of study variate for h" stratum,

X, :Sample mean of auxiliary variate for h" stratum,

_ 1& :
y=— z Z Vi - Sample mean of study variate,
ot =
1 &
X=— z X, - Sample mean of auxiliary variate,
ot =
_ 1 &
Y= NZ Vit Population mean of study variate,
h=1 i=1
— 1 &
X = szxhi : Population mean of auxiliary variate,
h=1 i=1
1< =
Vo= —ZWh)_/h : Unbiased estimator of population mean Y in stratified random sampling,
h=1
1 =
X, =— Z W.x,: Unbiased estimator of population mean X in stratified random sampling,
n o
Nh : th
w,= N : Stratum weight of A" stratum.

The Combined ratio estimator to estimate population mean Y is given by

Fac = i{_ﬁj (1.1)
X

st
Here X is assumed to be known.

The classical separate ratio estimator for population mean Y is defined as

_ Lo _ X,
Yrs :thJ’h__ (1.2)

h=l X,
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Bias and mean squared error of Separate ratio estimator y,, are

_ L _
B(yRS):th 7th[C5h _pyxhCthxh (1.3)
=1

_ L _
MSE(y s) :Zthhyhz[th +hath +2thyththxh (1.4)

h=1
Upadhyaya and Singh (1999) used coefficient of variation (C,) and coefficient of

kurtosis (3, (x)) of auxiliary variate x and proposed a ratio type estimator as

_ = )?:Bz(x)"'cx
b F () +C

Kadilar and Cingi (2003) defined ¢, in stratified random sampling as

(1.5)

W, ()?hﬂzh (x)+ th)
=7

L

h=1
1st st L

h=1

h (1.6)
w, ()_Chﬂzh (x)+C, )

2. Proposed estimator:

We propose a Separate ratio estimator using coefficient of variation (C,) and coefficient

of kurtosis (5, (x)) of auxiliary variate x based on Upadhyaya and Singh (1999) as

th ()?hﬂzh (x)+ th) Z w, ()_ChﬂZh (x)+ th)
MW AN, +(1-a, h 4
o= W, (%, B, () +Cy) N, (X, B, (0 +C.,)

Where ¢, are suitably chosen scalars.

To obtain bias and mean squared error of proposed estimator ¢, , we write
V= 17,1(1+eo,1), X, =)?h(1+elh) such that
E(e,,)=E(e,)=0 7E(egh)=7hcy2h9 E(elzh):yhcjh
and E(ey,e,,)=74LConCoi = 7S
L - L 3

L th (XhﬂZh (x)+ th) ZWh (xhﬂZh (x)+th)
W AACRE +(1-a K ——

i ZWh ()_Chﬂzh (x)+ th) w, (Xhﬁzh (x)+ th)

=
Il
—_

h=1
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WY, (1 t+ €y, )[ah {1 + 4 }71 + (1 -, ){1 + A8, }]

_ )?h/gzh (x)
! )?h/gZh x)+C,

To the first degree of approximations bias and mean squared error of proposed estimator

t, are obtained as

L
B(tas) :ZWthh[/Iith +/1h (l_zah)pyxhcyhcxh (21)
h=1
L —_—
MSE(tas) = Z I/Vh]/hI]h2 [S)%h + /,li (1 - 2ah )2 R:th + 2/1/1 (l - zah )Rh pyththxh (22)
h=1
where R, =—2
Xh

3. Efficiency Comparisons:

Variance of usual unbiased estimator of mean y_, in stratified random sampling is

L
V()= W.7.S:, (3.1)

h=1

Comparison of (2.2) and (3.1) shows that proposed estimator ¢, would be more efficient

than unbiased estimator y, i.e. MSE(¢, ) < Var(y, ) If

2K
Either % <a, < l(l — J

2\ 4,

1 2K, 1
or —| 1+ <a, <—
2 " 2

(3.2)

— h
where K, —pyth—
xh

Comparing (1.4) and (2.2) it is observed that proposed estimator 7, would be more

efficient than classical separate ratio estimator y .

i.e. MSE(t, ) < MSE(y ) if
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cither | 1-—- <0:h<l 1+ 4, 1+ 2K
22, 2 R,
2K
or 1 1+, 1+—2 <0{h<l - L
2 R, 2 2, )2
(3.3)

4. Estimator at optimum ¢,

Value of «, for which proposed estimator gives optimum results i.e. minimum mean

squared error, can be obtained using principle of maxima and minima

OMSE(t
ie. OMSE(tys) _ 0 which provides
oa,

), S )
ah :l 1+ M = ahopt (SaY)
R, 4,8, 4.1)
This is the value of o for which MSE(¢,) gives minimum mean squared error of ¢, .

Substituting the value of « in proposed estimator (3.1.2.1) the optimum estimator ¢,,,,

can be expressed as

L —
L 1 LS i th(Xhlgzh(x)+th)
L asopt :thJ_’h E(1+Ryj1; j hil
o 1w n xh th(?_Chﬁzh(x)"'th)
1
L —
+(l_ pythyh J ;Wh(xhﬂzh(XHth)
L —
2 2RAS0) S, (%, 5, () + C.y)

=

=1

and minimum mean squared error of 7 ¢ is
L 5 ,
MSE(taS()pt ) :Z Whj/h Syh (1 - pyxh )
h=1

n :
Remark 1. For ¢, =1-f, :1—7” , proposed estimator ¢, turns to
h

L th ()?hﬁzh (x)+th) ZWh (fhﬂZh (x)+th)
tSlzthJ_/h (l_fh h:L +fh hL:1 —
= w, (fhﬂZh (x)+th) th (XhIBZh (x)+ th)

1

Bias and MSE of ¢, are obtained by substituting ¢, =1— f, as
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L pe—
Blty) =Y W, 7, [2C% + 4,2, =1)p,4CuC (4.2)
h=1
L —
MSE(t,,) :ZWh 7Y’ [th +AQ2f, -D*R}S2, +24,(2f, -DR, LS S s 4.3)
h=1

n .
Remark 2. For o, =1+ f, :l+N—h, proposed estimator 7 ¢ turns to
h

L ZWh (yhﬂzh (x)+ th) ZWh ()_Chﬂzh (x)+ th)
ls) :ZW/jh (1+fh hzl -/ h;l —
" Z w, ()_ChﬂZh +C, ) 4 w, (Xhﬂzh x)+C, )

Bias and MSE of ¢, are obtained by substituting «, =1+ f, as

L —
Blts,) =Y WY, BC2 = 2,04 21,4 CnCa | (4.4)
h=1
- v 2 2 2 2 202
MSE(t,) :Z Wy, Y, [Syh +A4,A+21,) R, S, —24,(1+2f, )thyththxh (4.5)
h=l1
5. Empirical Study

The performance of the proposed estimator in comparison to other estimators is tested on
five natural data sets.
For comparison of different estimators we are calculating percent relative efficiency

(PRE)

(v
PRE(,0,5.,) = Ts) 100
MSE(Vc)
PRE(t,,,5.) =— ) 100
MSE(tzs)
PRE(ta(upt)Sg)_/st) :Mx 100
MSE(t“(Opt)S )
PRE(t,,,7.) _ VG 00
MSE(t5,)
(5
PRE(ts,,7,,) _ V@D 00
MSE(t5,)
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Description of the data is given below:

Population 1: [Source: Singh and Mangat (1996), p. 180]

n,=18 n,=6
X1=94.35 X2=58.46
Y1=98.98 Y2=70.6
240 C, =0.118 C, =0.104
C, =0.1298 C,, =0.0962
n=24
S2 =150.134 S; =31.658
S; =137.261 S; =54.84
S, =136.996 S, =24.084
Population 2: [Source: Singh and Mangat (1996), p. 208]
n,=14 n,=9 n,=12 n,=17
N, =400 N,=216 N, =364 N,=364
Ne1344 i_(l =76.21 i_(2=58.11 i_(3 =69.08 i?4 =63.71
Y1=79.35 Y2=59.44 Y3=76.66 Y4=64.57
s3 By (x)=2.22 B, (x)=2.29 Bos(x)=1.96 B (x)=2.47
C, =0.1906 C, =0.2416 C,,=0.201 C,,=0.1908
S?,=851.00 S; =31.06667 S; =35.00 S2,=35.00
S; =166.70 S; =174.28 S} =226.60 S5, =170.61
S, =148.76 S, =161.19 S, =19221 S ,.4=143.83
Population 3: [Source: Singh and Mangat (1996), p. 213]
n,=12 n,=13 n,=14
N, =640 N,=710 N,=769
Nea110 i_(1=103.41 i_(2=1 10.92 i_(3=104.28
Y1=25.75 Y2=28.94 Y3=25.52
=30 B, (x)=2.27 By (x)=3.43 S, (x)=2.89
C,=0.11 C, =0.07 C.,=0.11
S;,=133.9 S} =66.24 S; =154.99
S; =40.15 S; =30.33 S; =44.42
S, =67.47 S, =41.03 S, =78.81
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Population 4: [Source: Singh and Mangat (1996), p. 219]

n,=6 n,=1 n,=7
N,=36 N,=72 N,=42
N150 i_(l =366.66 i_(2=310.83 i@ =317.14
Y:1=135 Y2=99.16 Y3=80.71
s B, (x)=2.28 B, (x)=3.26 B, (x)=3.13
C,=0.1418 C,, =0.1395 C,,=0.1695
S?,=2706.66 S; =1881.06 S; =2890.47
S; =80 S; =226.51 S} =120.23
S, =440 S, =618.93 S, =444
Table 5.1: Percent relative efficiency of 3,,.57..7,,,,..151, and ¢,
Estimator—> v, Vrs Lasopt L Iy
Population[]
Population 1 100 331.73 | 393.78 | 377.21 235.24
Population 2 100 224.85 451.85 | 324.65 281.51

Population3 | 1 33143 | 424.64 | 359.78 | 298.57

Population 4 100 199.95 748.631 | 251.46 273.18

Population 5 100 169.27 537.63 | 345.09 99.99

6. Conclusion:

Table 5.1 reveals that proposed estimator ¢, is more efficient than usual unbiased

estimator ), and the classical separate ratio estimator y,, . Many estimators can be derived by
substituting suitable values of constant « for instance for a=1-f =1 N proposed estimator

t,, perform better than aforesaid estimators for all five populations considered and for @ =1+ f

it perform better for second and third population. Thus ¢, is recommended for use in practice.
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Abstract:

Horse gram is one of the important pulse crop of Odisha. It has very high nutritive value
and thus contribute towards the nutritional security of the state. Forecasting of horse gram
production is very much necessary to enable the agriculture planners to formulate appropriate
policies regarding the cultivation of the crop. The present research is carried out on forecasting
area, yield and production of horse gram in Odisha by using ARIMA model.

ARIMA, the most widely used model for forecasting is used in the study. The data on
area, yield and production of horse gram are collected from 1970-71 to 2019-20 are used to fit
the models found suitable from ACF and PACF plots. The ACF and PACF plots are obtained
from stationarized data. The best fit model is selected on basis of significance of estimated
coefficients, model diagnostic tests and model fit statistics. The selected best fit model is cross
validated by refitting the model by leaving last 5 years, 4years, up to last 1 year data and
obtaining one step ahead forecast for the years 2015-16 to 2019-20. After successful cross
validation the selected best fit model is used for forecasting the area, yield and production of
horse gram in Odisha for the future years 2020-21, 2021-22, 2022-23.

The ARIMA model found to be best fit for area, yield and production of horse gram are
ARIMA(1,1,0), ARIMA(0,1,1), ARIMA(0,1,1) respectively. All these selected models are fitted
without constant as the constant term is insignificant for all these cases. The forecasted values for
area under horse gram found to increase in the future years which is responsible for increase in
forecasted values of future production despite the yield remaining stagnant for future years.

Keywords: ARIMA, cross validation, forecast, model diagnostics, model fit statistics

1. Introduction:
Pulses are grain legumes which have been major part of the diet and rich source of
nutrients. Pulses occupy a privileged position in Odisha agriculture for their contribution to the

economy of the state.
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Pulses like green gram, cowpea, black gram, arhar, Bengal gram, field pea, horse gram,
lentil etc., are grown in the state of Odisha. Among the pulses horse gram on an average occupies
16.57 percent of the total pulse grown area and a production of 14.5 percent. During last 5 years
in Odisha, Nabarangpur district stands first in area and production of horse gram with 19.17
thousand hectares and 9.81 thousand MT respectively followed by Balangir and Sundargarh
where as Kendrapara district stands first in yield with 4.73 tonnes/ha followed by Jagatsinghpur
and Cuttack. Crop area estimation and prediction of crop production and yield beforehand plays
an important role in supporting agricultural policy decision making. The forecasting of the
production of horse gram is of utmost importance for framing appropriate food policies and
ensuring nutritional security of the state.

Various studies have been found under this area of research. Vishwajit et.al (2018)
studied about the modelling and forecasting of arhar in major arhar growing states in India using
ARIMA and other models. Devgowda S.R. et.al (2019) studied the analysis of variability in area,
yield, production and value of pulses in India and Mishra et.al (2021) studied the trend in the

production of total pulses in major growing states in India using ARIMA.

2. Materials and Methods:

The secondary data on area, yield and production of horse gram are collected for the state of
Odisha (kharif and rabi seasons combined) for the period 1970-71 to 2019-20 from Five Decades of
Odisha Agriculture Statistics published by Directorate of Agriculture and Food Production, Odisha.
An Autoregressive Integrated Moving Average is a statistical model which is used to predict the
future trends. The ARMA models, which includes the order of differencing (which is to
stationarize the data) is known as Autoregressive integrated moving average (ARIMA) models.
A non-seasonal ARIMA model is classified as an "ARIMA (p,d,q)" model, where, the
parameters p,d,q are the non-negative integers where p is the number of autoregressive terms,
d is the number of nonseasonal differences necessary for stationarizing the data, and qis the
number of moving average terms. Thus, the ARIMA (p,d,q) model can be represented y the

following general forecasting equation:

p q
Yt :ﬂ‘l'zcl)lyt_l‘l' zejgt_] +€t
i=1 =1

Where u is a mean, ¢4, ¢y, ..... &y and 64, 6, ... ... 8; are the parameters of the model, p is
the order of the autoregressive term, q is the order of the moving average term, and &

, €¢—1,- - £ jAT€ NOISE €ITOT terms.
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3. Model identification:

The ARIMA model is fitted to stationary data i.e. having constant mean and variance.
Staionarity of data can be tested by using Augmented Dickey-Fuller test. If it is not stationary
then it should be converted into stationary series by differencing the data at suitable lag. Usually,
the data is stationarized after 1 or 2 differencing. After stationarizing the data, the Auto
Correlation Function (ACF) and Partial Auto Correlation Function (PACF) plots are used to
identify tentative Auto Regression (AR) and Moving Average (MA) orders. Various tentative
models based on identified AR and MA orders are fitted and parameters are estimated. After
fitting the tentative models for a variable (area/yield/production) the estimated coefficients are
tested for the significance and the normality and independency of the residuals of the fitted
models are checked by using Shapiro-Wilk’s test statistic and Box-Pierce test statistic
respectively. The models having all the estimated coefficients significant and satisfying the
normality and independency of the errors are now compared on the basis of model fit statistics
like Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and Akaike’s
Information Criteria corrected (AICc). Then the model having the lowest value of these model fit
statistics is considered to be the best fit model for the variable.

The model fit statistics like MAPE, RMSE and AICc are mathematically as follows:

Ye—Pe
Yt

N (Pr—y;)2
Root mean square error (RMSE): \/7 M

where y,= forecasted value, y,= actual value and n = number of times the summation iteration

100 @«
Mean absolute percentage error: Tthl

happens

2K?%+42K
n—-k—-1

Akaike’s information criteria corrected: AIC +

Where AIC is the Akaike’s Information criteria, k denotes the number of parameters and n
The model with lowest denotes the sample size. RMSE, MAPE and AICc values is selected as

the best fit ARIMA model among selected tentative models and it is taken for forecasting.

4. Results and Discussion:

The data on area, yield and production of horse gram crop was tested for the presence of
stationarity by using Augmented Dickey Fuller test and the results are presented in table 1. The test
results confirmed that the data was not stationary and made stationary by first order differencing at lag

2.
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Table 1: Test of stationarity of data on area, yield and production of horse gram in Odisha

Variable Original series First order differenced series
ADF test statistic | P value ADF test statistic | P value
Area -2.515 0.3694 -3.938 0.0211
Yield -1.6496 0.7129 -5.0007 0.01
Production -2.1016 0.5336 -4.1555 0.0105

After stationarising the data the next step is to identify the order of AR and MA terms
such as p and q using the ACF and PACEF plots of stationary data shown in figures 1, 2 and 3.
The ACF plot gives the order of Moving Average and PACF plot about the order of

Autoregression. Different tentative models were identified using the orders of AR and MA

terms.
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Figure 1: ACF and PACEF plot of first order difference of Area under Horse gram
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Figure 2: ACF and PACEF plot of first order difference of Yield of Horse gram
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Figure 3: ACF and PACF plot of first order difference of Production of Horse gram
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The tentative models of area and their estimated coefficients along with error measures

are shown in the table-2. The study of the table reveals that ARIMA(1,1,0) and ARIMA(0,1,2)

without constant model has all the estimated coefficients significant

Table 2: Parameter estimates of the ARIMA (p,d,q) model fitted to area under Horse gram

ARIMA(p,d,q) | Constant 02 d2 b3 04 0, 05
-0.539*" 0.575"*
ARIMA (0,1,2)
(0.140) (0.194)
1.601 -0.531™ 0.571™
ARIMA (0,1,2)
(4.330) (0.133) (0.189)
0.408"*
ARIMA (1,1,0)
(0.129)
ARIMA 0.205 -0.665" 0.6671"
(1,1,2) (0.204) (0.166) (0.2072)
-0.428"™ 0.547" 0.218
ARIMA (0,1,3)
(0.133) (0.140) (0.175)

Figures inside the parentheses represents the standard error of the parametric estimates.

“*7-at 5% significance level, “**’- at 1% significance level

Table 3: Model fit statistics of the ARIMA (p,d,q) model fitted to area under Horse gram

ARIMA(p,d,q) | Shapiro-wilk test | Box — pierce test AlICc RMSE | MAPE
w p-value X- p-value
squared
ARIMA (0,1,2) | 0.951 0.037 0.248 0.618 477.84 | 29.066 7.016
ARIMA 0.951 0.038 0.263 0.608 480.087 | 29.544 7.028
(0,1,2)
ARIMA 0.959 0.086 0.098 0.754 480.736 | 28.491 7.154
(1,1,0)
ARIMA 0.959 0.081 0.012 0.910 479.331 | 30.910 7.532
(1,1,2)
ARIMA 0.961 0.097 0.013 0.907 478.695 | 28.769 7.125
(0,1,3)

W - Shapiro-wilk test statistic

x-squared - Box — Pierce test statistic
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Table 3 shows the model diagnostics test and model fit statistics for the fited ARIMA
models. ARIMA (1,1,0) model satisfies both the test of normality and independency of residuals.
The RMSE, MAPE and AICc are less for ARIMA (1,1,0) without constant model. Thus, this
model is selected to be the best fit model for production of horse gram crop. Figure 4 also shows
that none of the autocorrelations and partial autocorrelations of residuals are significant. This

furthers confirms the selection of the respective best fit models.

Series residuals Series residuals

1.0

ACF
0
Partial ACF

Lag Lag

Figure 4: ACF and PACEF of residuals from selected ARIMA (1,1,0) model for Area under

Horse gram

The tentative ARIMA models of yield and their estimated coefficients along with error
measures are shown in the table 4. The study of the table reveals that ARIMA (0,1,1) and
ARIMA (2,1,0) without constant model has all the estimated coefficients significant

Table 4: Parameter estimates of the ARIMA (p,d,q) model fitted to area under Horse gram

ARIMA(p,d,q) Constant dq b, b3 0, 0, 03
ARIMA (0,1,1) |- —- | -0.424" |-
(0.122)
ARIMA (2,1,0) |- -0.406™ |-0.268" |- |-
(0.137) | (0.136)
ARIMA (0,1,2) - 1-0.409" |-0.021 |--—-
(0.162) | (0.164)
ARIMA (0,1,1) |-0.521 —- | 0.424™
(4.169) (0.122)
ARIMA (1,1,1) -0.441" | - - 0.024
(0.227) (0.269)

Where, Figure inside the parentheses represents the standard error of the parametric estimators.

“*7-at 5% significance level, “**’- at 1% significance level
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Table 5 shows the model diagnostics test and model fit statistics for the fited ARIMA

models for yield of horse gram. ARIMA (0,1,1) without constant model satisfies both the test of
normality and independency of residuals. The RMSE, MAPE and AICc are less for ARIMA
(0,1,1) without constant model. Thus, this model is selected to be the best fit model for

production of horse gram crop. Figure 5 also shows that none of the autocorrelations and partial

autocorrelations of residuals are significant. This furthers confirms the selection of the respective

best fit models.

Thus this model is selected to be the best fit model for yield under horse gram crop.

Table 5: Model fit statistics of the ARIMA (p,d,q) model fitted to yield of Horse gram

ARIMA(p,d,q) | Shapiro-wilk test | Box — pierce test AlCc RMSE | MAPE
\W4 p-value | x-squared p-value
ARIMA 0.927 0.004 0.0003 0.985 526.817 | 49.458 9.021
0,1,1)
ARIMA 0.936 0.009 0.018 0.890 527.906 | 48.835 9.092
(2,1,0)
ARIMA (0,1,2) | 0.929 0.005 0.003 0.954 529.072 | 49.452 9.026
ARIMA 0.927 0.004 0.0005 0.981 529.074 | 49.450 9.051
(0,1,1)
ARIMA (1,1,1) | 0.928 0.004 0.0002 0.987 529.081 | 49.455 9.024

W - Shapiro-wilk test statistic ~ x-squared - Box — pierce test statistic
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Figure 5: ACF and PACF of residuals from selected ARIMA (0,1,1) model for Yield under

Horse gram

The tentative models of production and their estimated coefficients along with error

measures are shown in the table 6. The study of the table reveals that ARIMA (0,1,1) and

ARIMA (1,1,0) without constant model has all the estimated coefficients significant
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Table 6: Parameter estimates of the ARIMA (p,d,q) model fitted to production of Horse gram

ARIMA(p,d, | Constant 2] b, b3 0, 0, 03
Q

ARIMA -0.328" |
0,1,1) (0.116)

ARIMA -0.322" | - |-
(1,1,0) (0.133)

ARIMA -0.421" 0.137
(0,1,2) (0.171) (0.176)

ARIMA -0.394™ | 0.061 0.162
(0,1,3) (0.138) (0.141) (0.110)
ARIMA -0.130 |- |- -0.230
(1,1,1) (0.278) (0.252)

Figure inside the parentheses represents the standard error of the parametric estimators.

“*7-at 5% significance level, “**’- at 1% significance level

Table 7 shows the model fit statistics and model diagnostics test for the fitted ARIMA
models for production of horse gram. ARIMA (0,1,1) and ARIMA (1,1,0) without constant
model satisfies both the test of normality and independency of residuals. The RMSE, MAPE and
AlCc are less for ARIMA (0,1,1) without constant model. Thus, this model is selected to be the
best fit model for production of horse gram crop. Figure 6 also shows that none of the
autocorrelations and partial autocorrelations of residuals are significant. This furthers confirms
the selection of the respective best fit models.

Table 7: Model fit statistics of the ARIMA (p,d,q) model fitted to production of Horse gram

ARIMA(p,d,q) | Shapiro-wilk test | Box — pierce test AlCc RMSE | MAPE
w p-value | x-squared p-value

ARIMA 0.928 0.004 0.467 0.494 454.232 | 23.602 | 14.267
0,1,1)

ARIMA (1,1,0) | 0.921 0.003 0.001 0.973 454.729 | 23.723 | 14.354
ARIMA 0.920 0.002 0.021 0.885 455.886 | 23.436 | 14.185
(0,1,2)

ARIMA (0,1,3) | 0.932 0.007 0.004 0.950 456.265 | 22.946 | 14.370
ARIMA (1,1,1) | 0.921 0.002 0.009 0.922 456.301 | 23.549 | 14.357

W - Shapiro-wilk test statistic ~ x-squared - Box — Pierce test statistic
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Figure 6: ACF and PACEF of residuals from selected ARIMA (0,1,1) model for Production of

horse gram

In the table 8, the result of cross validation of the selected best fit ARIMA model by one-step

ahead forecasting has been presented. The APE (absolute percentage error) of area under horse

gram is found to be in the range between 1 to 19 and the MAPE(mean APE) is found to be 8.912

for area of horse gram crop. Similarly for yield the APE range is found between 0 to 12 and

MAPE is 4.844 and for production, APE range is between 1 to 19 and MAPE is 9.946. These

results show that the selected ARIMA models are successfully cross validated.

Table 8: Cross validation of selected ARIMA models for area, yield and production of horse

gram in Odisha

Area Yield Production

Year Actual | Predicted | APE | Actual | Predicted | APE | Actual | Predicted | APE
2015-16 | 19496 | 231.81 18.89 | 387 384.02 0.77 | 75.45 89.35 18.43
2016-17 | 216.2 212.09 1.90 436 385.68 | 11.54 | 94.26 79.96 15.16
2017-18 | 200.01 190.85 4.57 457 413.77 945 | 9140 89.573 1.99
2018-19 | 205.25 | 200.65 2.23 448 438.81 2.05 | 91.95 90.79 1.25
2019-20 | 235.67 | 195.73 |16.94 | 446 444.19 0.41 | 105.11 91.57 12.88
MAPE 8.912 4.844 9.946

The appropriate ARIMA models which are represented in the previous tables were used

to forecast the area, yield and production of horse gram crop in Odisha for the years 2020-21,

2021-22 and 2022-23.

Figures 7, 8 and 9 shows the actual, fitted and forecast values of area, yield and

production of horse gram in Odisha.
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Table 9: Forecast values of horse gram in Odisha for the year 2020-21 to 2022-23

Year Area (‘000ha) Yield (kg/ha) Production (‘000tonnes)
Forecasted 95 % Forecasted 95 % Forecasted 95 %
confidence confidence confidence
interval interval interval

Lower | Upper Lower | Upper Lower | Upper

CI CI CI CI CI Cl
2020-21 223.23 164.38 | 282.08 445.23 346.31 | 544.17 98.66 53.45 | 147.88
2021-22 24143 176.35 | 306.51 445.23 331.07 | 559.40 100.66 43.78 | 157.54
2022-23 24143 152.11 | 330.75 445.23 317.65 | 572.82 100.66 35.54 | 165.79

CI - Class Interval
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Figure 7: Actual with fitted and forecasted values of Area under horse gram from

ARIMA (1,1,0) without constant model
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Figure 8: Actual with fitted and forecasted values of Yield of horse gram from ARIMA

(0,1,1) without constant model
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Figure 9: Actual with fitted and forecasted values of Production under horse gram from

ARIMA (0,1,1) without constant model

Conclusion:

ARIMA (1,1,0) without model, ARIMA (0,1,1) without constant model and ARIMA

(0,1,1) without constant model are found to be the best fit model for area, yield and production of

horse gram in Odisha. These selected models are used for forecasting of area, yield and

production of horse gram in Odisha. The forecast values shows that area, yield and production of

horse gram in Odisha remain stagnant in future years with variation in lower and upper class

interval of the forecast values.
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This chapter means Magneto hydrodynamic, in simple, sense the motion of the electrical
conducting fluid in the presence of magnetic field. Due to the effect of magnetic field there is
created in electrical current in the fluid which modifies the fluid motion.

The theory of electric conductivity implies that there are electric charges in motion in the
fluid. The motion of charges generates a magnetic field which exerts a force on a charged
particle of fluid moving within the fluid. Such forces are generated by basic laws of electrically

and magnetism.

The basic equations known as Maxwell’s equation Jand B are given by Maxwell’s

equations and Ohms law namely = —C uB’
Curl fi=4nf, VE=2"q vE=—p &
€ ot
div B=0, VH=0, Curl E=0, VxE =- Oaa_lt{
J=olE+ (@xB) (1)

where E is the electrical field intensity, € is dielectric constant of medium, B = ( 0H)H is a

magnetic field intensity, [, is the permeability, J is conjuction current density vector, q is the

—

charge per unit volumes and & is conductivity of the equation. U is fluid velocity vector, B
the magnetic field.
It is assumed that the effect of the induced magnetic field and electric field produced by

the motion of electrically conducting liquid is negligible and no electric field is applied. With

these assumptions the magnetic term TxB of body is given by
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JxB=c[E+(UxB)xB (2)
IxB=0[UxB]x B(as Eis absent ) 3)
JxB=0o[B(U.B)-U(B.B) 4)
JxB =-ciB? (5)

Flow through porous media:

In recent years, the study of flows through porous media has been causing keen interest
amongst the engineers and the mathematicians due to its importance and video applications in
the fields of petroleum technology, soil mechanics, ground water hydrology, seepage of water in
river beds, purification and filtration process and bio-mechanics etc.

The porous mateiral containing the field is the fact a non-homogeneous medium but for
the suke of anlaysie, it may be possible to replce it with a homogeneous liuqid which has
dynamical poperties equal to the local averages of the original non-homogeneous continum.
Then one can study the flow of a hypothetical homogeneous fluid under the action of the
property average of external forces. Hence, a complicated problem of the flow through a porous
medium reduces to the flow problem of a homogeneous fluid with some additinol resistance.

Flow of homogeneous fluid through various types of porous media were presented by
Muskat (1946) following the classical Daracy’s experimental law, which state that seepage
velocity of the fluid is proportional to the pressure gradient. This law fails to explain the
phenomenon occurring in highly porous media. The viscous stress at the surface is able to
penetrate into the medium and produce flow near the surface even in the absence of pressure
gradient.

Brinkman (1947) proposed a general Daracy’s law to study flow through highly porous

media
0=—Vf)+w2v:%v (A)

where V and p represent velocity and pressure field, m is the velocity coefficient of

fluid and K is the permeability constant of the medium. Later Tam (1969) derived analytically
the same equations to study the flow past spherical particles at low Reynolds number. Yamamoto
(1971, 73) and Gulab Ram and Mishra (1977) examined the flow past porous bodies applying the

generalized law.
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This chapter has considered fundamentals of dimensional analysis and similitude, which
are commonly used in experimental fluid mechanics. The viscous, incompressible fluids for

which the velocity components of fluid and the pressure p flow the Navier-Stokes equations:

ou,  ou  1éop oM
e e (1)
ot 0X, p OX, 0X,,
and g @)
0X,

Where, k is a dummy suffix and i, k=1, 2 or 3.

The energy equation is,

oT oT 0’T ou, Ou, |Ou,
pc =K—+u —+ : 3) where,
*\ ot Ox, Ox, ox, Ox, )ox,

is specific heat at constant volume, K is coefficient of thermal conductivity, p is coefficient

p

of viscosity and T is temperature.
To bring the essential parameters of laminar flow, the fundamental equations stated

earlier are transformed by introducing the non-dimensional quantities:

T R [t (L
tO pO uO puO 0 (4)

2

R=YoPo N BP0 p _GH L gE o W

\Y K oC,
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Where, /,,u,,t,and T, are respectively characteristic length, velocity, time and

temperature and R, Ny and E. are Reynolds number, Nusselt number, Prandtl number and Eckert
number respectively.

Reynolds number R measures the ratio of inertial force to the viscous force. For small R,
the viscous force is predominant and effect of viscosity is signiticant in the flow field and for
large R, inertial force dominates and effect of viscosity is important only in the narrow boundary
layer region near the solid boundary or in the region with large variation in velocity. Nusselt
number is a measure of the convective heat transfer and the Prandtl number is a measure of

relative importance of viscosity and heat conduction. It can be written as:

p__ vV _ Kinematic visosity
" K/cp Thermal diffusivity

)

The two flows are similar if they are geometrically similar and if all the relevant
dimensionless parameters are the same for both flows. To summarize, we model as follows for

incompressible and compressible flows:

R the same : viscous flow and subsonic aerodynamics,

R and K the same : high speed compressible and supersonic flow,

R and Mothe same compressible boundary layer,

P;: the same : heat conduction,

R, My and P; the same: compressible boundary layer with heat conduction,
R and F; the same : Marine ship modeling,

Where, R, My, Py, F; and K are Reynold's number, Mach number, Prandtl number, Froude
number and ratio of specific heats respectively.

Dimensional analysis is very useful for planning, presentation, and interpretation of
experimental data. As discussed previously, most practical fluid mechanics problems are too
complex to solve analytically and must be tested by experiment or approximated by
computational fluid dynamics (CFD). These data have much more generality if they are
expressed in compact, economic non-dimensional form. Dimensional analysis is a method for
reducing the number and complexity of experimental variables that affect a given physical

phenomena.
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Abstract:

This article suggests two separate ratio-cum-product type estimators for estimating the
finite population mean in stratified random sampling. The efficiency of the suggested estimators
are compared with the usual unbiased estimator in stratified random sampling, conventional
separate ratio and product estimators and Tailor and Lone (2014) separate ratio and product type
estimators on the basis of mean square error (MSE). The bias and mean square error of
considered estimators are obtained. The results are illustrated by three data sets.

Keywords: Finite population mean, separate ratio estimator, Auxiliary variable, Bias, Mean

squared error.

1. Introduction:

When information of parameters of auxiliary variate is available in each stratum, separate
ratio type estimators may be constructed easily and perform better as compared to combined
estimators.

In this paper, separate ratio-cum -product estimators for finite population mean are
suggested using known parameters of auxiliary variates in each stratum.

Let as consider finite population U which is divided into L strata of sizes
N, {h :1,2,3,...,L}. From each stratum a sample of size n,is drawn using simple random

L
sampling without replacement such that » = Zn ) -
h=1

The classical separate ratio and product estimators are defined respectively as

1 =imm[@} (L1)

h=1 X

and
L (%,

=2 Wy =] . (12)
=1 X
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Upadhyaya and Singh (1999) used coefficient of kurtosis £, (x)and coefficient of

variation C_ of auxiliary variate x and defined two different ratio type estimators as

=—)?ﬁ2(x)+cx (1.3)
’ Xp,(x) +C, '
and

_{XC + B
t“‘y(a‘ccﬁ ﬂz(x)J ' 49

Kadilar and Cingi (2003) defined Upadhyaya and Singh (1999) estimators in stratified

random sampling as

z w, ()?h i (x)+th)

Is= yst h=1} (15)
> W (% Bu(0)+C,,)

and
z w, ()_(h Co+ 5y, (x))

te =y, "7 : (1.6)
z w, ()_Ch C,+ ﬂzh (x))

Tailor and Lone (2014) suggested separate ratio type estimators in stratified random

sampling as

; —
t7:z VVh.)_/h {)fhﬂZh(x)_i_th} (17)
h=1 P (x)+C,
and
; —
tSZZW'hyh{)_(thh—i—ﬂZh(x)} ) (1.8)
h=1 X Cop + Py (X)
Product version of I?R‘;S " and ?R‘;S * can be defined as
L _
t9= z Whyh {)ﬂlﬂZh(x)+th } (19)
=] X, (x)+C,,
and
L —
tlozth)_’h{)ﬁlCXh-i_ﬂZh(X)}- (1.10)
h=1 X, Cop + P (%)

Mean squared error of the ¢, , ¢, ,t,,t,, t,and ¢,
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L
MSE (t.)= > W2y, (8% + R3S, —2R,S,, ), (1.11)
P
L
MSE (t,)= Y W27, (S3,+ R, 82, +2R,S,,, ). (1.12)
=
L
MSE (t7) = thz e (Syzh + Rlzh/ﬁh S)fh —2R, 4y, Syxh) ) (1.13)
P
L
MSE (ts) = Z th 7 (th + Rlzh/ﬁh th +2R, Ay, Syxh) 5 (1.14)
=
L
MSE (t9) = Zth Vi (Syzh + Rlzh/ﬁh S)fh —2R, Ay, Syxh) ) (1.15)
=
L
MSE (tlo) = Zth 7h (S)%h + Rlzhﬂ’ézth th +2R, Ay, Syxh) ) (1.16)
=
where
Xh ﬁ2h ('x) l Xh th and pyZh — Syxh

. )?hﬂm(x)"‘cxh o )?hcxh"‘ﬂz;.(x) Sthh'

»
2. Suggested separate ratio - cum - producrt estimtors
Assuming that coefficient of variation C,, and coefficient of kurtosis A,, (x) in A"

stratum are know in advance with stratum mean, suggested separate ratio - cum -product

estimators for population mean are

S US1 - — )?h By (x) + C, Z, By (2) + C,,
= = 2.1
Yurs hZ;Wh & ( X, By (x) + C, J (Zh B (2) + Czh] .

and
TUS2 _ . — )?h CotBu(x) [ z,C,+ By (2)
Yars = hzzll ey ()_Ch Cu+ B (x)] (Zh C.,+ B (Z)] 22)

To obtain the bias and mean Squared error of the suggested estimator I?Rﬁ{,i‘ , We write
y, =Y, (I+e,).%,=X,(1+e,) and z,=Z, (1+e,,)
Such that E(e,,)= E (e,,) = E(e,,)=0  and
Ele3)=7, C%.
Elel)=7,Cl,

E(eah elh) =V Py Cyh Cus
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E(elh €2 ): Vi P Can Cois
E (eoh ezh) =Vu Py Co Cs

Now expressing (2.1) in terms of e, 's we have

~ L _
YRLIJ’? = ZWh Y, (l+eoh) (1_/13;1 e +/1§h elzh)(l+ll'l3h ezh)
=1

Finally, the bias and mean squared error of the suggested estimator Y,/5' up to the first

degree of approximation are obtained as
2 L _
B (Yngsl ) = Z WY, (/Igh th = Ay Mgy Py Coy Copp + 1, Pyzh Cyh C.,,
h=1
_l3h pyxh Cyh th ) (23)

n L
MSE (YRI;’? ) = thz Y (Syzh + ﬂ32h Szzh R22h + /ﬁh th Rlzh +243, Ry, S,

=1
=25, Ay Ry Ry, Sy — 24, R, Syxh) (2.4)

where

e )_(h B (X) and 1, = — Zh B (2)
X, By (x)+ C, Z, B (2)+C,
)?Usz

Similarly, the bias and mean squared error of the suggested estimator Y,," up to the first

degree of approximation are obtained as
s L j—
B (Yngz): Z W, Y7, (ﬂ“ih C)fh = Agn Han P Con Coy — Ay, Py Cyh Ca
h=1

+ My Py Cy Czh) (2.5)

N L
MSE (YRI}]’iz): Zth Y (S)Z;h + fay ST Ry + A4 S5y Ry + 214, S, Ry,

zh yzh
h=1

=2 gy Ay S Ry Ry =244, S th) (2.6)

xzh

)_(h th Zh Czh
== and ==
X, C,+ By (x) Z,C,+ B, (2)

where A,

79



Bhumi Publishing, India

3. Efficiency comparisons
Variance of the unbiased estimator y, is
(3.1)

~

V()_’st) = Z th 7hS}2rh
h=1

From (3.1), (1.11), (1.12), (1.13), (1.14) and (2.4), it is observed that the suggested

estimator Y,}5' would be more efficient than

1y, if
hz:th v (122, SL RS, + 22 S RY + 2415, Ry S, =2 113 Ay Ry Ry Sy
~22y Ry, S,.) <0 (3.2)
(i) ¢ if
g W2y, (12, S3RE, + 22, 82 RY + 2y, Ry S, =2 415y Ay Ry Ry Sy
~22,, R, SM)-Z w2y, (S3 R, 2R, S,,)< 0 (3.3)
(iii) ¢, if
gW,f v (12, SLRE, + 22, S R + 241y, Ry S, =2 g1 Ay Ry Ry Sy
~21, R, SM)-Z W2y, (S% R, +2R,, S,,)< 0 (3.4)
(iv) ¢, if
;W,f o2, SLRE, + 2y Ry, S, =24y Ay Ry Ry, S,y < 0 (3.5)
V) 1 if
.
; W72y, (13, SR, + 24ty Ry S, =2ty Ay Ruy Roy S
(3.6)

~42,, R, S,,) <0
From (3.1), (1.10), (1.11),(1.15),(1.16) and (2.6) it is observed that the suggested

estimator Y,/5* would be more efficient than

Z th Vi (ﬂfh Szzh Rzzh + /ﬁh Sih Rlzh + 243, Ry, Syzh =24y, Ay Ry Ry, S,

h=1
~224, Ry S,,) <0 (3.7)

B~
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(1) ¢ if
L

z th 7 h (:u:h Szzh Rzzh + /ﬁh S,fh Rlzh + 21, Ry, Syzh =24y, Ay Ry Ry, S,

h=1

L

=244 Ry, Syxh )'Z th Vi (th Rlzh —-2R, Syxh)< 0 (3.3)

h=1
(iii) ¢, if
L

Z th Vi (/th Szzh Rzzh + /thh th Rlzh + 24, Ry, Syzh =244, Ay Ry Ry, S,

=l
L
_2/14}1 th Syxh )'Z th Vi (th Rlzh +2R1h Syxh)< 0 (3~9)
=l
(v) ¢, 1f
L
Z th Vh (/Ujh Szzh Rzzh + 24, Ry, Syzh =2, Ay Ry Ry, Sy <0 (3.10)
=1
v) t, if
z 2 2 o2 p2
Z Wi 7 (ﬂ4h SHRy+ 21y, Ry, Syzh =2y, Ay Ry Ry, Sy
=l
~42,, R, S,,)<0 (3.11)

Expression (3.2) to (3.11) provides the condition under which the suggested ratio - cum-

product estimators Y,’s' and Y’ have less mean squared error in comparison to other

considered estimators.

4. Empirical study

To see the performance of the suggested estimators in comparison to other estimators

considered in this paper we are considered three natural population data sets. Descriptions of the

populations are given below.
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Population-I [Lone, H.A (2015) |

n,=4 n,=4 N,=10 N,=10
71=43.495 72 =43.495 X,=149.775 X,=149.775
Y1=2.685 Y2=2.685 S:=1.4156 S2 =117.0401
S} =12.4609 S; =12457.51 S} =0.254 S =1.9961

C. =0.188258 C.,=0.134108 C, =0.339097 C,, =0.386018
C, =0.296461 C,,=0.384968 S, =1.608 S, =144.8752
S, =—-0.056 S,., =—7.0459 S, =1.3838 S,., =-92.0238

B, (x) =1.976816

B, (x)=2.900364

B, (2)=120468

By, (2)=3.664316

S, =3.53 S, =111.6132 S, =1.18979 S, =10.81851
S, =0.503984 S, =1.412834 W,=0.5 w,=0.5
Population —II [Lone, H. A (2015)]
n,=3 n,=3 N,=5 N,=5
Z1=56.2 Z2=56.2 X,=274.4 X,=271
Y1=2520.7 Y2=2520.7 S2=0.56 2 =23.44
S} =5605.84 S; =4401.76 S} =379360.2 S; =115860.2
C. =0.014447 C.,=0.079893 C, =0.349217 C,, =0.198759
C, =0.319827 C,,=0.109251 S, =39360.68 S, =22356.52
S, =41116 S,. =153624 S.. =38.08 S, =287.92

By, (x)=1.885054

B, (x)=2.321147

By, (2)=1.846939

By, (2)=1.499033

S, =74.87216

S, =66.34576

S, =0.748331

S, =4.841487

S, =615.9222

S, =340.3825

W,=0.5

w,=0.5
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n,=4 n,=4 N,=10 N,=10
Z1=1832.975 7,=1832.975 X,=116.9 X,=116.9
Y1=126.15 Y2=126.15 S2=10439.63 S2 =10663.53
S;=37.16 S; =432 S; =181.41 S; =158.84

C, =0.062684 C,,=0.05072 C, =0.042688 C,, =0.072227
C, =0.089972 C, =0.122838 S, =18.44 S,, =233

S. =-239252 | S, =-240.45 S, =—10728 | S, =-655.256

B, (x)=1.577361

B, (x)=2.828575

B, (2)=2.972256

By (2)=2.378116

S, =6.0959

S, =6.572671

S, =102.1745

S, =103.2644

S, =13.46885

S, =12.60317

W,=0.5

w,=0.5

92 10

ty, ty> Yo, and Y57 with respect to

Estimators Population -1 Population -1I Population —I1I
Vs 100 100 100
4 223.75 239.89 98.98
t 19.54 19.99 64.94
4 223.85 240.20 98.99
Iy 19.56 20.00 64.03
Iy 255.02 261.62 104.51
to 20.68 20.65 73.74
iﬁl 288.39 308.94 122.80
1715{%2 256.49 329.55 141.13
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Conclusion:

Table 1 shows that the suggested estimators ¥,5', and Y’ have higher percent relative

efficiencies as compared toy,,t, , t, ,t,,t, t, and ¢,. Section 3 deals with the theoretical

efficiency comparisons of the considered estimators. This section provides the conditions under
which suggested estimators have less mean squared error in comparison to unbiased estimator

¥, , conventional separate ratio and product estimators ¢, (i =1, 2) and Tailor and Lone (2014)
separate ratio and product type estimators ¢, (i =7, 8, 9, 10). It has been observed from the table

I that the suggested estimators have highest percent relative efficiencies in comparisons to other
considered estimators. Thus suggested estimators are recommended for use in practice for

estimating the finite population mean when conditions obtained in section 3 are satisfied.
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Abstract:

Mathematics is an important subject in both science and everyday life. Math is a useful
tool for understanding the world and for developing mental discipline. Logical thinking, critical
thinking, creative thinking, abstract or spatial thinking, problem-solving skills, and even
successful communication skills are all encouraged by Mathematics. Mathematical Inventions:
Prehistoric Mathematics to Mathematics in Today describes Prehistoric Mathematics and
Ancient Indian Mathematics. Also, describes the Mathematics in 17" Century, Mathematics in
18" Century, Mathematics in 19" Century, Mathematics in 20" Century and Mathematics in
Today. The main aim of the Chapter is to motivate the researchers and students for thinking
about the inventions in Mathematics & to develop simplified techniques on top of the existing
techniques.

Keywords: Mathematical Inventions, Egyptian, Babylonian, Ancient, Today’s Mathematics,

Laws, Theorem.

Introduction:

Education can be seen of as a product or a process, and it can be viewed in both a broad
and technical meaning. In its broadest definition, education refers to any act or event that has a
formative effect on an individual's mind, character, or physical aptitude, according to George F.
Kneller, a philosopher of education. In a technical sense, education is the process by which
society transfers its cultural heritage its collected knowledge, values, and skills—from one
generation to another through schools, colleges, universities, and other institutions. [!!

Mathematics is an abstract study of subjects such as quantity, structure, space, and
change. Mathematicians solve the truth of guessing through mathematical proofs. If
mathematical structure is a good model of a real phenomenon, mathematical reasoning can

provide insights or predictions about nature. The history of mathematics deals with mathematical
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discoveries, the emergence of mathematical methods and past notations. Before the global spread
of modernity and knowledge. [

The field of study known as the history of mathematics is primarily a study of the
origin of new discoveries in mathematics and to a lesser extent a study of standard
mathematical methods and notation of the past. Before modern times and with the
worldwide spread of knowledge, written examples of new mathematical developments have
only come to light in a few places.

1. Prehistoric Mathematics

The oldest mathematical texts available are Plimpton 322 (Babylonian mathematics
ca. 1900 BC), the Moscow Mathematical Papyrus (Egyptian mathematics ca. 1850 BC), the
Rhind Mathematical Papyrus (Egyptian mathematics ca. 1650 BC) and the Shulba Sutras
(Indian mathematics). All of these texts concern the so-called Pythagorean theorem, which
appears to be the oldest and most widespread mathematical development after arithmetic
and geometry. Egyptian and Babylonian mathematics were then developed further into
Greek and Hellenistic mathematics, which is generally regarded as one of the most
important in greatly expanding both the method and the scope of mathematics. The
mathematics developed in these ancient civilizations was then further developed and greatly
expanded in Islamic mathematics. Many Greek and Arabic texts on mathematics were then
translated into Latin in medieval Europe and developed further there. ! A striking feature of
the history of ancient and medieval mathematics is that bursts of mathematical development
were often followed by centuries of stagnation. Beginning in Renaissance Italy in the 16th
century, new mathematical developments combined with new scientific discoveries were made at
an ever-increasing pace, and this continues to this day. [+
2. Ancient Indian Mathematics

Vedic mathematics began in the early Iron Age with the Shatapatha Brahmana), which
approximates the value of to 2 decimal places, and the Sulba Sutras (c. 800-500 B.C. ) were
geometry texts that used irrational numbers, prime numbers, the rule of three, and cube roots;
calculates the square root from 2 to 5 decimal places; gave the method of squaring the circle;
solved linear and quadratic equations; developed Pythagorean triples algebraically and gave a
statement and a numerical proof of the Pythagorean theorem."! Panini (ca. 5th century BC)
formulated the rules of grammar for Sanskrit. Between 400 B.C. 200 BC and 200 AD Jain
mathematicians began to study mathematics for the sole purpose of mathematics. They were the
first to develop transfinite numbers, set theory, logarithms, fundamental laws of indices, cubic

equations, quadratic equations, sequences and progressions, permutations and combinations,
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squaring and taking square roots, and finite and infinite powers.[®) The Bakhshali manuscript,
written between 400 BC and 200 AD, contained solutions of linear equations with up to five
unknowns, the solution of the quadratic equation, arithmetic and geometric progressions,
composite series, quadratic indefinite equations, simultaneous equations, and the use of zero and
negative numbers. Accurate calculations for irrational numbers could be found, including
calculating square roots of numbers up to a million to at least 11 decimal places. [”!

3. Mathematics in 17" Century

The 17" century saw an unprecedented explosion of mathematical and scientific ideas
across Europe. Galileo, an Italian, observed the moons of Jupiter orbiting this planet with a
telescope based on a toy imported from Holland. Tycho Brahe, a Dane, had collected an
enormous amount of mathematical data describing the positions of the planets in the sky. His
student Johannes Kepler, a German, began working with this data. Partly because he wanted to
help Kepler with his calculations, John Napier in Scotland was the first to study natural
logarithms. Kepler succeeded in formulating mathematical laws of planetary motion. Analytical
geometry developed by Ren Descartes (1596-1650), a French mathematician and philosopher,
made it possible to represent these orbits in Cartesian coordinates on a graph. Building on the
earlier work of many mathematicians, Isaac Newton, an Englishman, discovered the laws of
physics, explained Kepler's laws, and brought together the concepts now known as calculus.
Independently of this, Gottfried Wilhelm Leibniz developed calculus and a large part of the
calculus notation still used today in Germany. Science and mathematics had become an
international endeavor that would soon spread across the world. (%]

In addition to the application of mathematics to the study of the heavens, applied
mathematics began to expand into new realms with the correspondence of Pierre de Fermat and
Blaise Pascal. In their discussions of a game of chance, Pascal and Fermat laid the foundations
for the study of probability theory and the corresponding rules of combinatorics. With his wager,
Pascal attempted to use newly developed probability theory to argue for a life devoted to
religion, on the grounds that even when the probability of success was small, the rewards were
infinite. In a way, this heralded the development of utility theory in the 18th-19th centuries. [1% ]
4. Mathematics in 18" Century

The most influential mathematician of the 18" century was probably Leonhard Euler. His
contributions range from justifying the study of graph theory with the problem of the seven
bridges of Konigsberg to the standardization of many modern mathematical terms and notations.
For example, he named the square root of minus 1 the symbol i, and he popularized the use of

the Greek letter, which represents the ratio of a circle's circumference to its diameter. He made
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numerous contributions to the study of topology, graph theory, analysis, combinatorics and
complex analysis, as evidenced by the large number of theorems and notations named after him.
[12]

Other important European mathematicians of the 18" century were Joseph Louis Lagrange,
who pioneered number theory, algebra, differential calculus, and the calculus of variations, and
Laplace, who, in the Napoleonic era, did important work on the foundations of celestial
mechanics and statistics. ['* 14
5. Mathematics in 19" Century

During the 19" century, mathematics became more and more abstract. Carl Friedrich
Gauss (1777-1855) lived in the 19th century. In addition to his many contributions to science, in
pure mathematics he did revolutionary work on functions of complex variables, in geometry, and
on the convergence of series. He provided the first satisfactory proofs of the fundamental algebra
theorem and the quadratic law of reciprocity. [°]

This century saw the development of the two forms of non-Euclidean geometry, where
the parallel postulate of Euclidean geometry no longer holds. Russian mathematician Nikolai
Ivanovich Lobachevsky and his rival, Hungarian mathematician Janos Bolyai independently
defined and studied hyperbolic geometry, where uniqueness of parallels no longer holds. With
this geometry, the sum of the angles in a triangle is less than 180. [¢]

Elliptic geometry was later developed by the German mathematician Bernhard Riemann
in the 19th century; no parallel can be found here and the angles in a triangle add up to more than
180. Riemann also developed Riemannian geometry, which unifies and largely generalizes the
three types of geometry, and he defined the concept of a manifold containing the ideas of curves
and surfaces generalized. The 19th century saw the beginning of a great deal of abstract algebra.
William Rowan Hamilton in Ireland developed non-commutative algebra. The British
mathematician George Boole developed an algebra that soon evolved into what is known as
Boolean algebra, in which the only numbers were 0 and 1 and in which, as is well known, 1 + 1
= 1. Boolean algebra is the starting point of mathematical logic and has important applications in
computer science. Augustin-Louis Cauchy, Bernhard Riemann and Karl Weierstrass
reformulated the calculus more strictly. 17 1¥]

In addition, the limits of mathematics were explored for the first time. Niels Henrik Abel,
a Norwegian, and variste Galois, a Frenchman, proved that there is no general algebraic method
to solve polynomial equations of degree greater than four. Other 19th-century mathematicians
used this in their proofs that ruler and compass alone are not sufficient to trisect any angle, to

construct the side of a cube twice the volume of a given cube, nor to construct a square, which
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has the same area as a given circle. Since the time of the ancient Greeks, mathematicians had
tried in vain to solve all these problems. ['”]

Abel and Galoiss' investigations into the solution of various polynomial equations laid
the foundation for the further development of group theory and the associated areas of abstract
algebra. In the 20th century, physicists and other scientists saw group theory as the ideal way to
study symmetry. In the late 19th century, Georg Cantor laid the first foundations of set theory,
which allowed for a rigorous treatment of the notion of infinity and became the common
language of almost all mathematics. Cantor's set theory and the rise of mathematical logic in the
hands of Peano, L.E.J. Brouwer, David Hilbert, Bertrand Russell, and A.N. Whitehead, initiated
a long-running debate about the foundations of mathematics. [’

Several national mathematical societies were founded in the 19™ century, the London
Mathematical Society in 1865, the Socit Mathmatique de France in 1872, the Circolo
Mathematico di Palermo in 1884, the Edinburgh Mathematical Society in 1883, and the
American Mathematical Society in 1888. [2!]

6. Mathematics in 20" Century

In the 20" century, mathematics became a main occupation. Thousands of new Ph.D.
degrees in mathematics are awarded each year, and positions are available both in the classroom
and in industry. In earlier centuries, there were few creative mathematicians in the world at any
one time. Most mathematicians were either born to wealth, like Napier, or supported by wealthy
patrons, like Gauss. A few, like Fourier, made a meager living teaching at universities. Unable to
get a job, Niels Henrik Abel died in poverty at the age of 26 from malnutrition and tuberculosis.
[22, 23]

In a 1900 speech to the International Congress of Mathematicians, David Hilbert
presented a list of 23 unsolved problems in mathematics. These problems, which span many
areas of mathematics, formed a central focus for much of 20th-century mathematics. Today 10
are solved, 7 partially solved and 2 still open. The remaining 4 are too loosely worded to be
called solved or not. Famous historical conjectures have finally been proven. In 1976, Wolfgang
Haken and Kenneth Appel used a computer to prove the four-color theorem. Building on the
work of others, Andrew Wiles proved Fermat's Last Theorem in 1995. Paul Cohen and Kurt
Gdel proved that the continuum hypothesis is independent (neither proved nor disproved) of the
standard axioms of set theory. %]

Mathematical collaborations of never-before-seen extent and scope occurred. The
classification of finite simple group("enormous theorem"), whose proof took 500-plus journal

articles by around 100 authors and tens of thousands of pages between 1955 and1983. Under the
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pseudonym "Nicolas Bourbaki" a group of French mathematicians, notably Jean Dieudonne and
Andre Weil, aimed to present all known mathematics as a coherent, rigorous whole. The dozens
of volumes that resulted have had a contentious impact on mathematics education. [%°]

In 1929 and 1930, it was demonstrated that the truth or falsity of all statements made
about natural numbers plus one of addition and multiplication could be determined by algorithm.
Kurt Godel discovered in 1931 that this was not the case for natural numbers including both
addition and multiplication. Peano arithmetic suffices for much number theory, including the
concept of prime numbers. Because of Godel's two incompleteness theorems, truth always
outruns evidence in every Mathematical system containing Peano arithmetic (including all of
analysis and geometry). As a result, mathematics cannot be reduced to its simplest form. 2!

Self-educated Srinivasa Aiyangar Ramanujan (1887-1920) proved over 3000 theorems,
including properties of highly composite numbers, the partition function and related asymptotics,
and mock theta functions. Gamma functions, modular forms, divergent series, hyper geometric
series, and prime number theory were among the topics he researched. [*”]

7. Mathematics in Today

The most notable modification within the field of arithmetic within the late twentieth and
early twenty first centuries has been the growing recognition and acceptance of probabilistic
strategies in several branches of the topic, going well on the far side their ancient uses in
mathematical physics. In 2000, the clay Mathematics institute declared the seven millennium
prize issues, and in 2003. 2!IThe Poincare conjecture was resolved by Grigori. Ben Green and
Afer Tao in 2004 proved that the set of prime numbers includes long arithmetic progression. In
2006 Tao being awarded as a Fields honor. [**]

In our lives and in the progress of our mathematics, the computer also plays a completely
positive function. The computer is revolutionizing mathematics by bringing certain issues to the
forefront; it is even inspiring mathematicians to develop new fields of study such as
computational complexity theory, automata theory, and mathematical cryptology.
Simultaneously, it relieves us of some of the most boring components of traditional mathematical
activity, which it performs faster and more correctly than we can. It allows us to perform
numerical work quickly and comfortably, allowing us to combine our analysis of a problem with
the actual calculation of numerical examples. On the other hand, the computer makes several
mathematical procedures that were popular in the past outdated. As demonstrated by the
discoveries of the last half of the 20th century, mathematics can enrich not only physics and
other scientific disciplines, but also medicine and biomedical sciences and engineering. It can

also play a role in matters as practical as speeding up the flow of Internet traffic or sharpening
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the transmission of digitized images, better understanding and potentially predicting stock
market patterns, and even enriching the entertainment world with contributions to digital
technology. Through mathematical modeling, numerical experiments, analytical studies, and
other mathematical techniques, mathematics can make enormous contributions in many areas.
Mathematics has to do with human genes, the world of finance and geometric movements. For
example, science now has a vast amount of genetic information, and researchers need
mathematical methods and algorithms to sift through the data, as well as clustering methods and
computer models to interpret the data. Finance is very mathematical; it has to do with
derivatives, risk management, portfolio management and stock options. All of this is modeled
mathematically, and consequently mathematicians have a real impact on how these companies
perform. Motion driven by the geometry of interfaces is ubiquitous in many areas of science,

from growing crystals for semiconductor fabrication to tracking tumors in biomedical images.

Conclusion:

It is concluded that, there are numerous compelling reasons to study mathematical
inventions. It allows students to have a better understanding of the mathematics they have
already learned by demonstrating how it has evolved over time and in different locations. It
promotes creative and flexible thinking by letting pupils to see historical evidence that several
and entirely valid methods of viewing things and performing computations exist. Seeing the
existing mathematical concepts, they will have generated a thought process to invent newer
theorems and algorithms for further research in Mathematics. They would also be inspired to

create simpler techniques on top of the existing ones.
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There are several different tests that we can use to analyze data and test hypothesis. This
type of test that we choose depends on the data available and what question we are trying to
answer. We analyze simple descriptive statistics such as the mean, median, mode and standard
deviation to give us an idea of the distribution and to remove outliers, if necessary. We calculate
probabilities to determine the likelihood of something happening. Finally we use regression
analysis to examine the relationship between two or more continuous variables. In this chapter
we are studying the chi square test and students‘t’ test.

A) Chi Square Test:

The primary distribution between a chi square test and the tests we have worked with
before is that chi square test are for used for categorical data. The chi square test can be used to
estimate how closely the distribution of a categorical variable matches an expected distribution
(the goodness fit test), or to estimate whether two categorical variables are independent of one
another (the test of independence). The chi square test of independence is a natural extension of
what we did earlier with contingency tables to examine whether or not two variables appeared to
be independent of each other. In this chapter we will examine the goodness of fit test in more
data.

The Greek letter ‘chi’ written as ¥, is the symbol used to identify a chi square statistics
which we will use here to evaluate how well a set of observed categorical data fits a
hypothesized distribution. The chi square statistics is actually pretty straight forward to calculate.

X* = Y(Observed — Expected)®

Expected
Observed = actual count values in each category
Expected = the predicted (expected) counts in each category if the null hypothesis were
true.
Chi square is applied in biostatistics to test the goodness of fit to verify the distribution of

observed data with assumed theoretical distribution. Therefore it is measure to study the
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difference of actual and expected frequencies. It has great use in biostatistics especially in
sampling studies.

In Sampling studies we never expect that there will be perfect coincidence between
expected and observed frequencies. Since chi square the difference between actual and expected
frequencies, X* is zero. Thus the chi square test describes the discrepancy between theory and
observation.

Characteristics of X? Test:

1. The test is based on events or frequencies and based on mean or standard deviation etc.

2. The test can be used between the entire set of observed and expected frequencies.

3. To draw inferences this test is applied especially testing the hypothesis.

4. It 1s general test and highly useful in research.

Assumption:

1. The observation must be large.

2. All the observation must be independent.

3. All the event must be mutually exclusive.

4. For comparison purposes the data must be in original units.

Degree of Freedom:

When we compare value of X> with the table value the degree of freedom is evident. The
degree of freedom means the number of classes to which values can be assigned. If we have n
number of observed frequencies, the corresponding X distribution will have (n-1) degree of
freedom. For example in the case of tossing of coins there are also two possibilities or classes
namely head and tail. Here df=n — 1 i.e. n = head and tail. Therefore df = 2- 1 =I. In such away
that, according to classes we fix dfnamely n— 1.

How to calculate chi square value:

1. A hypothesis is established i.e. null hypothesis.

2. Calculate the difference between observed and expected value (O -E ).

3. Square the difference (O — E)?.

4. Divide the difference by its expected frequency (O - E)?/E.

5. Add the obtained values in formula ¥ (O — E)?/E. 6. Find the ¥* from table at certain

level of significance usually 5 % or 1 % level.

Inference:
If the calculated value of X? is greater than the table value of ¥* at certain degree of level

of significance we reject the hypothesis. If the calculated value of X? is zero. The observed value
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and expected values completely coincide. If the calculated value of ¥? is less than the table value

the certain degree of level of significance, it is said to be non significant. It implies that the

difference between the observed and expected frequencies may be due to fluctuations in

sampling.

On the basis of chi square test some examples are solved as below.

Example 1: A cross involving different genes gave rise to F»> generation of tall and dwarf in the

ratio of 110:90. Test by means of chi square whether this value is deviated from the Mendel’s

monohybrid ratio 3:1.

Solution: Steps:

1. Null hypothesis:

1.

There is no difference between 110:90 and Mendel’s monohybrid ratio 3:1.

2. Level of significance is 5%.

3. Determining the expected values (E).

4. Mendel’s monohybrid ratio Tall : Dwarf = 3:1.
5.
6
7
8

Observed total number =110 + 90 = 200.

. Expected values = Tall : Dwarf = 3:1 i.e. 150:50 =200.
. Fixing of degree freedom df=n— 1 = 2-1=1.
. Result: Calculated ¥? value is 42.6.

For 1 df, at 5% level of significance the table value = 3.84

9.

Inference: The calculate X* value is 42.6 is greater than the table value 3.84. Therefore

the hypothesis is rejected. In other words the value 110:90 is deviated from Mendel’s

monohybrid ratio.

Calculation:

X’= (0 E}/E

Where O = observed value and E = Expected value

Variables 0] E O-E (O-E)? (O-E)¥E
Tall 110 150 -40 1600 10.6
Dwarf 90 50 40 1600 32.0
42.6

X>= Y (O-E)?*/E =42.6
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Example 2: When two heterozygous pea plants are crossed, 1600 plants are produced in F»
generation out of which 940 are yellow round, 260 are wrinkled, 340 are green round and 60 are
green wrinkled. By means of chi square test whether these values are derived from Mendel’s
dihybrid ratio 9:3:3:1.
Solution: Steps:
1. Null hypothesis:
1. There is no difference between 110:90 and Mendel’s monohybrid ratio 9:3:3:1.
2. Level of significance is 5%.
3. Determining the expected values (E) related to the dihybrid ratio 9:3:3:1.
Yellow Round =9 Total 1600 . E=9/16 x 1600 =900
Yellwo Wrinkled =3 Total 1600 .. E=3/16 x 1600 = 300
Green Round = 3 Total 1600 .. E=3/16 x 1600 =300
Green Wrinkled = 1 Total 1600 .. E=1/16 x 1600 =100
4. Observed Values: Yellow Round : Yellow Wrinkled : Green Round : Green Wrinkled
=940:260:340:60
5. Fixing of degree freedom df = n-1=4-1=3
Calculation:
X’= Y (0-E)/E

Where O = observed value and E = Expected value

Variables 0] E O-E (O-E)? (O-E)¥E
Yellow Round 940 900 40 1600 1.77
Yellow Wrinkled 260 300 -40 1600 5.33
Green Round 340 300 40 1600 5.33
Green Wrinkled 60 100 -40 1600 16
>27.43

X>= Y (O-E)*/E =27.43
6. Result: Calculated 2 value is 2743
For df, at 5 % level of significance the table value = 7.81
7. Inference: The calculated X?value is 27.43 is greater than the table value 7.81.
Therefore the hypothesis is rejected. In other words there is no real independent

assortment i.e the observed values are deviated from Mendel’s dihybrid ratio.
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Significance:

It is used to test the goodness of fit. The test enables to find out whether the difference
between the expected and observed values is significant or not. If the difference is little then the
fit is good otherwise fit is poor.

Introduction:

There are several statistical tests that use the t-test distribution and can be called a t-test.
One is student’s t-test for one sample, named after student the pseudonym that William Gosset
used to hide his employment by the Guinness brewery in the early 1950s (they had a rule that
their employees weren’t allowed to publish, and Guinness didn’t want other employees to know
that they were making an exception for Gosset). Students t-test for one sample compares a
sample to a theoretical mean. It has so few uses in biology. When you have one measurement
variable, and you want to campare the mean value of the measurement variable to some
theoretical expectation then you use students t-test. If the sample size is less than 30 i.e. n<30
then those sample may be regarded as small samples. Principles of statistical inference are the
same as in large sample but the techniques differ in the case of small samples. Here student t-test
can be used. It is commonly used in fields such as physics and product testing in drug science. It
is rare to have this kind of theoretical expectation in biology so you will probably never use the
one sample t-test.

A t-test is most commonly applied when the test statistic would follow a normal
distribution. If the value of a scaling term in the test statistic were known. When the scaling term
is unknown and is replaced by an estimate based on the data, the test statistics (under certain
condition) follow a students t distribution. The t-test can be used for example to determine if two
sets of data are significantly different from each other.

t-test are normally used to campare the means of two samples of numeric data to
determine whether they are significantly different from one another, although there is such a
thing as a one sample t-test, which has a related but slightly different purpose. The data can be
either be continuously distributed or discrete as long as they have a normal distribution.

Continuously distributed numeric variables are one that in principle, can take an infinite
number of values if measured precisely enough-for example: body mass, height, nitrogen
concentration in a water sample, or cholesterol level in the blood stream.

Descrete numeric variables are ones that can take only a certain set of values-for
example: the number of leaves on a tree, the number of bacterial colonies on a petridish. Both
these variables can take only integer values, although the number of possible values is very large.

To learn how to determine whether data have a normal distribution. If data are not

normally distributed, alternative tests are available.
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If there are three or more samples of data, rather than just one or two then one factor
analysis of variance may be used.

For testing hypothesis about means when your data have a normal distribution there are
three types of t-test.

A one sample t-test is used to compare the mean of a single sample with a value that is
expected bases on some prior knowledge. For example the long term average high temperature in
the Twin Cities on 1 April is 50° F. If we had data on the high temperature for each 1 April from
1998-2017 (n=20), and if these data had a normal distribution we could perform a one sample t-
test to determine whether the average high for the past 20 years was significantly different from
the long term average 50° F.

A two sample t-test is used to compare two sample means to determine if they are
significantly different from each other. For example if we had data on the Twin Cities 1 April
high temperature for the years 1978-1997 and 1998-1017, we could use a two sample t-test to
determine whether the average high for the most recent 20 year period was significantly different
from the average high for the previous 20 year period.

A period t-test us used to compare two sample means if each value within one of the
samples can be sensibly paired with an equivalent value in the other sample. For example if we
had data on the 1 April high temperature in Duluth for 1998-2017, we could do a paired t-test to
determine whether the average Duluth temperature during this period was significantly different
from the average Twin Cities temperature during the same period. In this example, the two high
temperature for 1998 (Duluth and Twin Cities) can be sensibly paired with one another as can
every other pair of temperature taken on 1 April of the same year. Contrast this with the two
sample test above where there is no sensible justification for pairing 1978 in the first sample with
1998 (or any other year) in the second sample.

The null hypothesis for the independent samples t-test is pi-p2. In other words, it assumes
the means are equal. With the paired t-test the null hypothesis is that the pair wise difference
between the two test is equal (Ho: pg-0). The difference between the two tests is very subtle

which one you choose is based on data collection method.
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Abstract:

The research can be taken up this experimental research with a view to assess an
effectiveness of teaching-learning process in the concept of limits of functions in mathematics
through the graphical approach in raising the overall the knowledge, skill, and attitude towards
the mathematics. The graphical approach in understanding the mathematical concept of limits of
functions through the Inquiry Oriented Approach (IOA)® model can have found effective in

enhancing the level of understanding of this concept.

1. Introduction:

Together with philosophy, Mathematics is the oldest academic discipline known to
human being®. Currently, mathematics is a huge complex enterprise, far beyond the keen of
anyone individual. Those of us who choose to study the subject can only choose a micro of it,
and in the end must specialize rather drastically in order to make any contribution to the
evolution of ideas involved.

This research article in this chapter provides an outline of the current research in
students’ understanding of topics in limits of functions. The intent of work is to provide an
overview of specific difficulties based on education research in the subject communication in
Mathematics in the context of limits of functions.

1.1. Limits of functions

The limits of the functions, in brief limits concept is an important part of the foundations
of mathematical analysis and not understanding it clearly might lead to problems when dealing
with concepts such as infinity, infinitesimals, convergence, continuity and derivatives which are
the main aspects of Calculus. If the student grasps the concept of limits, the above connected
concepts become easier to work with, but it is difficult for the students to make sense of this
concept. In India, limits of functions are the main topic treated almost in all branches viz.

graduate and undergraduate as well as Engineering, Science, Commerce, and Chartered
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Accountants etc. Here attempts have been made the approach of students for understanding
mathematics through geometrical one rather the conventional one for the limits.

In fact, even many great mathematics researchers have found it hard to accurately handle
limits through time, this is one more.

1.2 Importance and learning of mathematics

Learning Mathematics is the endeavor requiring a number of abilities, which may vary
from different mathematical topics. How students learn mathematics, may also vary.
Mathematics has several characteristic properties viz. the use of models describing the real
world, the compact and unambiguous formulations for clear expositions, and the deductive
reasoning in proving problem solving. Each property offers its own set of challenges for
mathematics students as well as teachers, for example, from a model to the real world, from
everybody language to a mathematical expression or from one step to another in mathematical
proof.

As mathematics is the queen of science, calculus is the soul of mathematics and limits is
at the heart of the calculus. Hence, proper learning of mathematics is the most important part of
mathematics in teaching-learning process of mathematics. One aspect focused on this research
article is transition, e.g. in inquisition and replication.

1.3 History of mathematics in context of limits of functions

Mathematical history is exciting, and it is a significant slice of the intellectual pie. A
good education consists of learning difficulties of the students at different methods of
conversation, and certainly, mathematics is one of the most well developed and important
models of conversation that the world has observed so far.

For many centuries, the idea of a limit was confused with vague and something philosophical
ideas of infinity i.e. infinitely large, infinitely small numbers and other mathematical entities.
The idea of limit was also confused with subjective and undefined geometric intuitions. Here in
this research article, the researcher’s aim is to highlight the contribution of geometrical approach
in understanding the concept of limits.
The history of limits of functions shows that it was not obvious how a definition of limits should
be stated or even if limits were useful. One of the research in which the idea of limit was
introduced to resolve three types of difficulties':

e Geometric problems, e.g. the calculations of area, ‘exhaustion’ and consideration of the

nature of geometric lengths;

e The problem of the sum and rate of convergence of a series;
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e The problems of differentiation that come from the relationship between two quantities that
simultaneously tends to zero.

This research work focuses on calculus teacher’s knowledge of student thinking about
limit and, using historical development as a lens that explores the nature of the difficulties
associated with the concept of limit. More specifically, the research study addresses the
following questions:

(a) What do the teachers of calculus know of their student’s thinking of limit? and
(b) How can the historical development of the limit help us make sense of college teacher’s

knowledge of student thinking about limit?

2. Purpose and significance of the study:
The researcher became aware of student’s problems with the idea of the concept of limits
in a huge branch of Calculus in vigorous subject Mathematics. The concept of limit is included

in the curriculum of XII™

Science and undergraduate courses of Science stream at University
level of an Indian education system. This covers the definition of a limit, formal as well as
epsilon-delta form, a limit as x approaches to infinity and the obvious relation between limits and
continuity in addition to these properties of the limits, continuity, problems on continuity. To
finish the same, the little time, about four clock hours is given for its teaching-learning in
University curriculum.

Research in common parlance refers to search for knowledge. One can also define as a
scientific and systematic search for pertinent information on a specific topic. Indeed, research is
an art of scientific investigation. The advance learner’s dictionary of current English lays down
meaning of research as a careful investigation or inquiry especially through search for new facts
in any branch of knowledge. “All progress is born of inquiry. Doubt is often better than
confidence, which leads to inquiry, and inquiry leads to invention and invention finally can leads
to replication.” The said quotation is an extension of famous Hudson Maxim in context of
significance of research.

There are three ways to study Mathematics through the following three approaches:

1) Analytical Approach,
2) Geometrical Approach,
3) Practical Approach.

Here the researcher used to apply second approach of geometrical to better understand

the concept of limits instead of the traditional way. Geometrical approach is nothing but the

graphical way of understanding the concept in mathematics. As far as the concept of limit is
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concerned, it is defined on the functions and functions can be drawn by using graphs at all times
and once able to draw the graphs, apply the concept of understanding of limit via graphical
approach, then you are through. Many attempts have been made to break through this dilemma
but without much success.

Hence, there is an urgent need to develop some Inquiry Oriented Approach (IOA) in
Learning Difficulties of Mathematics in general and especially for limit theory. Here the
researcher focuses on the theory of limits and hopes that this IOA can be applied to the rest fields

of Mathematics.

3. Scope of the study:
The following limitations of the research study have been observed.
1. The study can be limited to your own class of mathematics background students.

2. The authenticity of the data used depends entirely on the accuracy of such data.

[98)

. During course of personal interviews, the prejudices or bias on part of interviews may have
influence on the response received.

The study comprises both genders in equal numbers to overcome the gender differences.
Time is the biggest constraint.

Sample is randomly selected.

Questionnaire tool is used for data collection.

© N bk

Replication Principle is used for selected students.

4. Objectives of the study:

As the main body of mathematical analysis, Calculus is mankind’s a greatest discovery in
the 20th century, and a statue of human’s wisdom. Limit theory is the basic theory of calculus,
and limit concept is the core concept of limit theory, henceforth it is very important for students
to learn limit concept well. However, to teach limit concept well is a worldwide difficult job as
far as teaching learning concerned, and this situation urgently need to be changed by times and
calculus teaching reform.

On the other hand, inquiry teaching has made remarkable achievements on elementary
mathematics teaching reform, but there is not even a single progress on advanced mathematics
teaching reform. Absolutely, the way in elementary mathematics teaching reform is not quit fit
advanced mathematics teaching reform. Therefore, combining with improving students’ learning
style and learning enthusiasm, limit concept inquiry teaching is a very important significant

research subject. Here research objective itself makes a question originated in hypothesis-born
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from individual’s experience right from the student till to a mathematics teacher and discussions
with colleagues-which “inquiry” practices in the form of definitions, properties, examples,
problems, curiosity, confidence, intelligence, skill etc. strongly influence what students learn
about limits at college level.

In order to progress this experimental research among junior college and undergraduate
students in a class of students, it had proposed in mind the following objectives.

e To diagnose learning difficulties along with misconceptions in the concept and applications
in Limit Theory (Limits of Functions).

e To raise the level of students’ living, impact of literacy of their parents and curiosity and
confidence in their own in about this concept during the teaching-learning process.

e To analyze gender differences and/or differences in living status and/or impact of literacy
of the parents of students’ in their study and/or overall curiosity, confidence of the students
for the topic considered and hence in mathematics, in general.

e To prescribe and introduce the graphical approach, called the inquiry-oriented approach

(IOA) of understanding the concept of limits better than the formal approach.

5. Experience of the study:

Mathematics at the higher secondary and undergraduate level in India is formally
presented in textbooks and at lectures. An initial course in mathematics at Indian universities
usually comprises algebra and calculus including the notion of limits of functions, which has
been proven to be difficult for students to learn at a formal base only. Many different
aspects regarding the notion of limits and the nature of learning that cause these difficulties
are addressed in this research study. The experience, as a student and later on as a college
mathematics teacher, implied to researcher that learning limits of functions expense time and
effort, perhaps to a greater extent than other parts of basic calculus. Here, the expectations
wanted to understand more about how students perceive and learn limits of functions. The
overall research question became: How do students deal with the concept of limits of
functions at the basic higher secondary and undergraduate level in India? In an attempt to
answer this vast question, it is conducted studies at a large in five stages in a Mathematics
class. No such study on limits probably had previously been done in India and it was
therefore compared mostly to foreign research results. It is important that teachers who work

with college level mathematics education are aware of the learning situation of students
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and are prepared to meet them at their levels in their teaching- learning processes,
meaning that the pre-knowledge o f students is crucial.
6. Hypothesis:
A statistical hypothesis is unproven statement about the distribution of the random
variables under consideration.
Hy:- There is no significant difference in the achievement of learning ‘limit theory’ after using
IOA in the classroom.
Hj:- There is significant difference in the achievement of learning ‘limit theory’ after using
IOA in the classroom.
The conclusion will be drawn according to the acceptance or rejection of the hypothesis

Hy.

7. Methodology adopted:

To carry out any type of research work an adoption of correct methodology is an art and
way of success for that particular research. The researcher shall choose the most appropriate
instruments procedures and methods that will provide the collection and analysis of data upon
which hypothesis may be tested. The researcher shall a meet with mathematics teachers teaching
mathematics especially Calculus at junior colleges and undergraduate classes to seek their
opinion about inquisition and replication with difficulties in understanding the concept of limit in
teaching-learning process of mathematics.

The investigator shall assume the research work as an experimental research for assessing
the effectiveness in enhancing the level of knowledge, curiosity level along with parents’ literacy
in addition to the residential status of the students involved under the study. This is an
experimental research for assessing the effectiveness of the strategy of adopting the geometrical
approach especially graphical view in understanding of the limit concept. Much attempt may
have been done so far with this, but this can be one more with specially covered the
psychological attitudes among the students, together with the residential impact for their
understanding in topic considered.

As an example, students from Junior college and undergraduate level with mathematics
are one of the subjects were taken as population for this research study, which is summarizing in

the following Table 1.1.
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Table 1.1: Distribution of the sample for the study

Sex/Group Controlled Group Experimental Total
Group
Boys 125 125 250
Girls 125 125 250
Total 250 250 500

8. Design of the study:

The sample had divided into two groups namely the controlled group (CG) and an
experimental group (EG) with equal number of boys and girls students from the sample.

The research work was conducted at the college. The researcher lectures mathematics in
the college. The students are enrolled for the 12" Science undergraduate students with
mathematics is one of the subjects. The main topics are limits, continuity, differentiation and
integration including their applications in real-life. It is multi-cultural, multi-status classroom and
the students are taught through the medium of English, which is their second language.

The concepts of limits under the study were to be taught in class by making use of
discussions, problem solving tasks, viz. interviews and questionnaires etc. These tasks were to
assessed in order to determine possible misconceptions of the limits of functions and through
pre-test, post-test and retention-test by understanding the limit concept using graphical approach
more better by conventional one. The same planed to analyze with the help of several statistical
tools viz. t-test, chi-test, z-test ANOVA etc. Absolutely, might be the first time use of principle
of replication in this research study.

It had been prepared four tests Pre-Test, Post-Test, Retention-Test and the test for
effectiveness of Principle of Replication in five stages accordingly with four major related topics
of the limits of functions which is depicted in the following Table 1.2
Table 1.2: Plan of research study

Test Level Plan of Period Actual Action
Period
Concept I: Basic concept of limits of At the beginning of the August 2010
functions research
Concept II: Epsilon-delta definition of limit After Two Weeks August 2010
Concept III: Problems of limit After Four Weeks September 2010
Concept I'V: Problems of continuity After Four Months January 2011
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9. Variables of the study:

In this typical research experiment, there are two types of variables used-independent and
dependent. An independent variable is the variable that scientist manipulates (the treatment) to
determine its effect on some research (the dependent).

In present study, it has taken into account eight types of variables as observed from the
specific objectives and corresponding to the null hypothesis as mentioned earlier.

These variables are as under?:
Pedagogical Dependent Variables (Attributes)
e Curiosity gained
e Confidence gained
e Literacy status of the family
e Residential status of the family
Psychological Independent Variables

e Intelligence

e Interest
e Attitude
o Skill

10. Organization of the study:

It can be organized the plan of study as in Table 1.1 following ways, there are five stages;
A, B, C, D, and E in which Pre-Test, Post-Test and Retention- Test was planned to conduct for
the study in hand for both the Controlled group (CG) and the Experimental group (EG).

Table 1.3: Stages of research study

Test Teaching-Learning and Groups Stages
Questionnaire Schedule

Pre-Test - CG+EG A

- About limits of Functions EG B
Post-Test - CG+EG C
Retention-Test - CG+EG D
- Proposition Type Randomly Selected E

Questionnaires 100 respondents from
EG
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11. Population and sample for the study:
An experimental research cannot be done without the population. Here, the sample is a

group of students, which will evaluate the applicability of an Inquiry Oriented Approach (IOA)

technique.

Total Population : 5000

Sample Size : 500
Geographical Area : Local College
Sampling Procedure : Random Sample

The sample was taken randomly from local colleges of the city to achieve the goal of the study.

Conclusions:

This covers a research work that presents a research investigation into the effect on
student conceptual understanding of the central topics in the limit concepts, and overall
achievement, with incorporation of an Inquiry Oriented Approach (IOA) with the attributable
variables under study. There can be several significant differences between the groups of
students who completed limit concepts without the IOA. The IOA group can score significantly

higher in conceptual understanding and achievement.
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Abstract:

This chapter gives an introduction to the simplest method of machine learning which is
called as k-Nearest Neighbor. The k-Nearest Neighbor algorithm (k-NN) is a supervised non-
parametric machine learning model which is based on a simple distance measure, and it can be
used for both classification and regression problems. The chapter starts with an introduction to
the basics of machine learning and the theory of k-Nearest Neighbor with a focus on
classification. In the subsequent sections, the advantages and disadvantages of k-NN will be
discussed.
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Introduction:

Machine learning is a field in data analytics that uses statistical learning algorithms to
build systems that have the capability to automatically learn and improve from experiences
without being explicitly programmed (Mitchell, 1997). Machine learning algorithms are broadly
categorized into two major types i.e. supervised and unsupervised learning. The supervised
algorithm takes a known set of input dataset and its known outputs to learn the classification
model, and this model generate an appropriate classification when a new unlabelled dataset is
given. Thus, supervised machine learning aims to infer a function from labelled training data,
which can be used for classifying new unknown observations. While in case of unsupervised
machine learning the data is unlabelled, and the algorithms groups the unlabelled information by
finding the similarities and pattern in the data.

Classification belongs to the category of supervised machine learning where the outputs
are also provided with the input dataset. The learning algorithm of the classifiers is employed to
build a model which is used to find the relationship between the variables and the class label of
the given data. A major amount of literature within machine learning has been published on the

problems of classification. In classification, the new unlabelled observations is assigned into a
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correct class by learning from previous labelled data. Classes are sometimes called as labels,
categories or targets.

General algorithm of a machine learning classifier is illustrated in figure 1.

TEST DATA

I
LABELLED MACHINE CLASSIFICATION
TRAINING LEARNING RULE
DATA ALGORITHM
PREDICTED DATA

Figure 1: General structure of a classification algorithm

k-Nearest Neighbor (k-NN):

k-Nearest Neighbor is a type of supervised machine learning algorithm which can be
used for both regression as well as classification problems. However, it is mainly used for
classification or predictive problems. It was proposed by Cover and Hart (1967) for performing
pattern classification task. The k-NN was developed with the need to perform discriminant
analysis when reliable parametric estimates of probability densities are not known and are
difficult to determine (Beckmann et al., 2015). K-Nearest Neighbor is one of the most famous
classification algorithms because it is very simple to use and ease of interpretation (Wu et. al.,
2008). This machine learning algorithm assumes that similar things/observations exist in close
proximity. In other words, observations which are similar are close to each other. The k-NN
algorithm can be defined well by the following two properties:

e Lazy learner: k-NN is a lazy learning algorithm as it does not explicitly learn the model,
but it tries to memorize the training/labelled data. This information is then used as
knowledge for the classification phase.

e Non-parametric: In k-NN no assumptions are made about the distribution of the
underlying data. It is useful because the practical data which is available in the real
world, does not obey theoretical assumptions most of the times and hence, this algorithm

comes to rescue.
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The k-NN Algorithm:
k-Nearest Neighbor algorithm uses similarity of variables/observations to predict the
class/label of new data points, which means that the new data point will be assigned a class based
on how closely it matches to the points in the training data set.
The implementation of k-NN algorithm is given as:
(1) For implementing k-NN algorithm the whole dataset is loaded, and then split into training
and test dataset.
(i1) The value of k which is the number of nearest neighbor is chosen and it can be any
integer.
(ii1) For each observation in the dataset:

a.  Calculate the distance between the test data and each row of training data using
any of the distance measures. The most widely used measure to calculate the
distance is Euclidean distance.

b.  Add the distance and the index of the observations into an ordered collection.

(iv) Sort the ordered collection of distances and indices in ascending order i.e. from smallest
to largest by the distances.

(v) Pick the first k values from the sorted collection.

(vi) Note the labels of selected k entries and assign a class/label to the test data observation
based on the most frequently occurring class of these entries.

The figure 2 illustrates the working algorithm of k-Nearest Neighbor classifier.

A
1 INITIAL DATA ‘ CALCULATE DISTANCE ‘

a ®
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Figure 2: k-NN algorithm representation:

(a) new observation, (b) find distances, (c) classification based on distance

In the figure 2, suppose blue coloured star (let it as point P) is a new data point, for which
label/class needs to be predicted. The k closest point/neighbor to the point P are found and then
by majority voting the point P is assigned either to the class A or class B. For example, when
k=3, there are two observations which belongs to the class B and one observation belongs to the
class A, so by majority rule the test point P is classified to class B. Similarly, when we take
k=11, majority of the nearest neighbor are again from class B, hence the new data point is
assigned to the class B.

In the process of creating a k-NN classifier, k is an important parameter and different k
values will cause different performances in classifying an individual. Choosing the number of
nearest neighbor that is determining the value of k is the most critical problem (Mody, 2009). To
select the optimum value of k, the k-NN algorithm can be run several times with different values
of k and that value of k is chosen which reduces the number of errors or we can say that which
increases the accuracy to make predictions when it is given the test data.

Below are some points to keep in mind while choosing the value of k:

e If the value of k is decreased to one, predictions become less stable. For example, if we
take k=1 and we have a test point surrounded by several observations of class say A and
one observation of class B, but that one observation of class B is the single nearest
neighbor. Reasonably, we would think that the test data point most likely belong to class
A, but the value of k=1 that is one nearest neighbor. So, the k-NN incorrectly classifies

the test data point into the class B.
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Inversely, if the value of k is increased, the predictions become more stable due to
majority voting or averaging, and hence, more likely to make more accurate
classifications but up to a certain point. Eventually, we begin to witness an increase in the
number of errors. It is at this point we can conclude that we have pushed the value of k
too far.

In cases where we are taking a majority vote that is picking the mode in a classification
problem among class labels, we usually take k as an odd number to have a tiebreaker.
Usually, k is taken as square root of the number of observations, and value of k can also
be checked by generating the model for different values of k and checking their

performance at all values.

Advantages of k-Nearest Neighbor

The k nearest neighbor algorithm is highly unbiased in nature and there are no prior
assumptions about the underlying data.

This algorithm is mostly considered over the other classification algorithms because of its
less calculation time and easy interpretation of the output.

k-NN algorithm is easy to implement and has gained good popularity, as it is very simple
and effective in nature.

The accuracy is pretty high but not competitive in comparison to some other supervised
machine learning algorithms.

No re-training of model is required if a new training data point is added to the existing
training set.

It is a versatile algorithm and can be used for both classification and regression.

Disadvantages of k-Nearest Neighbor

This algorithm is computationally expensive, because the algorithm need to store all of
the training data.

Classification stage gets significantly slower as the number of predictors or observations
increases.

For every unlabeled test data point, the distance has to be computed between the test data
point and all the training data points. Thus a lot of time is taken for the classification
phase.

The k-NN algorithm is sensitive to irrelevant features and scale of the data.
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It is not good at classifying the boundary data points where they can be classified one
way or another.

It performs better with a lower number of features/variables and when the number of
features/variables increases than it requires large data. Increase in the dimension also
leads to the problem called over fitting. This problem of higher dimension is known as

curse of dimensionality.
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1. Introduction

The concept of rough set theory was studied by Pawlak [6] and he introduced the notion
of lower approximation, upper approximation and boundary region of a subset of the universe.
Carmel Richard [4] introduced the concept of Nano topology. The Micro topology was
introduced by Sakkraiveeranan Chandrasekar [8] and he also studied the concepts of Micro pre-
open and Micro semi-open sets. Further he introduced the concept of Micro continuous map.
He also defined Micro pre-continuous and Micro semi-continuous maps in Micro topological
spaces. Chandrasekar and Swathi [5] introduced Micro a-continuity in Micro topological
spaces. Taha et al. [11] initiated the concept of Micro g-continuous map. Anandhi and
Balamani [1,2,3] initiated the concept of Micro a-generalized closed set, separation axiom and
Micro ag-continuous map in Micro topological spaces. Recently, Sandhiya and Balamani [9]
introduced the concept of Micro g*-closed sets in Micro topological spaces and analyzed some
of its properties. Moreover, Micro y-closed sets are introduced by Sowmiya and Balamani [10].
In this paper we have introduced a new class of Micro continuous and Micro irresolute maps
called Micro g*-continuous and Micro g*-irresolute maps in Micro topological spaces. Also the
relationship between these maps and other existing maps are obtained and their properties are

analyzed.
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2. Preliminaries
Definition 2.1{6] Let U be a non-empty finite set of objects called the universe and R be an
equivalence relation on U named as the indiscernibilty relation. Then U is divided into disjoint
equivalence classes. Elements belonging to the same equivalence class are said to be in
indiscernible with one another. The pair (U, R) is said to be the approximation space. Let X C
U.
1. The lower approximation of X with respect to R is the set of all objects, which can be for
certain classified as X with respect to R and it is denoted by Lz (X). That is, Lg(X) =

Usev {R(x): R(x) S X}, where R(x) denotes the equivalence class determined by x € U.

2. The upper approximation of X with respect to R is the set of all objects, which can be
possibly classified as X with respect to R and it is denoted by Uz (X). That is, Uz (X) =

Uxeu {R(xX):R(x) N X # ¢}

3. The boundary region of X with respect to R is the set of all objects, which can be
classified neither as X nor as not X with respect to R and it is denoted by Bz(X). That is,

Br(X) = Ur(X) — Lr(X)

Definition 2.2[4] Let U be the universe, R be an equivalence relation on U and tx(X) =
{U,p, Lr(X),Uxr(X), Bg(X)}, where X € U. Then, tz(X) satisfies the following axioms:

1. Uand¢ € 13(X)

2. The union of the elements of any sub-collection of Tz (X) is in Tz (X)

3. The intersection of the elements of any finite sub-collection of 7z (X) is in Tz (X)

That is, 7z (X) is a topology on U called the Nano topology on U with respect to X. We
call (U, tx(X)) as the Nano topological space. The elements of 7z (X) are called as Nano open
sets and the complement of a Nano open set is called a Nano closed set.

Definition 2.3[8] Let (U, TR (X)) be a Nano topological space. Then uz(X)={NU
(N"Nu):N,N" € tx(X) and u & tx(X)} and ug(X) satisfies the following axioms:

1. Uand¢ € uz(X)

2. The union of the elements of any sub-collection of ug (X) is in uz (X)

3. The intersection of the elements of any finite sub-collection of ug (X) is in g (X)

Then, pgp(X) is called the Micro topology on U with respect to X. The triplet
(U, tx(X), ugr(X)) is called Micro topological space and the elements of ug(X) are called Micro
open sets and the complement of a Micro open set is called a Micro closed set.

Definition 2.4[9] Let (U, 7z (X), ug (X)) be a Micro topological space. A subset A of U is said to
be Micro g*-closed if Mic-cl(A) € L and L is Micro g-open in U.
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Definition 2.5 Let (U, T3 (X), ugr(X)) and (V, 7z (Y), ur(Y)) be two Micro topological spaces. A
map f: (U, 7p(X), r(X)) = (V,7r(Y), ur(Y)) is called a
(i) Micro continuous map [8] if f~*(P) is Micro closed in (U, 7x(X), ug(X)) for every
Micro closed set P in (V, r(Y), ug (Y)).
(i) Micro pre-continuous map [8] if f~1(P) is Micro pre-closed in (U, 7g(X), ur(X)) for
every Micro closed set P in (V, TR (Y), ug (Y)).
(iii)Micro semi-continuous map [8] if f~1(P) is Micro semi-closed in (U, Tg(X), ur (X)) for
every Micro closed set P in (V, TR (Y), ug (Y)).
(iv)Micro g-continuous map [11] if f~1(P) is Micro g-closed in (U, 7x(X), ug(X)) for
every Micro closed set P in (V, TR (Y), ug (Y)).
(v) Micro a-continuous map [5,7] if f~1(P) is Micro a-closed in U for every Micro closed
set P in (V, TR (Y), Uug (Y)).
(vi) Micro ag-continuous map [3] if f~1(P) is Micro ag-closed in (U, TR (X),uR(X)) for
every Micro closed set P in (V, TR (Y), ug (Y)).

3. Micro g*-Continuous Maps

In this section, Micro g*-continuous maps in Micro topological spaces are introduced and
its properties are derived. It is shown that the composition of two Micro g*-continuous maps
need not be Micro g*-continuous.
Definition 3.1 Let (U, 7x(X), ug(X)) and (V, 7z (Y), ugr(¥Y)) be two Micro topological spaces. A
map f: (U, 7x(X), ug (X)) = (V,7x(Y), ug(¥)) is called a Micro g*-continuous map if f~1(P)
is Micro g*-closed in U for every Micro closed set P in V.
Example 3.2 Let U = {a,b,c}, U/R = {{a},{b,c}}. Let X = {a,b} S U. Then, t3(X) =
{¢p,{a},U}. Letu = {b} & tx(X). Then, ug(X) = {U, ¢,{a},{b},{a,b}}. Micro g*-closed
sets in U are ¢, {c},{a,c},{b,c},U. LetV ={a,b,c}, V/R = {{a},{b},{c}}. LetY = {b,c} <
V. Then, t3(Y) ={V,¢}. Letu = {a} & tx(Y). Then, ur(¥Y) = {¢,{a},V}. Micro closed
sets in Vare ¢,{b,c},V. Let f: (U, tx(X), ur(X)) = (V,7x(Y), ug(Y)) be a map defined by
fla) =a, f(b) =c,f(c) =b,f(d) = d. Therefore for every Micro closed set P inV, f~1(P)
is Micro g*-closed in U. Hence f is Micro g*-continuous.
Proposition 3.3 Every Micro continuous map is Micro g*-continuous but not conversely.
Proof: Let f: (U, 1x(X), ug(X)) = (V,tx(Y), ur(¥Y)) be Micro continuous. Let P be a Micro
closed set in (V,7z(Y), ug(Y)). Since f is Micro continuous, f~1(P) is Micro closed. Since
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every Micro closed set is Micro g*-closed, f~1(P) is Micro g*-closed. Hence f is Micro g*-
continuous.

Example 3.4 Let U = {a,b,c,d}, U/R = {{a},{b},{c,d}}. Let X = {c,d} S U. Then,
R(X) ={U,¢,{c,d}}. Let p = {a} & tz(X). Then, up(X) = {¢,{a},{c,d},{a,c, d},U}.
Micro closed sets in U are ¢,{b},{a,b},{b,c,d},U. Micro g*-closed sets in U are
¢,{b},{a,b},{b,c},{b,d},{a, b,c} {a b,d},{b,c,d},U. Let V = {ab,cd}, V/R =
{{a,b},{c},{d}}. Let Y = {a,b} S V. Then, t3(Y) ={V,¢,{a,b}}. Letu = {a} & tx(Y).
Then, uz(Y) = {¢,{a},{a,b},V}. Micro closed sets in V are ¢,{c,d},{b,c,d},V. Let
f: (WU, tr(X), ur(X)) = (V,7R(Y), pr(Y)) be a map defined by f(a) =a, f(b) =¢,f(c) =
b,f(d) =d. Then f is Micro g*-continuous but not Micro continuous, since for the Micro
closed set {c,d}inV, f~1({c,d}) = {b, d} is not Micro closed in U.

Proposition 3.5 Every Micro g*-continuous map is Micro g-continuous but not conversely.
Proof: Let f: (U,1x(X), ug(X)) = (V,tx(Y), ug(¥)) be Micro g*-continuous. Let P be a
Micro closed set in (V,7x(Y), ugr(Y)). Since f is Micro g*-continuous, f~1(P) is Micro g*-
closed. Since every Micro g*-closed set is Micro g-closed, f~1(P) is Micro g-closed. Hence
f is Micro g-continuous.

Example 3.6 Let U = {a,b,c,d}, U/R = {{a},{c},{b,d}}. Let X = {b,d} S U. Then,
R(X) ={U,¢,{b,d}}. Letu = {b} & 1x(X). Then, uzg(X) = {¢,{b},{b,d},U}. Micro g*-
closed sets in Uare ¢,{a,c}{a,b,c}{a, b,d}U. Micro g-closed sets in U are
¢,{a},{c},{a, b}, {a,c},{a,d},{b,c} {c,d},{a,b,c} {a,b,d} {a,c,d},{b,c,d},U. Let V =
{a,b,c,d}, V/R = {{a},{b},{c,d}}. LetY = {c,d} S V. Then, tx(Y) ={V,¢,{c,d}}. Let
u = {a} & tx(Y). Then, uz(Y) = {¢,{a},{c,d},{a,c,d},V}. Micro closed sets in V are
¢,{b},{a, b}, {b,c,d},V. Let f: (U, txg(X), ug(X)) = (V,tx(Y), ug(¥)) be a map defined by
fla)=a, f(b)=c,f(c)=>b,f(d) =d. Then fis Micro g-continuous but not Micro g*-
continuous, since for the Micro closed set {b,c,d} inV, f~1({b,c,d}) = {b,c,d} is not Micro
g -closed in U.

Proposition 3.7 Every Micro g*-continuous map is Micro ag-continuous but not conversely.
Proof: Let f: (U, tx(X), ur(X)) = (V,7x(Y), ug(Y)) be Micro g*-continuous. Let P be a
Micro closed set in (V,7x(Y), ugr(Y)). Since f is Micro g* -continuous, f~1(P) is Micro g*-
closed. Since every Micro g*-closed set is Micro ag-closed, f ~1(P) is Micro ag-closed. Hence
f is Micro ag-continuous.

Example 3.8 Let U = {a,b,c,d}, U/R = {{c},{d}{a,b}}. Let X = {a,b} S U. Then,
w(X) ={U,¢,{a,b}}. Letu = {a} & tx(X). Then, ur(X) = {¢,{a},{a, b}, U}. Micro g*-
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closed sets in Uare ¢,{c,d} {acd},{b,c d},U. Micro ag-closed sets in U are
¢,{b},{c},{d}.{a,c},{a,d},{b,c}, {b,d} {c,d},{a, b,c}{a b,d} {acd} {bc,d},U. LetV =
{a,b,c,d}, V/R = {{a},{b},{c,d}}. LetY = {c,d} S V. Then, tx(Y) ={V,¢,{c,d}}. Let
u = {a} & 1x(Y). Then, uz(Y) = {¢,{a},{c,d},{a,c,d},V}. Micro closed sets in Vare
¢,{b},{a, b}, {b,c,d},V. Let f: (U, txg(X), ug(X)) = (V,tx(Y), ug(¥)) be a map defined by
fla)=a, f(b)=c,f(c)=b,f(d) =d. Then f is Micro ag-continuous but not Micro g*-
continuous, since for the Micro closed set {b} in V, f~1({b}) = {c} is not Micro g*-closed in U.
Remark 3.9 Micro g*-continuous maps and Micro semi continuous maps are independent as
observed from the following examples.

Example 3.10 Let U = {a,b,c,d}, U/R = {{c},{d},{a,b}}. Let X = {a,b} € U.
Then,tz(X) ={U,¢,{a,b}}. Let u = {a} & tx(X). Then, ug(X) = {¢,{a},{a b}, U}.
Micro semi closed sets in U are ¢, {b},{c},{d},{b,c},{b,d}, {c,d},{b,c,d}, U. Micro g*-closed
sets in U are ¢,{c,d},{a,c,d},{b,c,d},U. LetV ={a,b,c,d}, V/R = {{a, b}, {c},{d}}. Let
Y = {a,b,c} € V. Then, 1tx(Y) ={V,¢,{a,b,c}}. Let pu = {ab} ¢& tx(V).
Then, ug(Y) = {¢,{a, b}, {a,b,c},V}. Micro closed sets in Vare ¢,{d},{c,d},V. Let
f: (U, tr(X), ur(X)) = (V,7r(Y), ur(¥)) be a map defined by f(a) =a, f(b) =c,f(c) =
b, f(d) = d. Then f is Micro semi continuous but not Micro g*-continuous, since for the Micro
closed set {d}inV, f~1({d}) = {d} is not Micro g*-closed in U.

Example 3.11 Let U = {a,b,c,d}, U/R = {{c},{d},{a,b}}. Let X = {c,d} S U. Then,
R(X) ={U,¢,{c,d}}. Let p = {a} & tz(X). Then, ur(X) = {¢,{a},{c,d},{a,c, d},U}.
Micro g*-closed sets in U are ¢,{b},{a, b}, {b,c},{b,d},{a,b,c}, {a,b,d},{b,c,d},U. Micro
semi closed sets in U are ¢, {b},{a, b}, {b,c,d},U. LetV ={a,b,c,d},V/R = {{c},{d},{a, b}}.
LetY = {a,b} € V. Then, tx(Y) ={V,¢,{a,b}}. Letu = {a} & tx(Y). Then, uz(¥Y) =
{¢,{a},{a,b},V}. Micro closed sets in V are ¢, {c,d},{b,c,d},V. Let f: (U,tg(X), ug(X)) -
(V,1x(Y), ug(Y)) be a map defined by f(a) =a, f(b) =c,f(c) =b,f(d) =d. Then f is
Micro g*-continuous but not Micro semi continuous, since for the Micro closed set {c,d} inV,
f~Y({c,d}) = {b, d} is not Micro semi closed in U.

Remark 3.12 Micro g*-continuous maps and Micro pre continuous maps are independent as
observed from the following examples.

Example 3.13 Let U ={a,b,c}, U/R = {{a},{b},{c}}. Let X = {b,c} S U. Then, t3(X) =
{U,¢p}. Let u = {a} & tx(X). Then, ug(X) = {¢,{a},U}. Micro g*-closed sets in U are
¢,{b,c},U. Micro pre-closed sets in U are ¢,{b},{c},{b,c},U. Let V = {a,b,c}, V/R =
{{a},{b,c}}. Let Y = {a,b} € V. Then, t3(Y) ={V,¢,}. Let u = {a,b} & 1x(Y).

119



Bhumi Publishing, India

Then, ug(Y) = {¢,{a, b}, V}. Micro closed sets in V are ¢,{c},V. Let
fi(U,1r(X), ug(X)) = (V,tx(Y), ug(¥)) be the identity map. Then f is Micro pre
continuous but not Micro g*-continuous, since for the Micro closed set {c} in V, f~1({c}) = {c}
is not Micro g*-closed in U.

Example 3.14 Let U = {a,b,c,d}, U/R = {{c},{d},{a,b}. Let X = {a,b} S U. Then,
w(X) ={U,¢,{a,b}}. Letu = {a} & 1x(X). Then, ur(X) = {¢,{a},{a, b}, U}. Micro pre
closed sets in U are ¢, {{b},{c},{d},{b,c},{b,d} {c,d},{b,c,d}}, U. Micro g*closed sets in U
are ¢,{c,d},{a,c,d},{b,c,d},U. LetV ={a,b,c,d},V/R = {{c},{d},{a,b}}. LetY = {c} C
V. Then, 1x(Y) ={V,¢,{c}}. Letu = {b} & 1x(Y). Then, uz(Y) = {¢,{b},{c},{b,c},V}.
Micro closed sets in V are ¢,{a,d},{a,b,d},{a,c,d},V. Let f:(U,1x(X), ug(X)) —»
(V,1r(Y), ug(Y)) be a map defined by f(a) =c, f(b) =b,f(c) =a,f(d) =d. Then f is
Micro g* -continuous but not Micro pre-continuous, since for the Micro closed set {a,c,d} inV,
f~*{a,c,d}) = {a,c,d} is not Micro pre-closed in U.

Remark 3.15 Micro g*-continuous maps and Micro a-continuous maps are independent as
observed from the following examples .

Example 3.16 Let U = {a,b,c,d}, U/R = {{a},{c},{b,d}}. Let X = {b,d} S U. Then,
w(X) ={U,¢,{b,d}}. Letu = {b} & tx(X). Then, ug(X) = {¢,{b},{b,d},U}. Micro a-
closed sets in U are ¢,{a},{c},{d},{a,c}, {c,d},{a,c,d},U. Micro g*-closed sets in U are
¢,{a,c}{a,b,c}{a,cd},U. LetV ={a,b,c,d}, V/R = {{a, b}, {c},{d}}. LetY = {a,b} S
V. Then, tz(Y) ={V,¢,{a,b}}. Letu = {a} & 13(Y). Then, ug(¥) = {¢,{a},{a, b}, V}.
Micro closed sets in V are ¢, {c,d},{b,c,d},V. Let f: (U,tx(X), ur(X)) = (V,7x(Y), ug(¥))
be a map defined by f(a) = b, f(b) =a,f(c) =c, f(d) =d. Then f is Micro a-continuous
but not Micro g*-continuous, since for the Micro closed set {c,d} inV, f~1({c,d}) = {c,d} is
not Micro g*-closed in U.

Example 3.17 Let U = {a,b,c}, U/R = {{a},{b,c}}. Let X ={a,b} S U. Then, t5(X) =
{U,¢}. Letu = {a,b} & tx(X). Then, ug(X) = {¢,{a, b},U}. Micro a-closed sets in U are
¢,{c},U. Micro g*-closed sets in U are ¢,{c},{a,c},{b,c},U. LetV = {a,b,c}, V/R =
{{c},{a,b}}. Let Y = {b} € V. Then, tx(Y) ={V,¢,{b}}. Let u = {a} & x(Y).
Then, uz(Y) = {¢,{a},{b},{a, b},V}. Micro closed sets in V are ¢,{c},{a,c}, {b,c},V. Let
f: (U, 1r(X), ug(X)) = (V,tx(Y), ug(¥)) be the identity map . Then f is Micro g*-
continuous but not Micro a-continuous, since for the Micro closed set {a,c}inV, f~*({a,c}) =

{a, c} is not Micro a-closed in U.
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Remark 3.18
The following diagram shows the dependency and independency relations of Micro g*-

continuous maps with already existing Micro continuous maps.

Micro g- continuous Micro continuous
map \ map
Micro ag-continuous Micro g*- continuous ‘ Micro a-continuous
map D map T map
Micro semi-continuous / Micro pre-continuous
map map

Theorem 3.19 Let (U, 7x(X), ug(X)) and (V,7x(Y), ug(¥) be two Micro topological spaces.
A map f:(U,tx(X), ur(X)) = (V,1x(Y), ug(Y)) is Micro g*-continuous if and only if
f7X(M) is Micro g*-open in (U,7z(X), uz(X)) whenever M is Micro open
in (V,7g(Y), ur(¥)) .

Proof: Let f: (U,7x(X), ug(X)) - (V,1x(Y), ug(¥)) be a Micro g*-continuous map and M be
Micro open in (V,tx(Y), ug(¥)). Then M€ is Micro closed in (V,tx(Y), ur(¥)). By
hypothesis f~1(M¢) is Micro g*-closed in (U, TR (X), yR(X)). ie. [f~1(M)]¢ is Micro g*-closed
in (U, TR (X), uR(X)). Hence f~1(M) is Micro g*-open in U. Conversely, suppose f~1(M) is
Micro g*-open in (U, Tg(X), pg(X)) whenever M is Micro open in (V, Tg(Y), ug(¥)). Let P be
Micro closed in (V, Tz (Y), ug(Y)), then P€ is Micro open in (V,7g(Y), ug(¥)). By assumption
f1(P°) is Micro g*-open in (U,tx(X), ug(X)). ie. [f~1(P)]° is Micro g*-open in
(U,7r(X), pr(X)). Then f~1(P) is Micro g*-closed in (U, 7 (X), ug(X)). Hence f is a Micro
g’ -continuous map.

Remark 3.20 The composition of two Micro g*-continuous maps need not be a Micro g*-
continuous map as seen from the following example.

Example 3.21 Let U = {a,b,c}, U/R = {{c},{a,b}}. Let X = {a,b} S U. Then, t5(X) =
{U,¢p,{a,b}}. Letu = {c} & tx(X). Then, ug(X) = {¢,{c},{a, b}, U}. Micro g*-closed sets
in U are ¢,{c},{a,b},U. LetV ={a,b,c}, V/R = {{a},{b,c}}. LetY = {a,b} S V. Then,
R(Y) ={V,¢p}. Letu = {a,b} & tz(Y). Then, ug(¥) = {¢,{a,b},V}. Micro closed sets
in V are ¢,{c},V. Micro g*-closed sets inV are ¢,{c},{a,c},{b,c}V. Let W = {a,b,c},
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W/R = {{c},{a,b}}. Let Z = {b} € W. Then, t73(Z) ={W,¢p,{b}}. Let u = {a} ¢
R (2). Then, ug(Z) = {¢,{a}, {b} {a b}, W} Micro closed sets in W are
¢, {ct{a,c}{bc},W. Let f: (U, tr(X), ur(X)) = (V,7r(Y), pr(¥)) and
9: (V,tr(Y), ur(Y)) = (W,tr(2), up(Z)) be the maps defined by f(a)=0b, f(b)=
a f(c)=c gla)=b, g(b) =a,g(c) =c. Then the maps fand g are Micro g*-continuous
but their composition g o f: (U,1x(X), ur(X)) - (W,tx(2), ur(Z)) is not a Micro g*-
continuous map, since for the closed set {a, c} in (W, tx(Z), ug(2)), (g o ) 1({a,c}) ={a,c}is
not Micro g*-closed in (U, 7z (X), ugr(X)).

Theorem 3.22 Let f: (U,1x(X), ug(X)) = (V,tx(Y), ugr(¥)) be a Micro g*-continuous map
and g: (V,1x(Y), ur(Y)) -» (W,1x(2), ug(Z)) be a Micro continuous map. Then
gef:(U,r(X), ug(X)) - (W, R (2), uR(Z)) is a Micro g*-continuous map.

Proof: Let P be a Micro closed set in (W, tz(Z), ug(Z)). Since g is Micro continuous, g~ (P)
is Micro closed in (V,7z(Y), ug(Y)). Since f is Micro g*-continuous, (g f)"1(P) =
f ‘1(g"1(P)) is Micro g*-closed. Hence g ° f is a Micro g*-continuous map.

Definition 3.23 A Micro topological space (U, Tg(X), ug(X)) is said to be Micro Ty ,- space
(briefly Mic- Ty, space) if every Micro g*-closed subset of (U, 7 (X), pg(X)) is Micro closed
in (U, 7r(X), ur(X)).

Definition 3.24 A Micro topological space (U, 7g(X), ugr(X)) is said to be a Micro , T.-space
(briefly Mic- 4 T,- space) if every Micro ag-closed subset of (U, Tz(X), ugr(X)) is Micro g*-
closed in (U, TR (X), ,uR(X)).

Definition 3.25 A Micro topological space (U, Tg(X), ug(X)) is said to be a Micro * Ty /,-space
(briefly Mic-" Ty ,-space) if every Micro g-closed subset of (U, 7z(X), ug(X)) is Micro g*-
closed in (U, TR (X), uR(X)).

Theorem 3.26 Let f: (U, tx(X), ug(X)) - (V,tx(Y), ug(¥)) be a Micro g*-continuous map
and if (U, 7 (X), ug(X)) is a Micro Ty ,- space then f is a Micro continuous map.

Proof: Let P be a Micro closed set in (V,7x(Y), ugr(Y)). Since f is a Micro g*-continuous map,
f~*(P) is Micro g*-closed in (U,7z(X), ur(X)). Since (U,7z(X), ur(X)) is a Micro Ty ,-
space, f~1(P) is Micro closed in (U, 7x (X), pg(X)). Hence f is a Micro continuous map.
Theorem 3.27 Let f: (U, tx(X), ug(X)) = (V,tx(Y), ug(¥)) be a Micro g*-continuous map
and if (U, 7 (X), ug(X)) is a Micro T7,- space then f is a Micro g continuous map.

Proof: Let P be a Micro closed set in (V,7x(Y), ugz(Y)). Since f is a Micro g*-continuous map,
f~*(P) is Micro g*-closed in (U,7z(X), ur(X)). Since (U,7z(X), ur(X)) is a Micro Ty ,-
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space, f~1(P) is Micro closed. Since every Micro closed set is Micro g-closed, f~1(P) is
Micro g-closed. Hence f is a Micro g-continuous map in (U, Tz (X), ug (X)).

Theorem 3.28 Let f: (U, tx(X), ug(X)) - (V,tx(Y), ug(¥)) be a Micro ag-continuous map
and if (U, 7z (X), ugr(X)) is a Micro 4 T,.- space then f is a Micro g*-continuous map.

Proof: Let P be a Micro closed set in (V,7z(Y), ug(Y)). Since every Micro g*-closed set is
Micro ag-closed and f is Micro ag-continuous, f~1(P) is Micro ag-closed in
(U, (X), ug(X)). Since (U, tx(X), ur(X)) is a Micro ,T,- space, f~1(P) is Micro g*-closed
in (U, tx(X), ug(X)). Hence f is a Micro g*-continuous map.

Theorem 3.29 Let f: (U,1x(X), ur(X)) = (V,1x(Y), ur(Y)) be a Micro g-continuous map
and if (U, 7x(X), pr(X)) is a Micro * Ty/2- space, then f is Micro g*- continuous.

Proof: Let P be a Micro closed set in (V,tgx(Y), ug(¥)). Since f is Micro g-
continuous, f~1(P) is Micro g-closed in (U, 7x(X), ugr(X)). Since (U,tx(X), ug(X)) is a

Micro™ Ty /,-space, f~(P) is Micro g*-closed. Hence f is Micro g*-continuous.

4. Micro g*-Irresolute Maps

In this section, the strong form Micro g*-continuous maps, namely Micro g*-irresolute
maps is introduced and its properties are analyzed. It is shown that composition of two Micro
g’ -irresolute maps is also a Micro g*-irresolute map.
Definition 4.1 Let (U, 7x(X), ug(X)) and (V, 7z (Y), ugr(¥Y)) be two Micro topological spaces. A
map f: (U, tx(X), ur(X)) = (V,tx(Y), ug(¥)) is called a Micro g*-irresolute map if f~1(G)
is Micro g*-closed in U for every Micro g*-closed set G in V.
Example 4.2 Let U = {a,b,c,d}, U/R = {{a},{b},{c,d}}. Let X = {c,d} € U. Then,
R(X) ={U,¢,{c,d}}. Let u = {a} & 1r(X). Then, ur(X) = {¢,{a},{c,d}.{a,c d}, U}.
Micro g*-closed sets in U are ¢, {b},{a, b},{b,c},{b,d},{a,b,c},{a,b,d},{b,c,d},U. LetV =
{a,b,c,d}, V/R = {{a,b},{c},{d}}. LetY = {a,b} S V. Then, 1x(Y) ={V,d,{a, b}}. Let
u = {a} & tx(Y). Then, ug(¥) = {¢,{a},{a,b},V}. Micro g*-closed sets in V are
¢,{c,d},{a,c,d},{b,c,d},V. Let f: (U,tx(X), ug(X)) = (V,1x(Y), ug(¥Y)) be a map defined
by f(a) =a, f(b) =c,f(c) =b,f(d) = d. Therefore for every Micro g*-closed set P inV,
f~1(P) is Micro g*-closed in U. Hence f is a Micro g*-irresolute map.
Proposition 4.3 Every Micro g*-irresolute map is a Micro g*-continuous map but not
conversely.
Proof: Let f: (U, (X), ug(X)) —= (V,tx(Y), ug(¥)) be a Micro g*-continuous map. Let P be
a Micro closed set in (V, 7z (Y), ur(Y)). Since every Micro closed set is Micro g*-closed and f

is Micro g*-irresolute, f~1(P) is Micro g*-closed. Hence f is a Micro g*-continuous map.
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Example 4.4 Let U = {a,b,c}, U/R = {{a,b},{c}}. Let X = {a,b} € U. Then ,tz(X) =
{U,¢,{a,b}}. Letu = {c} & tx(X). Then, ug(X) = {¢,{c},{a, b}, U}. Micro g*-closed sets
in U are ¢,{c},{a,b},U. LetV ={a,b,c}, V/R = {{a},{b,c}}. LetY = {a,b} S V. Then,
R(Y) ={V,¢p}. Letu = {a,b} & tx(Y). Then, ug(¥) = {¢,{a,b},V}. Micro closed sets
in V are ¢,{c},V. Micro g*-closed sets in V are {¢,{c},{a,c},{b,c},V} Let
fr U, tR(X), ur(X)) — (V,7r(Y), ur(¥)) be a map defined by f(a) = b, f(b) = a,f(c) = c.
Then f is Micro g*-continuous but not Micro g*-irresolute, since for the Micro closed set {a, c}
inV, f~1({a, c}) = {b, c} is not Micro g*-closed in U.

Theorem 4.5 Let f: (U, tx(X), ug(X)) - (V,tx(Y), ug(¥)) be a Micro g*-irresolute map and
g: (V,tx(Y), ur(V)) » W,1x(2), ug(Z)) be a Micro g*-irresolute map then
gof:(U,1r(X), ug(X)) » (W,tx(2), ug(Z)) is a Micro g*-irresolute map.

Proof: Let P be a Micro g*-closed set in (W,tx(Z), ug(Z)). Since g is Micro g*-
irresolute, g~1(P) is Micro g*-closed in (V,7x(Y), ug(¥)). Since f is Micro g*-irresolute,
(go)LP) = f (g1 (P)) is Micro g*-closed. Hence g o f is a Micro g*- irresolute map.
Theorem 4.6 Let f: (U, tx(X), ug(X)) —= (V,tx(Y), ug(¥)) be a Micro g*-irresolute map and
g: (V,tg(Y), ur(Y)) » W,1x(2), ug(Z)) be a Micro g*-continuous map then
gof:(U,tg(X), ur(X)) » (W,tx(2), ug(2)) is a Micro g*- continuous map.

Proof: Let P be a Microclosed set in (W,1z(Z), ug(Z)). Since g is Micro g*-
continuous, g~1(P) is Micro g*-closed in (V,tx(Y), ugr(Y)). Since f is Micro g*-irresolute,
(g°f)HP) =f*(g~*(P))is Micro g*-closed. Hence g o f is a Micro g*- continuous map.
Theorem 4.7 Let f: (U, 1x(X), ug(X)) = (V,tx(Y), ugr(¥)) be a Micro g-irresolute map and if
(U, tr(X), ug(X)) is a Micro " Ty /,- space, then f is Micro g*-irresolute.

Proof: Let P be a Micro g*-closed set in (V,7z(Y), ug(Y)). Since every Micro g*-closed set is
Micro g-closed and f is Micro g-irresolute, f ~1(P) is Micro g-closed in (U, tz(X), ugr(X)).
Since (U, 7z(X), pr(X)) is a Micro™ Ty jp-space, f~*(P) is Micro g*-closed. Hence f is Micro
g’ -irresolute.

Theorem 4.8 Let f: (U, tx(X), ug(X)) - (V,1x(Y), ug(¥)) be a Micro ag-irresolute map and
if (U, tx(X), ugr(X)) is a Micro , T,- space, then f is Micro g*-irresolute.

Proof: Let P be a Micro g*-closed set in (V, 7z (Y), ugz(Y)). Since every Micro g*-closed set is
Micro ag-closed and f is Micro ag- irresolute, f~1(P) is Micro ag-closed
in (U, tx(X), ug(X)). Since (U, R (X), ,uR(X)) is a Micro o T,-space, f~1(P)is Micro g*-

closed. Hence f is Micro g*-irresolute.
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Conclusion:

In this article, we have introduced Micro g*-continuous map and Micro g*-irresolute map

in Micro topological spaces. Further the fundamental properties of the defined maps are

examined.
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Abstract:

The aim of this paper is to introduce Micro_y-continuous maps and Micro y-irresolute
maps in Micro topological spaces. Fundamental properties are derived and associations with the
previously existing maps are obtained.
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1. Introduction:

Rough set theory is a new mathematical approach. The notion of rough set theory was
proposed by Pawlak [6].The concept of Nano topology was introduced by Carmel Richard [4].
He has defined the nano topological space with respect to a subset X of a universe U which is
defined on lower, upper approximations and boundary region of X. Sakkaraiveeranan
Chandrasekar [8] introduced the concepts of Micro continuous map and he also studied Micro
semi-continuous and Micro pre-continuous maps in Micro topological spaces. The concept of
Micro a-continuous maps was introduced by Chandrasekar and Swathi [5]. Anandhi and
Balamani [1,2,3] studied the concept of Micro ag-closed sets, separation axioms and Micro ag-
continuous maps and presented basic properties and theorems. Micro g-continuous map was
introduced by Taha et al. [11]. Recently Sandhiya and Balamani [9] introduced Micro g -closed
sets in Micro topological spaces and also Sowmiya and Balamani [10] introduced Micro -
closed sets in Micro topological spaces and examined their properties. In this paper we have
introduced Micro w-continuous maps in Micro topological spaces. Dependency and
independency relations are obtained by comparing the Micro y-continuous maps with already

existing Micro continuous maps.
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2. Premilinaries:

Definition 2.1 [6] Let U be a nonempty finite set of objects called the universe and R be an
equivalence relation on U named as the indiscernibility relation. Then U is divided into disjoint
equivalence classes. Elements belonging to the same equivalence class are said to be
indiscernible with one another. The pair (U,R) is said to be the approximation space. Let X €
U.

1. The lower approximation of X with respect to R is the set of all objects, which can be for
certain classified as X with respect to R and it is denoted by Lg(X).That is, Lx(X) =
Uxer{R(x): R(x) € X}, where R(x) denotes the equivalence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which can be
possibly classified as X with respect to R and it is denoted by Uz (X).That is, Ug(X)=
Uxer{R(X):R(x) N X #= ¢}.

3. The boundary region of X with respect to R is the set of all objects, which can be
classified neither as X nor as not X with respect to R and it is denoted by Bg(X).That is,
Br(X) = Ug(X) — Lr (X).

Definition 2.2[4] Let U be the universe, R be an equivalence relation on U and 73(X) = {U, ¢,
Lr(X), Ur(X), Br(X)}, where X € U. Then tz(X) satisfies the following axioms:

1. Uand¢ € 15(X).

2. The union of the elements of any sub-collection of Tz (X) is in Tz (X).

3. The intersection of the elements of any finite sub-collection of Tz (X) is in Tz (X).

That is, Tz (X)is a topology on U called the Nano topology on U with respect to X. We
call (U, tz(X)) as the Nano topological space. The elements of 7z (X) are called as Nano open
sets and the complement of a Nano open set is called a Nano closed set.

Definition 2.3[8] Let (U,7z(X)) be a Nano topological space. Then ugz(X) ={NU
(N"Nu):N,N" € tx(X) and u & tx(X)} and ug(X) satisfies the following axioms:

@ U ¢eu(X).

(i)  The union of the elements of any sub-collection of ugz (X) is in g (X).

(iii)  The intersection of the elements of any finite sub-collection of ug (X) is in g (X).
Then, g (X) is called the Micro topology on U with respect to X. The triplet (U, Tz (X), ug(X))
is called Micro topological space and the elements of pz(X)are called Micro open sets and the
complement of a Micro open set is called a Micro closed set.

Definition 2.4[10] Let (U, 7z(X), ug (X)) be a Micro topological space. A subset A of U is said
to be Micro y-closed if Mic-scl(A) S L whenever ASL and L is Mic-sg-open in U.
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Definition 2.5 Let (U, TR (X), Ug (X)) and (V, TR (Y), ug (Y)) be two Micro topological spaces. A
map f: (U, Tr(X), Ug (X)) - (V, TR(Y),,uR(Y)) is called a
(i) Micro continuous map [8] if f~1(K) is Micro closed in U for every Micro closed set K
inV.
(ii) Micro pre-continuous map [8] if f~1(K) is Micro pre-closed in U for every Micro closed
set KinV.
(iii) Micro semi-continuous map [8] if f~1(K) is Micro semi-closed in U for every Micro
closed set K inV.
(iv) Micro a-continuous map [5,7] if f~1(K) is Micro a-closed in U for every Micro closed
set KinV.
(v) Micro ag-continuous map [3] if f~1(K) is Micro ag-closed in U for every Micro closed
set KinV.
(vi) Micro g-continuous map [11] if f~1(K) is Micro g-closed in U for every Micro closed

setKin V.

3. Micro y-continuous maps and its properties:

In this section we introduce Micro y-continuous maps in Micro topological spaces and
derive the dependency and independency relations of newly defined map with already existing
Micro continuous maps. Also we derive the composition of mappings with respect to the newly
defined Micro y-continuous maps.

Definition 3.1 Let (U, TR (X)), Ug (X)) and (V, R (Y), ug (Y)) be two Micro topological spaces. A
map f: (U, g (X), ur (X)) = (V, 75 (Y), g (Y)) is called Micro y-continuous if f~1(K) is Micro
y-closed in U for every Micro closed set K in V.

Example 3.2 Let U ={a,b,c,d},U/R = {{a},{c},{b,d}}.LetX={b,d} € U. Then
R(X)={U, ¢, {b,d}}. Let u = {a} & 1 (X). Then uz(X) = {U, ¢, {a}, {b,d}, {a, b, d}} Micro y-
closed sets in U are ¢,{c}{a,c},{b,c} {c,d},{a,b,c}{ac,d} {b,c,d},ULet V =
{a,b,c,d},V/R = {{a}, {b},{c,d}}.Let Y={c,d} € V.Thentz(Y)={V, ¢, {c,d}}. Let pn={a}¢e
T (Y).Then ur(Y) ={V,¢,{a}, {c,d},{a, c,d}}. Micro closed sets in A%
are ¢,{b},{a,b},{b,c,d},V. Let f: (U, TR (X), ug (X)) - (V, TR (Y), Ug (Y)) be a map defined
by f(a) =a,f(b) =c, f(c) =b,f(d) = d. Therefore for every Micro closed set K in V,
f~Y(K) is Micro y-closed in U. Hence f is a Micro y-continuous map.

Proposition 3.3 Every Micro continuous map is Micro y-continuous but not conversely.
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Proof: Let f: (U, TR (X),,uR(X)) - (V, R (Y), ug (Y)) be a Micro continuous map. Let K be a
Micro closed set in (V,7g(Y), ug(Y)). Since f is Micro continuous, f~*(K) is Micro closed
in U. Since every Micro closed set is Micro y-closed, f~1(K) is Micro y-closed. Hence f is
Micro y-continuous.

Example 34 Let U ={a,b,c,d},U/R = {{a},{b},{c,d}}LetX={c,d} S U.Then
TR (X)={U, ¢, {c, d}}. Let u={a} & tx(X). Then ux(X)={U,¢,{a} {c,d},{a,c,d}}. Micro
closed sets in U are ¢,{b},{a, b}, {b,c,d},U. Micro wy-closed sets in U are
¢, {b},{a b}, {b,c} {bd}{a,b,c},{ab,d},{b,c,d},ULet V=1{ab,cd},V/R =
{{c},{d}.{a,b}}.LetY={a,b} S V. Then tx(Y)={V,¢,{a,b}}.Let u={d}¢&tx(Y). Then
ur(Y) ={V,¢,{d},{a, b},{a,b,d}}. Micro closed sets in V are ¢,{c},{c,d},{a,b,c},V. Let
£+ (U, T (0,12 (0) = (V,7(¥), 1 (V) be a map defined by f(a) = a, f(b) = c, f(c) =
b, f(d) = d.Then f is Micro y-continuous but not Micro continuous, since for the Micro closed
set{c,d}inV, f~1({c,d}) = {b,d} is not Micro closed in U.

Proposition 3.5 Every Micro semi-continuous map is Micro y-continuous but not conversely.
Proof: Let f: (U, TR (X), ug (X)) - (V, TR (Y), Ug (Y)) be a Micro semi-continuous map. Let K
be a Micro closed set in (V,7z(Y), ug(¥)). Since f is Micro semi continuous, f~*(K) is Micro
semi closed in U. Since every Micro semi-closed set is Micro y-closed, f~1(K) is Micro y-
closed. Therefore f is Micro y-continuous.

Example 3.6 Let U ={a,b,c,d},U/R = {{a},{c},{b,d}}.LetX={b,d} S U.Then
TR (X)Z{U, ¢, {b, d}}. Let pu={a}¢&tx(X). Then uz(X)={U,¢,{a},{b,d},{a,b,d}} Micro
semi-closed sets in U are ¢, {a},{c},{d,{a,c} {a,d},{a,c,d}, U. Micro y-closed sets in U are
¢, {c}{a,c},{b,c},{c,d},{a,b,c},{a,c,d} {b,c,d},ULet V={ab,cd},V/R =
{{c,d},{a,b}}.LetY={a,b,c} S V. Then 14 (Y)Z{V, ¢, {a, b}}. Let u={c} & tx(Y). Then
ur(Y) ={V,¢,{c},{a, b}, {a, b, c}}. Micro closed sets in V are ¢,{d} {c,d},{a b,d}, V. Let
£+ (U, e (0,12 (X0)) > (V,7(¥), 1 (V) be a map defined by f(a) = a, f(b) = b, f(c) =
d, f(d) = c.Then f is Micro y-continuous but not Micro semi continuous, since for the Micro
closed set {a,b,d}inV, f~*({a,b,d}) = {a, b, c} is not Micro semi-closed in U.

Proposition 3.7 Every Micro a-continuous map is Micro y-continuous but not conversely.
Proof: Let f: (U, Tr(X), Ug (X)) - (V, TR(Y),,uR(Y)) be a Micro a-continuous map. Let K be a
Micro closed set in (V, 7g(Y), ug(Y)). Since f is Micro a-continuous, f~1(K) is Micro a-closed
in U.Since every Micro a- closed set is Micro y-closed, f~1(K) is Micro y-closed. Therefore f

is Micro y-continuous.
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Example 3.8 LetU = {a,b,c,d},U/R = {{a},{c},{b,d}. LetX ={b,d} € U. Then 1x(X) =
{U, o, {b, d}}. Let u={a} & tx(X).Then ur(X) = {U, ¢,{a},{b,d},{a,b, d}}.Micro a-closed
sets inU are ¢,{c},{a,c},{b,c,d}, UMicro y-closed sets in U are
¢,{c}{a,c},{b,c} {c,d},{a,b,c} {a,c,d} {b,c,d}, ULetV ={a,b,c,d},V/R =

{{a}, {b}, {c,d}}.LetY={c,d} € V.Then tx(Y)={V,¢,{c,d}}.Let p={a} & tzx(Y). Then
ur(Y) ={V,¢,{a},{c,d},{a,c,d}}. Micro closed sets in V are ¢,{b},{a, b}, {b,c,d},V.Let
£+ (Ut (0,12 () = (V,7(¥), 1 (V) be a map defined by f(a) = d, f(b) = c, f(c) =
b,f(d) = a.Then f is Micro y-continuous but not Micro a-continuous, since for the Micro
closed set {a, b} inV, f~*({a, b}) = {c,d} is not Micro a-closed in U.

Remark 3.9 Micro y-continuous maps and Micro pre-continuous maps are independent as
observed from the following examples.

Example 3.10 Let U ={a,b,c,d},U/R = {{a}, {b},{c,d}}.Let X = {c,d} S U.Then t4(X) =
{U, o, {c, d}}. Let u = {a} € 15 (X).Then uz(X) = {U, ¢,{a},{c,d},{a,c, d}}. Micro pre closed
sets in U are ¢,{b},{c},{d},{a, b},{b,c},{b,d},{a,b,c},{b,c,d},U. Micro y-closed sets in U
are  ¢,{b},{a, b}, {b,c} {b,d},{ab,c},{a b,d},{b,c,d},U. Let V ={ab,cd}V/R=
{{c},{d}{a,b}}. Let Y ={c}SV. Then tx(Y) ={V, ¢, {c}}. Let u={b} & tz(Y). Then
ur(Y) ={V,¢,{b},{c},{b,c}}. Micro closed sets in V are ¢,{a,d}, {a,b,d},{a,c,d}, V. Let
£+ (U, e (0,12 (X)) > (V,7(¥), 1 (1)) be a map defined by f(a) = a, f(b) = d, f(c) =
b, f(d) = c.Then f is Micro y-continuous but not Micro pre-continuous, since for the Micro
closed set{a,c,d}inV, f~*({a,c,d}) = {a, b, d} is not Micro pre-closed in U.

Example 3.11 Let U = {a,b,c,d},U/R = {{c},{d},{a, b}}.Let X ={a,b} € U.Then 13(X) =
{U, ¢, {a, b}}. Letu = {d} & tx(X).Then uz(X) = {U, ¢,{d},{a,b},{a,b, d}}. Micro pre closed
sets in U are ¢,{b},{c},{d} {a,c},{b, c},{b,d},{a,b,c},{b,c,d},U. Micro y-closed sets in
Uare ¢,{b},{a,b},{b,c},{b,d},{a, b,c},{ab,d},{bc,d}, U Let V ={ab,cd}, V/R=
{{a},{c},{b,d}. Let Y ={b,d} S V. Then 1x(Y) = {V, ¢, {b, d}}. Let u = {a} & tx(Y). Then
ur(Y) ={V,¢,{a},{b,d},{a,b,d}}. Micro closed sets in V are ¢,{c},{a,c},{b,c,d}, V. Let
f: (U, TR (X), Ug (X)) - (V, Tr(Y), ur (Y)) be the identity map. Then f is Micro pre-continuous
but not Micro y-continuous, since for the Micro closed set {a,c} inV, f~1({a, c}) = {a, c} is not
Micro y-closed in U.

Remark 3.12 Micro y-continuous maps and Micro g-continuous maps are independent as
observed from the following examples.

Example 3.13 Let U ={a,b,c,d},U/R = {{a,b},{c,d}.Let X ={a,b,c} € U. Then t3(X) =
{U, ¢, {a, b}}. Let u = {c} & 1x(X).Then uz(X) = {U, ¢,{a},{a, b}, {a,b, c}}. Micro g-closed

130



Advances in Mathematical and Statistical Science
(ISBN: 978-93-91768-62-1)

sets in U are ¢,{d},{a,d},{b,d},{c,d},{a b,d} {a,c,d},{b,c,d}, U. Micro y-closed sets in
Uare ¢,{d} {a,d},{b,d},{c,d},{a,b,d},U. Let V ={a,b,c,d},V/R = {{a},{c},{b,d}}. Let
Y={b,d}cV. Then tx(Y)={V,¢,{b,d}}. Let p={a}&tr(Y). Then pr(¥)=
{V, ¢,{a},{b,d},{a,b, d}}. Micro closed sets in V are ¢,{c},{a,c},{b,c,d},V. Let
£+ (U, ta (0, 1 (X)) = (V. T (Y), 1 (¥)) be a map defined by f(a) = a,f(b) = b, f(c) =
d, f(d) = c.Then f is Micro g-continuous but not Micro y-continuous, since for the Micro
closed set {b,c,d}inV, f~1({b,c,d}) = {b, c,d} is not Micro y-closed in U.

Example 3.14 Let U ={a,b,c,d},U/R = {{a},{c},{b,d}Let X = {b,d} S U. Then t3(X) =
{U, ¢, {b, d}}. Letu = {a} & 1x(X). Then uz(X) = {U, ¢,{a},{b,d},{a,b, d}}.Micro g-closed
sets in U are ¢,{a},{a, b} {a,c}{a d} {b c},{c d},{a b, c},{a b,d},{a,c,d},{b c,d}U.
Micro w-closed sets in U are ¢,{c},{a,c},{b,c} {c,d}{a, b,c},{a c,d} {bc,d} ULet V =
{a,b,c,d},V/R = {{a,b},{c,d}LetY = {a,b,c} S V.Thentz(Y) ={V,¢,{a b}}. Let u = {c} &
tr(Y). Then pugr(Y)={V,¢,{c},{a, b}, {a,b,c}. Micro closed sets in V are
¢,{d},{c,d},{a,b,d},V. Let f: (U, TR(X),,uR(X)) - (V, TR(Y),,uR(Y)) be a map defined by
f@)=b,f(b)=a,f(c) =d,f(d) =c. Then f is Micro y-continuous but not Micro g-
continuous, since for the Micro closed set {d} in V, f~1({d}) = {c} is not Micro g-closed in U.
Remark 3.15 Micro y-continuous maps and Micro ag-continuous maps are independent as
observed from the following examples.

Example 3.16 Let U ={a,b,c,d},U/R = {{c},{d},{a, b}}.Let X ={a,b} S U. Thentz(X) =
{U,¢,{a,b}}. Let u = {d} & (X). Then uz(X) = {U, $,{d},{a b},{a, b}, {a b,d}}Micro ag-
closed sets in U are ¢,{c},{a,c},{b,c} {c,d},{a,b,c} {a, c, d},{b,c, d}, U. Micro y-closed sets
in U are ¢,{c},{d}, {a, b}, {c,d},{a,b,c},U. LetV = {a,b,c,d},V/R = {{a},{b},{c,d}}.LetY =
{c,d} € V.Thentx(Y) = {V, ¢,{c, d}}.Let u={a} & tx(Y). Then ur(Y) =
{V,¢,{a},{c,d},{a,c,d}}. Micro closed sets inV are ¢, {b} {a b}, {b,c,d},V.Let
£+ (U, e (0,12 (0)) = (V,7(¥), 1 (V) be a map defined by f(a) = a, f(b) = c, f(c) =
b,f(d) =d. Then f is Micro ag-continuous but not Micro y-continuous, since for the Micro
closed set {a, b} inV, f~1({a, b}) = {a, c} is not Micro y-closed in U.

Example 3.17 Let U ={a,b,c},U/R = {{a},{b,c}}.Let X = {a,b} S U, rx(X) = {U, ¢, {a}}.
Let u={b}¢& 1x(X). Then uz(X) = {U, ¢,{a},{b},{a,b}}. Micro ag-closed sets in U are
¢,{c} {a,c},{b,c}, U. Micro y-closed sets in U are ¢,{a},{b},{c}{a,c},{b,c}U. Let V =
{a,b,c},V/R = {{c},{a,b}}. Let Y ={a,b} S V. Then 1x(Y) ={V,¢,{a b}}. Let u={c} ¢
Tr(Y). Then pgr(Y) ={V,¢,{c},{a, b}}. Micro closed sets in V are ¢,{c},{a b}, V. Let
f: (U, TR(X),,uR(X)) - (V, TR(Y),,uR(Y)) be a map defined by f(a) = b, f(b) =¢, f(c) = a.
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Then f is Micro y-continuous but not Micro ag-continuous, since for the Micro closed set {c}
inV, f71({c}) = {b} is not Micro ag-closed in U.
Remark 3.18 The following diagram shows the dependency and independency relations of

Micro y-continuous map with already existing various Micro continuous maps.

Micro continuous map Micro pre-
continuous map

Micro-continous
map

Micro a-continuous »| Micro y-continuous map <—|__>
map

Micro ag-continuous
Micro semi- map

continuous map

Remark 3.19 The composition of two Micro y-continuous maps need not be a Micro y-

continuous map as seen from the following example.

Example 3.20 Let U = {a,b,c,d},U/R = {{a}, {b},{c, d}}. Let X = {c,d} € U.Then 13(X) =
{U, ¢, {c, d}}. Let u = {a} & 1x(X). Then ug(X) = {U, ¢, {a},{c,d}, {a,c, d}}Micro y-closed
sets in U are ¢, {b},{a, b}, {b,c},{b,d},{a,b,c},{a b,d},{b,c,d},U.LetV ={a,b,c,d},V/R =
{{c},{d},{a,b}}. Let Y = {a,b} S V. Then 13(Y) = {V, ¢, {a, b}}. Let u = {d} & 1x(Y). Then
ur(Y) = {V, ¢,{d},{a,b},{a, b} {a,b, d}}.Micro closed sets in V are ¢, {c},{c,d},{a,b,c},V.
Micro y-closed sets in V are ¢, {c},{d},{a, b},{c,d},{a,b,c},V. Let W ={a,b,c,d},W/R =
{{a}, {c},{b,d}}. Let Z=1{bd}SW,z(2) ={W,¢,{b,d}}. Let u={b}¢&1z(Z).Then
ugr(Z) = {W, ¢,{b},{b, d}}. Micro closed sets in W are ¢,{a,c}, {acd},W. Let
f: (Ut (0O, ur (X)) > (V, 7o (1), ur (V) and g: (V,7(V), ur (V) = (W, 7x(2), ur(2)) be
the maps defined by f(a) =a,f(b) =c¢,f(c) =b,f(d) =d andg(a) = a,g(b) =c,g(c) =
d,g(d) =b. Then both fand g are Micro wy-continuous but their composition g o
f:(U,tx(X), ur (X)) > (W, 7x(Z), ur(2)) is not Micro y-continuous, since for the Micro
closed set {c} in W, (g° f)*({a,c}) = fX (g 1{a,c})) = f~Ha, b} = {a, c} is not Micro y-

closed in U.
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Theorem 3.21 Let f: (U, TR (X), Ug (X)) - (V, r(Y), ug (Y)) be a Micro y-continuous map
andg: (V, g (V), ug (V) » (W,7x(2),ug(Z)) be a Micro continuous map, then
gof:(U,tr(X), ug (X)) » (W, 7x(2), ug(Z)) is a Micro y-continuous map.

Proof: Let K be a Micro closed set in (W, tr(Z2), Ug (Z)). Since g is Micro continuous, g~ 1(K)
is Micro closed in (V, Tr(Y), ur (Y)). Since f is Micro y-continuous, (geo
£)7HK) = f1(g~1(K)) is Micro y-closed. Hence g o f is Micro y-continuous.

Definition 3.22 A Micro topological space (U, Tg(X), ug(X)) is said to be a Micro semi-T}3 -
space (briefly Mic-semi-Ti/3 -space) if every Micro y-closed subset of (U, Tz(X), uz (X)) is
Micro semi-closed in (U, Tz (X), ug (X)).

Definition 3.23 A Micro topological space (U, Tg(X), ug(X)) is said to be a Micro semi-Ti -
space (briefly Mic-semi-Ti -space) if every Micro sg-closed subset of (U, Tz(X), ug(X)) is
Micro semi-closed in (U, Tz (X), ug (X)).

Definition 3.24 A Micro topological space (U, Tz(X), ug(X)) is said to be a Micro T, -space
(briefly Mic- T -space) if every Micro y-closed subset of (U, Tz (X), ug (X)) is Micro closed in

(U, tr(X), pr (X))
Theorem 3.25 Let f: (U, TR (X), Ug (X)) - (V, TR (Y), ug (Y)) be a Micro y-continuous map and

if (U ,TR(X), ug (X )) is a Micro semi-T13 -space then f is a Micro semi continuous.

Proof: Let K be a Micro closed set in (V, TR (Y), Ug (Y)). Since f is Micro y-continuous, f~1(K)
is Micro y-closed in (U, Tr(X), Ug (X)). Since (U, TR (X), Ug (X)) is a Micro semi-Ti/ space,
f~1(K) is Micro semi-closed in(U, tg (X), iz (X)). Hence f is Micro semi-continuous.

Theorem 3.26 Let f: (U, Tr(X), Ug (X)) - (V, TR (Y), ug (Y)) be a Micro y-continuous map and
if (U, tg(X), g (X)) is a Micro semi-T}2 -space then f is Micro semi continuous.

Proof: Let K be a Micro closed set in (V, R (Y), Uug (Y)). Since f is Micro y- continuous,f ~1(K)
is Micro y-closed in (U, TR (X), ug (X )). Since every Micro y-closed set is Micro sg-closed and
(U ,TR(X), ug (X )) is a Micro semi-Tip-space, f~1(K) is Micro semi-closed in
(U ,Tr(X), up (X )). Hence f is Micro semi-continuous.

Theorem 3.27 Let f: (U, TR (X), Ug (X)) - (V, TR (Y), ug (Y)) be a Micro y-continuous map and
if (U, tg(X), g (X)) is a Micro , Te-space then f is Micro continuous.

Proof: Let K be a Micro closed set in (V, TR (Y), Ug (Y)). Since f is Micro y- continuous,f ~1(K)
is Micro y-closed in (U, Tg(X), g (X)). Since (U, 1 (X), ug(X)) is a Micro yTe-space, f~1(K)

is Micro closed in(U, TR (X), ug (X )). Hence f is Micro continuous.
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Theorem 3.28 Let (U, Tr(X), Ugr (X))and (V, TR (Y), ug (Y)) be any two maps. Then
f: (U, tx(X), urg (X)) = (V, 7 (Y), ug(Y)) is Micro y-continuous if and only if f~*(B)is Micro
y-open in (U, Tr(X), Ug (X)) whenever B is a Micro open set in (V, r(Y), ug (Y)) .

Proof: Let f be a Micro y-continuous map and B be Micro open in (V, TR (Y), ugr (Y)) . Then B¢
is Micro closed in(V, TR (Y), ug (Y)). By hypothesis  f~1(B€) is Micro wy-closed in
(U, Tr(X), Ug (X)), i.e.,[f"1(B)]¢is a Micro y-closed set in (U, TR (X),yR(X)). Hence f~1(B) is
a Micro y-open in (U, 7z (X), ug(X)). Conversely, suppose f~(B) is a Micro y-open set in
(U, TR (X), U (X)) whenever B is Micro open in (V, TR (Y), ug (Y)). Let H be a Micro closed set
in (V,7g(Y), ug(Y)). Then HC is Micro open set in (V, 7g(Y), ug(Y)). By assumption f~(H)is
Micro y-open in (U, tg(X), ug (X)), i.e., [f ~1(H)]®is a Micro y-open set in (U, Tg(X), tr(X)).

Then f~1(H) is Micro y-closed in (U, 7z(X), #r(X)). Hence f is a Micro y-continuous map.

4. Micro y-Irresolute Maps and its Properties:

This section presents the definition and properties of Micro y-irresolute maps.
Definition 4.1 A map f: (U, TR (X), Ug (X)) - (V, TR (Y), ug (Y)) is called Micro y-irresolute if
f1(K) is Micro y-closed in U for every Micro y- closed set K in V.
Proposition 4.2 Every Micro y-irresolute map is Micro y-continuous but not conversely.
Proof: Let f: (U, TR (X),,uR(X)) - (V, TR (Y), ug (Y)) be a Micro y-irresolute map. Let K be a
Micro closed set in (V, 7 (Y), ug(Y)).Since every Micro closed set is Micro-y-closed and f is
Micro y-irresolute,f ~1 (K) is Micro y-closed. Hence f is Micro y-continuous.
Example 4.3 Let U ={a,b,c,d},U/R = {{a},{b},{c,d}.Let X = {c,d} S U. Then t3(X) =
{U, o, {c, d}}. Let u = {a} & tx(X).Then uz(X) = {U, ¢,{a},{c,d},{a,c, d}}. Micro closed sets
in U are ¢,{b},{a, b},{b,c,d},U. Micro y-closed sets in Uare
¢,{b},{a, b}, {b,c},{b,d},{a,b,c}{a,b,d},{b,cd}U. Let V ={a,b,c,d},V/R =
{{c},{d},{a,b}}.Let Y ={a,b} S V. Then tx(Y) = {V, ¢, {a, b}}. Let u ={d} & tx(Y). Then
ur(Y) = {V, ¢,{d},{a,b},{a,b, d}}. Micro closed sets in V are ¢, {c},{c,d},{a,b,c},V. Micro
y-closed sets in V are ¢,{c},{d},{a, b} {c,d},{a,b,c},V. Let f: (U, TR (X),yR(X)) -
(V, 7 (Y), ur(Y)) be a map defined by f(a) =a,f(b) =c,f(c) =b,f(d) =d. Then f is
Micro y-continuous but not Micro y-irresolute, since for the Micro y-closed set {d} inV,

f~1({d}) = {d} is not Micro y-closed in U.
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Theorem 4.4 Letf: (U, TR (X), Ug (X)) - (V, r(Y), ug (Y)) be a Micro w-irresolute map
andg: (V, g (V), ug (V) » (W,1x(2), ug(Z2)) be a Micro -irresolute map then
gofi(U,tx(X),uzg (X)) » (W, 7x(2), ur(2)) is a Micro y-irresolute map.

Proof: Let K be a Micro y-closed set in (W, TR(Z2), Ug (Z)). Since g is Micro y-irresolute,
g r(K) is Micro wy-closed in (V,7z(Y),ug(Y)). Since f is Micro y-irresolute,
(g° HHK) = f*(g7*(K)) is Micro y-closed. Hence g o f is Micro y-irresolute.

Theorem 4.5 Letf: (U, TR (X),uR(X)) - (V, TR (Y), Uug (Y)) be a Micro w-irresolute map
andg: (V, TR (Y),MR(Y)) - (W, tr(Z2), Ug (Z)) be a Micro y-continuous map then
gof:(U,tr(X), ug (X)) » (W, 7x(2), ug(Z)) is a Micro y-continuous map.

Proof: Let K be a Micro closed set in (W, Tr(2), ur(Z )). Since g is Micro y-continuous,
g Y(K) is Micro wy-closed in (V,7x(Y),ug(Y)). Since f is Micro y-irresolute,
(g° HHK) = f(g~*(K)) is Micro y-closed. Hence g o f is Micro y-continuous.

Theorem 4.6 Let f: (U, Tr(X), Ug (X)) - (V, TR (Y), ug (Y)) be a Micro y-irresolute map and if
(U, TR(X), ug (X )) is Micro semi-Tis; -space then f is a Micro semi continuous map.

Proof: Let K be a Micro closed set in (V, TR (Y), Ug (Y)). Since every Micro closed set is Micro
y-closed and f is Micro -irresolute, f~1(K) is Micro y-closed in (U ,TrR(X), ug (X )).
Since(U ,TR(X), ug (X )) is a Micro semi-Tis-space, f~1(K) is Micro semi-closed in
(U, TR (X), ug (X )). Hence f is Micro semi-continuous.

Theorem 4.7 Let f: (U, Tr(X), Ug (X)) - (V, TR (Y), ug (Y)) be a Micro y-irresolute map and if
(U, 7r(X), ugr (X)) is Micro semi-T12 -space then f is a Micro semi continuous map.

Proof: Let K be a Micro closed set in (V, Tr(Y), Ug (Y)). Since every Micro closed set is Micro
y-closed and f is Micro y-irresolute, f~%(K) is Micro y-closed in (U, 7x(X), ug(X)). Since
every Micro y-closed set is Micro sg-closed and (U ,TR(X), ug (X )) is a Micro semi-T12 -space,
f1(K) is Micro semi-closed in (U, 7z(X), ur(X)). Hence f is Micro semi-continuous.
Theorem 4.8 Let f: (U, TR (X), Ug (X)) - (V, TR (Y), ug (Y)) be a Micro y-irresolute map and if
(U ,TrR(X), ug (X )) is a Micro T. -space then f is a Micro continuous map.

Proof: Let K be a Micro closed set in (V, TR (Y), Ug (Y)). Since every Micro closed set is Micro
y-closed and f is Micro w-irresolute, f~1(K) is Micro y-closed in (U,7z(X), ur(X)).
Since (U, TR(X),,uR(X)) is a Micro yTe-space, f~1(K)is Micro closed in (U, TR(X),,uR(X)).

Hence f is Micro continuous.

135



Bhumi Publishing, India

Conclusion:

The study of Micro y-continuous maps and Micro y-irresolute maps in Micro topological

spaces have been initiated in this article. We have presented the definition of Micro y-continuous

maps and Micro y-irresolute maps. Later, we have derived the vital properties and interrelations

are obtained substantially with counter examples.
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