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PREFACE 

We are delighted to publish our book entitled "Advances in 

Mathematical and Statistical Science". This book is the compilation of 

esteemed articles of acknowledged experts in the fields of basic and applied 

mathematical science. 

This book is published in the hopes of sharing the excitement found in 

the study of mathematics and statistical science. Mathematical science can 

help us unlock the mysteries of our universe, but beyond that, conquering it 

can be personally satisfying. We developed this digital book with the goal of 

helping people achieve that feeling of accomplishment. 

The articles in the book have been contributed by eminent scientists, 

academicians. Our special thanks and appreciation goes to experts and 

research workers whose contributions have enriched this book. We thank our 

publisher Bhumi Publishing, India for taking pains in bringing out the book.  

Finally, we will always remain a debtor to all our well-wishers for their 

blessings, without which this book would not have come into existence. 

- Editors 
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FACTORIZATION OF COMPLETE GRAPH AND ITS APPLICATION 

Chandramani I* and Sakthivadivu M 

Department of Mathematics, 

Avinashilingam Institute for Home Science and Higher Education for Women,   

Coimbatore – 641 043 

*Corresponding author E-mail: icmpadhu@gmail.com 

 

Abstract:  

Factorization of a graph G is a set of spanning subgraphs of G that are pairwise edge 

disjoint. A graph is called k-factorizable if it can be represented as a union of edge-disjoint k 

factors. In this paper we obtain factorization of complete graph and its application.  

AMS Subject Classification: 05C69  

Keywords: factorization, factors  

 

1. Introduction  

Graphs are the mathematical structure which consists of vertex set V and edge set E. It 

is used to model pair-wise relation between objects from a certain collection. Vertices 

are represented as points in the plane edges are represented as the line segments connecting 

them. Graphs are ever-present miniature of both from nature and man-made structures.  

When any two vertices are joined by more than one edge, the graph is called a multi-

graph.  A graph without loops and with at most one edge between any two vertices is called a 

simple graph. Unless stated otherwise, graph is assumed to refer a simple graph. When each 

vertex connected by an edge to every other vertex, the graph is called a complete graph.   

If two graphs G1 and G2 have the same vertex set, then the union G1 ∪ G2 has the same 

vertex  set and the edge set E (G1 ∪ G2) is E(G1) ∪ E(G2). If E(G1) ∩ E(G2) = ∅ then E(G1) ∪ 

E(G2)  may be termed the edge-disjoint union of E(G1) and E(G2). If two graphs G1 and G2 

have disjoint vertex sets then the union of G1 and G2 is V (G1 ∪ G2) =V(G1) ∪ V(G2). Partition 

[7] of G into edge - disjoint sub-graphs G1, G2... Gr such that E(G) = E(G1) ∪ E(G2) ∪ ... ∪ 

E(Gr)  is called decomposition of G and we write G = G1 ⊕ G2 ⊕ ... ⊕Gr. 

If every pair of vertices are joined by an edge, we say that the graph is complete and if, 

in addition, |V (G)| = n, we denote this graph by Kn.  

There is a vast body of work on factors and factorizations and this topic has much in 

common with other areas of study in graph theory. For example, factorization significantly 
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overlaps the topic of edge coloring.Indeed, any color class of a proper edge coloring of a graph is 

just a matching. Moreover, the Hamilton cycle problem can be viewed as the search for 

a connected factor [1].  

In the most general sense, a factor of a graph G is just a spanning sub-graph of G and a 

graph factorization of G is a partition of the edges of G into factors.  

A factor F described in terms of its degrees will be called a degree factor. For example, if 

a factor F has all its degrees equal to 1, it is called a 1-factor (or a perfect matching). If the factor 

is described in some other graphical concept, it is called a component factor. If the edge set of a 

graph G can be represented as the edge-disjoint union of factors F1, F2, F3…FK.  We refer to {F1, 

F2, F3…FK} as a factorization of graph G.  

Factor of a graph G is a spanning sub-graph, k-factor of a graph is a spanning k-regular 

sub graph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A 

graph G is said to be k-factorable if it admits a k-factorization.  

1-factor is a sub-graph of a graph G where each of the vertices is of degree one and 

union of these sub-graphs forms the original graph. Suppose K4 is a complete graph then the 1-

factor as follows  

 

2. Factorization of Complete Graph   

Theorem 2.1:  

The Complete graph K6v-2, v≥ 1has 2v−1 number of 3-factor sub-graphs. 

 Proof:  

Let us use induction method to prove this theorem. Consider the complete graph K6v-2 

with v= 1. Then we have the complete graph K4, which has 4 vertices and 6 edges. So, it has 

one 3-factor, which means it has one three regular sub-graph. Therefore, the theorem is true 

for v= 1. Next, we should prove that the theorem is true for v=2.If v=2, then we get a 

complete graph K10, with 10 vertices and 45 edges. For this K10 the number of three factor sub-

graphs is clearly three, and each three factor sub-graph has fifteen edges. As a result, the 

theorem holds for v=2.  
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= 

  

 

If the process continues as same then the case is true for v=n. So we have the complete 

graph as K6n-2, in which the number of vertices is 6n−2 and total number of 3-factor sub-graphs 

are  2n−1. The theorem is true for v=n. Now our aim is to prove that the theorem is true for  

v=n+1.The following step is to prove that the theorem is true for v=n+1.Take v=n+1 then  we get 

the graph K6n+4. Let E(G) be the edge set of K6n+4.we must give the partition of the  edge set 

E(G) into the 3-factors. Let V(G) ={v1, v2, v3…vn, v6n+4} be the vertex set of K6n+4.   

The set G={G1, G2…GK} be the spanning sub-graph of K6n+4. A Graph K6n+4 is said to be  

factorable into G1, G2…GK if each Gi where i =1,2,3…. k is a spanning sub-graph of  K6n+4.Then 

the set E(G) ={E(G1), E(G2), E(G3), …E(Gi)} is pair-wise disjoint.  Also, we get the following 

form 

 

For the complete graph K4 (K6v-2, where v= 1) there exist one (2v−1=2(1)−1=1) 3-factor  

sub-graph. For K10 (K6v-2, where v=2) there exist three (2v−1=2(2)−1=3) 3-factor sub graphs. 

For K16 (K6v-2, where v=3) there exist five (2v−1=2(3)−1=5) 3-factor sub-graph  and so on. For 

K6n-2 (K6v-2, where v=n) there exist 2n−1 (2v−1=2n−1) 3-factor sub graphs. So for K6n+4 (K6v-2, 

where v=n+1) there exist 2n+1(2v−1=2(n+1)−1=2n+1)  3-factor sub-graphs.  

Therefore, a complete graph with 6n+4 vertices is factorized into 2n+1number of 3-

factor  sub-graphs and this 3-factorization partitions the edge set E(G) into disjoint 3-factors.  As 

a result, the theorem is true for all v≥ 1.  
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Theorem 2.2:  

The Complete graph K6v where v≥ 1has 2v−1 number of 3- factor sub-graph and one 2-

factor sub-graph.  

Proof:  

With the use of the mathematical induction method, we will establish this theorem. 

Consider the Complete graph K6v with v=1. Then there is the complete graph K6, which has six 

vertices and fifteen edges. It has one 2-factor sub-graph and one 3-factor sub-graph, and when 

these two graphs are combined, we get K6. As a result, the theorem holds for v=1.  

    

 

Next, we should prove that the theorem is true for v=2.When we put v=2 we get the 

complete graph K12 which has 12 vertices and 66 edges. There are exactly three 3-factor sub 

graphs and one 2-factor sub-graph. There are 18 edges in each three-factor graph and 12 edges in 

each two-factor graph. As a result, the theorem holds for v=2.  

If this process continues in this manner, then the theorem is true for v=n. So, we 

have complete graph K6n, in which the number of vertices is 6n and the total number of 3-

factor sub-graphs are 2n−1 and there exist one 2-factor sub-graph. Then the theorem is true for v 

= n. Our aim is to prove that theorem is true for v = n+1.  

If we substitute v = n+1, then we get K6n+6. Let E(G) be the edge set of K6n+6. We have 

to give the partition of the edge set E(G) into the 3-factors and 2-factor. Let V(G) ={ v1, v2, 

v3,…vn,v6n+6 } be the vertex set of K6n+6 .The set G={G1,G2 ,…GK} be the spanning sub graph of 

K6n+6 . A graph K6n+6 is said to be factorable into G1, G2 …GK if each Gi where i=1,2,3…. k is a 

spanning sub-graph of K6n+6. The set E(G) ={E(G1), E(G2), E(G3),  …E(Gi)} is pair-wise 

disjoint.   

For the complete graph K6 (K6v, where v= 1) there exist one (2v−1=2(1)−1=1) 3-factor  

sub-graph and one 2-factor sub-graph. For K12 (K6v, where v=2) there exist three 

(2v−1=2(2)−1=3) 3-factor sub-graphs and one 2-factor sub-graph. For K18 (K6v, where v=3) there 

exist five (2v−1=2(3)−1=5) 3-factor sub-graphs and one 2-factor sub-graph  and so on. For K6n 
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(K6v, where v=n) there exist 2n−1 (2v−1=2n−1) 3-factor sub-graphs  and one 2-factor sub-graph. 

For K6n+6 (K6v where v=n+1) there exist 2n+1  (2v−1=2(n+1)−1=2n+1) 3-factor sub-graphs and 

one 2-factor sub-graph.  

Therefore, a complete graph with 6n+4 vertices is factorized into 2n+1 number of 3-

factor sub-graphs and one 2-factor sub-graph. This 3-factorization and 2-factorization partitions 

the edge set E(G) into disjoint 3-factors and 2-factors  

Hence the theorem is true for all v≥ 1.   

 

Theorem 2.3:  

The Complete graph K6v+2, where v≥ 1has 2v number of 3- factor sub-graphs and one 1- 

factor sub-graph.  

Proof:  

With the use of the mathematical induction method, we will verify this theorem. Consider 

the complete graph K6v+2 with v=1 there is the complete graph K8, which has eight vertices 

and twenty-eight edges. It has one 1-factor sub-graph and two 3-factor sub- graphs, and the 

union of these two graphs yields K8. As a result, the theorem holds for v=1.  

Next, we should prove that the theorem is true for v=2. Let v=2 then we get complete 

graph K14 with 14 vertices and 91 edges. It is obvious that the complete graph K14 has four 3-

factor sub-graphs and one 1-factor graph. Each three-factor sub-graph has 21 edges, while 

each factor graph has seven. As a result, the theorem is true for v=2.Let us assume that 

the theorem is true for v=n. The complete graph thus takes the form K6n+2, where the number 

of vertices is 6n+2 and the number of 3- factor sub-graphs is 2n and one 1-factor sub-graph. 

The theorem is true for v=n. Our aim is to prove that theorem is true for v=n+1.   

Now, if we substitute v=n+1 then the complete graph becomes K6(n+1)+2, with the number 

of  vertices equaling 6(n+1)+2=6n+8. Let E(G) be the edge set of K6n+8.We have to give the  

partition of the edge set E(G) into the 3-factors and 1-factor.V(G) ={v1, v2 , v3,……vn,v6n+8 }  be 

the vertex set of K6n+8.The set G={G1,G2 ,…GK} be the spanning sub-graph of K6n+8 . A  Graph 

K6n+8 is said to be factorable into G1,G2 ,…..GK if each Gi where i=1,2,3….k is a  spanning sub-

graph of K6n+8.The set E(G) ={E(G1), E(G2), E(G3), …E(Gi)} is pair-wise  disjoint.   

For the complete graph K8 (K6v+2, where v= 1) there exist two (2v=2(1)=2) 3-factor sub 

graph and one 1-factor sub-graph. For K14 (K6v+2, where v=2) there exist four (2v=2(2)=4) 3-

factor sub-graphs and one 1-factor sub-graph. For K20 (K6v+2, where v=3) there exist five 

(2v=2(3)=6) 3-factor sub-graphs and one 1-factor sub-graph and so on. For K6n+2 (K6v+2, where 

v=n) there exist 2n (2v=2n) 3-factor sub-graphs and one 1-factor sub-graph. For  K6n+8 (K6v+2, 
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where v=n+1) there exist 2n+2 (2v=2(n+1)=2n+2) 3-factor sub-graphs and  one 1-factor sub-

graph.  

Therefore, a complete graph with 6n+8 vertices is factorized into 2n+2 number of 3-

factor sub-graphs and one 1-factor sub-graph. This 3-factorization and 2-factorization partitions 

the edge set E(G) into disjoint 3-factors and 1-factors.   

 

Theorem 2.4:  

For the Complete graph K4v+1, v≥1, there exist v number of 4-factor sub-graph.  

Proof:  

We prove this theorem with the help of mathematical induction method. Here, the 

complete  graph K4v+1 with v=1, we get K5, which has five vertices and ten edges. Then the 

complete  graph K5 itself becomes one 4-factor sub-graph of K5. Thus, a result, the theorem holds 

for  v=1. Next, we should prove that the theorem is true for v=2.Take v=2, we get a complete  

graph K9, with 9 vertices and 36 edges. The number of 4-factor sub-graphs is clearly two, and  

each 4-factor sub-graph has eighteen edges. As a result, the theorem is true for v=2.  

If the process continues as same then the case is true for v=n. So we have complete graph 

as  K4n+1, in which the number of vertices is 4n+1 and the total number of 4-factor sub-graphs  is 

v. The theorem is true for v=n. Our aim is to prove that the theorem is true for v=n+1. 

Now, if we take v=n+1 then we get K4(n+1) +1. Let E(G) be the edge set of K4n+5.we have 

to  give the partition of the edge set E(G) into the 4-factors. V(G) ={ v1, v2, v3……vn, v4n+5 } be  

the vertex set of K4n+5. The set G={G1, G2 …GK} be the spanning sub-graph of K4n+5. A  Graph 

K4n+5 is said to be 4-factorable into G1, G2 ...GK if each Gi where i=1,2,3…. k is a  spanning sub-

graph of K4n+5. then E(G) ={E(G1), E(G2), E(G3), …E(Gi)} is pair-wise  disjoint.   

For K5(K4v+1, where v= 1) there exist one (v=1) 4-factor sub-graph. For K9(K4v+1, where  

v=2) there exist two (v=2) 4-factor sub-graphs.K13 (K4v+1, where v=3) there exist three (v=3) 4-

factor sub-graphs and so on. For K4n+1(K4v+1, where v=n) there exist n (v=n) 4- factor sub-

graphs.K4n+5 (K4v+1, where v=n+1) there exist n+1 (v=n+1) 4-factor sub graphs.Therefore, a 

complete graph K4n+5 is factorized into n+1 number of 4-factor sub graphs and this 4-

factorization partitions the edge set E(G) into disjoint 4-factors.   

 

Theorem 2.5:  

The Complete graph K4v+3 , v≥ 1has v number of 4-factor sub-graphs and one 2- factor 

sub graph.  
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Proof:  

We prove this theorem with the help of mathematical induction method. Consider, the 

complete graph K4v+3, v≥ 1and it has 4v+3 number of vertices.  

Suppose v=1, then there is the complete graph K7, which has seven vertices and twenty-

one edges. Obviously, it has one 4-factor graph and one 2-factor sub-graph and union of 

these two graphs gives us K7. As a result, the theorem holds for v=1.Next, we should prove 

that the theorem is true for v=2. If we put v=2, then we have the complete graph K11 in which 

the number of vertices equals to 11 and the number of edges equals to 55. Clearly it has two 4- 

factor sub-graphs and one 2-factor sub-graph. Hence the theorem is true for v=2.  

If this process continues in this manner then the theorem is true for v=n. so we have  

complete graph K4n+3,in which the number of vertices is 4n+3 and the total number of 4- factor 

sub-graphs are n and there exist one 2-factor sub-graph. Then theorem is true for v = n.  Our aim 

is to prove that theorem is true for v=n+1.  

Now, if we substitute v=n+1 then the complete graph becomes K4(n+1)+3, with the number 

of  vertices equals to 4(n+1)+3=4n+7. Let E(G) be the edge set of K4n+7.we have to give the  

partition of the edge set E(G) into the 4-factors and 2-factor. V(G) ={ v1, v2, v3……vn, v4n+7 } be 

the vertex set of K4n+7. The set G={G1, G2…GK} be the spanning sub-graph of K4n+7. A  Graph 

K4n+7 is said to be factorable into G1, G2….GK if each Gi where i=1,2,3….k is a  spanning sub-

graph of K6n+8 . The set E(G) ={E(G1), E(G2), E(G3), …E(Gi)} is pair-wise  disjoint.   

For the complete graph K7 (K4v+3, where v= 1) there exist one (v=1) 4-factor sub-graph 

and  one 2-factor sub-graph. For K11 (K4v+3, where v=2) there exist two (v=2) 4-factor sub graphs 

and one 2-factor sub-graph. For K18 (K4v+3, where v=3) there exist three (v=3) 4- factor sub-

graphs and one 2-factor sub-graph and so on. For K4n+3 (K4v+3 , where v=n) there  exist n (v=n) 3-

factor sub-graphs and one 2-factor sub-graph. For K4n+7 (K4v+3 where  v=n+1) there exist n+1 

(v=n+1) 3-factor sub-graphs and one 2-factor sub-graph.  

Therefore, a complete graph K4n+7 is factorized into n+1 number of 4-factor sub-graphs 

and  one 2-factor sub-graph. This 4-factorization and 2-factorization partitions the edge set E 

(G)  into disjoint 4-factors and 2-factors  

 

3. Application of complete graph factorization   

Graph is an abstract idea of representing any objects which are connected to each other in 

a form of relation. Graph partition is a technique to distribute the whole graph data as a 

disjoint subset to a different device. The need of distributing huge graph data set is to process 

data efficiently and faster the process of any graph related applications. It always aims to reduce 
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the communication between machines in their distributed environment and distribute vertices 

roughly equal to all the machines [2].  

3.1. Hamiltonian circuit  

A graph structures can be extended by assigning a weight to each edge of the graph. 

Graphs with weights or weighted graphs are used to represent structures in which pair wise 

connections have some numerical values. For example, if a graph represents a road network, the 

weight could represent the length of the road. A digraph with weighted edges in the context of 

graph theory is called a network. In case of modeling and analyzing the traffic signals networks.   

In 2010, Dutta et al developed some theorems about the application of regular planar sub 

graphs of the complete graphs and he studied various types of Hamiltonian circuits and 

edge disjoint Hamiltonian circuits of different types of regular sub-graphs of complete graphs. A  

Hamiltonian circuit in a graph is a closed path that visits every vertex in the graph exactly once. 

(Such a closed loop must be a cycle). A Hamiltonian circuit ends up at the vertex from where it 

started [8, 9].  

Hamiltonian graphs are generally found to be very important in graph theory in which 

one must study the Hamiltonian circuit with weights related to minimum distance, time, cost etc. 

from the weighted graphs. Finding the Hamiltonian circuit with least cost route optimization 

problem in graph theory in which the nodes (cities) of a graph are connected by edges (routes), 

where the weight of an edge indicates the distance between two cities. The problem is to find a 

path that visits each city once, returns to the starting city, and minimize the distance traveled 

[6,10].  

Here we formulate algorithm for its application. That is to find the Hamiltonian circuit 

with least distance for the given complete graph in which nodes (schools) are connected by the 

edges (route) where the weight of an edge indicates the distance between two schools. When we 

do the factorization, the given complete graph is reduced into regular sub-graph. From the 

obtained factors we can find the Hamiltonian circuit with least distance.  

 

3.2. Algorithm:  

This case includes the complete graph of the form K4v+3, K4v+1 where v≥ 1, having the odd 

number of vertices.  

Input:  

Let G be the complete graph having vertex 4v+3 or 4v+1, v≥ 1.  

Output:  

To find the Hamiltonian Circuit with least distance.  
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Step1:  

Assign weights for all the non-repeated edges for the complete graph K4v+3, where v≥ 1. 

Step2:  

If there exist at least one 4-factor sub-graph and one 2-factor sub-graph for graph having 

4v+3 number of vertices, then select two edges which should be minimum weighted.  

Step3:  

Draw the 2-factor sub-graph with the minimum weighted edges obtained in step2.  

Step4:  

Find the Hamiltonian circuit with the least distance. Stop the procedure. Suppose that the 

complete graph is of the form K4v+1, where v≥ 1then go to step 5. 

Step 5:  

Assign the weights for all the non-repeated edges for the complete graph K4v+1, where v≥ 

1.  

Step 6:  

If there exist at least one 4-factor sub-graph having 4v+1 vertex, then select four edges 

which should be minimum weighted among all the weighted edges.  

Step7:  

Draw the 4-factor sub-graph with the minimum weighted edges obtained in step number 

6, and then find the Hamiltonian circuit with the least distance.  

Example:  

The squads are going for an inspectional visit at Government and Corporation Schools 

located in the Coimbatore district.  

Here are the schools and the distance (in KM) between each school is tabulated. There 

are seven alphabets assigned to represent the name of the schools.  

A-Corporation Girls Higher Secondary School, R.S. Puram  

B- Corporation Girls Higher Secondary School, Ram Nagar  

C-- Corporation Girls High School, Sundakamuthur road, Selvapuram.  

D-C.C.H. S, Variety Hall Road, Town Hall  

E- Coimbatore Corporation Girls Secondary School, Arokiyasamy road, R.S. Puram  

F-Government Girls Higher Secondary School, ThermuttiVeethi, Town Hall  

G- Coimbatore Corporation Girls Secondary School, Oppanakarastreet, Town hall  
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SCHOOL A B C D E F G 

A - 1.9 3.5 3.2 1.1 2.3 3.3 

B 1.9 - 2.4 3.3 2.5 4.3 3 

C 3.5 2.4 - 3 3.1 2.6 1.2 

D 3.2 3.3 3 - 1.3 1.2 1.5 

E 1.1 2.5 3.1 1.3 - 2.7 3.5 

F 2.3 4.3 2.6 1.2 2.7 - 0.9 

G 3.3 3 1.2 1.5 3.5 0.9 - 

 

Table 3.1 

  From the Table-3.1, we have a complete graph of seven vertices, which is shown in 

Figure 3.3 and we apply the statement of the algorithm and find the least cost route we get 

complete graph for this table as follows  

 

Now, applying the algorithm we obtain the 2-factor sub-graph which is give below  

We have the minimum weighted Hamiltonian circuit as follow: 

  

 

The total weight calculated as 1.1+1.3+1.2+0.9+1.2+2.4+1.9=10 kilometers.  
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Conclusion:  

We obtained factorization of complete graphs with odd and even number of vertices into 

1 – factor, 2–factor, 3 –factor and 4–factor sub-graphs. Also we discussed about some 

application of factorization of complete graphs and by the results obtained, we focused to find a 

least cost Hamiltonian circuit. The research of factorization of complete graphs is purely 

mathematical perspective so that all the definitions and theorems described in this section are 

accessible to Applied Mathematicians and Engineers for developing its practical applications.  
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Abstract:  

This paper is devoted to the study of intuitionistic fuzzy topological spaces. In this paper 

𝜋𝛽generalized closed sets in intuitionistic fuzzy topological spaces is introduced. The main 

objective of this paper is to find the relationship between basic intuitionistic fuzzy sets and 

intuitionistic fuzzy 𝜋𝛽 generalized closed and open sets. Also, we have analyzed some properties 

of 𝜋𝛽 generalized closed sets in intuitionistic fuzzy topological spaces.  

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy 𝜋𝛽 generalized closed sets, 

intuitionistic closed sets.  

 

1. Introduction:  

In 1965, the concept of Fuzzy sets was introduced by Lofti A. Zadeh [10] and in 1968, 

Chang[2] introduced and developed fuzzy topology. After the introduction of fuzzy set and fuzzy 

topology, several authors conducted researchers on the generalization of these notions. In the 

year 1986, the notion of intuitionistic fuzzy sets was introduced by Atanassov[1] as a 

generalization of fuzzy sets and Coker[3] introduced the concept of intuitionistic fuzzy 

topological spaces in 1997. In the year 2014, Jayanthi D [5] has introduced intuitionistic fuzzy 

generalized β closed sets and Saranya M and Jayanthi D[7], has introduced intutionistic fuzzy 𝛽 

generalized closed sets in 2016. In this paper, we have introduced the concept of intuitionistic 

fuzzy 𝜋β generalized closed sets and investigated some of their properties and obtained some 

interesting characterizations.  

 

 2. Preliminaries  

Definition 2.1: [1] Let X be a non empty fixed set. An intuitionistic fuzzy set(IFS in short) A in 

X is an object having the form A = {<𝑥,𝜇𝐴(𝑥),𝜈𝐴(𝑥)>/𝑥 𝜖 𝑋}where the functions𝜇𝐴(𝑥) :X 

→[0,1] and 𝜈𝐴(𝑥):𝑋→[0,1] denote the degree of membership (namely 𝜇𝐴(𝑥) ) and the 

degree of non – membership (namely 𝜐𝐴(𝑥) ) of each element x 𝜖 𝑋 to the set A, 
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respectively, and 0 ≤ 𝜇𝐴(𝑥)+𝜐𝐴(𝑥)≤1 for each x 𝜖 𝑋. Denote by IFS(X), the set of all 

intuitionistic fuzzy sets in X. 

Definition 2.2: [1] Let A and B be IFSs of the form A= {<𝑥,(𝑥),𝜈𝐴(𝑥)>/𝑥 𝜖 𝑋} and B= 

{<𝑥,𝜇𝐵(𝑥),𝜈𝐵(𝑥)>/𝑥 𝜖 𝑋}. Then  

 a) A ⊆ B if and only if 𝜇𝐴(𝑥)≤𝜇𝐵(𝑥) and 𝜈𝐴(𝑥)≥𝜈𝐵(𝑥) for all x 𝜖 𝑋  

 b) A=B if and only if A ⊆ B and B ⊆ A  

 c) Ac = {<𝑥,𝜈𝐴(𝑥),𝜇𝐴(𝑥)>/𝑥 𝜖 𝑋}  

 d) A ∩B = {<𝑥,𝜇𝐴(𝑥)∧𝜇𝐵(𝑥),𝜈𝐴(𝑥)∨ 𝜈𝐵(𝑥)>/𝑥 𝜖 𝑋}  

 e) A ∪ B = {<𝑥,𝜇𝐴(𝑥)∨𝜇𝐵(𝑥),𝜈𝐴(𝑥)∧ 𝜈𝐵(𝑥)>/𝑥 𝜖 𝑋}  

For the sake of simplicity, we shall use the notation A= <𝑥,(𝜇𝐴,𝜇𝐵),(𝜈𝐴,𝜈𝐵)> instead of 

A= <𝑥,(𝐴/𝜇𝐴,𝐵/𝜇𝐵),(𝐴/𝜈𝐴,𝐵/𝜈𝐵)>.  

The intuitionistic fuzzy sets 0∼ = {<𝑥,0,1)>/𝑥 𝜖 𝑋} and 1∼ = {<𝑥,0,1)>/𝑥 𝜖 𝑋} are respectively 

the empty set and the whole set of X.  

Definition 2.3.: [2] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in 

X satisfying the following axioms.  

i i. 0~, 1~ 𝜖 τ  

ii ii. G1 ∩ G2 𝜖 τ, for any G1, G2 𝜖 τ  

iii iii. ∪ Gi𝜖 τ for any family {Gi / i 𝜖 J} ⊆ τ.  

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in 

short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X.  

The complement Ac of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set 

(IFCS in short) in X.  

Definition 2.4: [3] Let (X, τ) be an IFTS and A =<𝑥,,,>be an IFS in X. Then the intuitionistic 

fuzzy interior and an intuitionistic fuzzy closure are defined by  

int(A) = ∪ { G / G is an IFOS in X and G ⊆ A },  

cl(A) = ∩ { K / K is an IFCS in X and A ⊆ K }.  

Note that for any IFS A in (X, τ), we have cl(Ac) = (int(A))c and int(Ac) = (cl(A))c.  

Definition 2.5.: [6] An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)),  

(ii) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)).  

Definition 2.6: [6] An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy semi open set (IFSOS in short) if A ⊆ cl(int(A),  

(ii) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) ⊆ A.  
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Definition 2.7: [6] An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy α-open set (IF𝛼OS in short) if A ⊆ int(cl(int(A))),  

(ii) intuitionistic fuzzy α-closed set (IF𝛼CS in short) if cl(int(cl(A)) ⊆ A. 

Definition 2.8: [6] An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy pre open set (IFPOS in short) if A ⊆ int(cl(A)),  

(ii) intuitionistic fuzzy pre closed set (IFPCS in short) if cl(int(A)) ⊆ A.  

Definition 2.9: [9] The union of IFROSs is called intuitionistic fuzzy 𝜋-open set (IF𝜋OS in short) 

of an IFTS (X, τ). The complement of IF𝜋OS is called intuitionistic fuzzy 𝜋-closed set (IF𝜋CS in 

short).  

Definition 2.10: [5] An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy 𝛽 -open 𝑠𝑒𝑡 (IF𝛽𝑂S in short) if A ⊆ cl(int(cl(A))) .  

(ii) intuitionistic fuzzy 𝛽-closed set (IF𝛽𝐶𝑆 in short) if int(cl(int(A))) ⊆ A.  

Definition 2.11: [5] Let A be an IFS in an IFTS in (X,τ). Then the intuitionistic fuzzy 𝛽- interior 

and intuitionistic fuzzy 𝛽-closure of A are defined by  

i i. 𝛽int(A)= ∪ {G/G is an IF𝛽OS in X and G⊆ A},  

ii ii. 𝛽cl(A) = ∩{K/K is an IF𝛽CS in X and A⊆K}.  

Note that for any IFS A in (X,τ), we have 𝛽cl(Ac) = (𝛽int(A ))c and 𝛽int(Ac)= (𝛽cl(A))c.  

Definition 2.12: [5] Let A be an IFS in (X,τ), then  

i i. 𝛽cl(A)⊇ A ∪ int(cl(int(A)))  

ii ii. 𝛽int(A)⊆ A∩ cl(int(cl(A)))  

Definition 2.13: [8]  

An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy generalized closed set (IFGCS in 

short) if cl(A) ⊆ U whenever A ⊆ U and U is an IFOS in X. The complement of IFGCS is called 

intuitionistic fuzzy generalized open set (IFGOS in short).  

An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy generalized open set (IFGOS in 

short) if Ac is an IFGCS in X.  

Definition 2.14: [8] An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy generalized open set 

(IFGOS in short) if Ac is an IFGCS in X.  

Definition 2.15: [5] An IFS A in an IFTS (X,τ) is said to be an intuitionistic fuzzy generalized 𝛽 

closed sets(IFG𝛽CS for short) if 𝛽cl(A)⊆U and U is an IFOS in (X,τ). The familyof all IFG𝛽CSs 

of an IFTS (X,τ) is denoted by IFG𝛽C(X).  

Definition 2.16: [7] An IFS A is an IFTS (X,τ) is said to be an intuitionistic fuzzy 𝛽 generalized 

closed set (IF𝛽GCS for short) if 𝛽cl(A) ⊆ U whenever A ⊆ U and U is an IF𝛽OS in (X,τ). The 
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complement Ac of an IF𝛽GCS A is an IFTS (X, τ) is called intuitionistic fuzzy 𝛽 generalized 

open set (IF𝛽GOS in short) in X. 

Definition 2.17: [4] An IFS A in (X,τ) is called an intuitionitic fuzzy nowhere dense set if there 

exist no IFOS U such that U ⊆𝑐𝑙(𝐴). That is int(cl(A))=0~  

Definition 2.18: [8] Two IFSs are said to be q-coincident (AqB in short) if and only if there 

exists an element x 𝜖 X such that (𝑥) > (𝑥) or 𝜈𝐴(𝑥) < 𝜇𝐵 (𝑥).  

Definition 2.19: [5] For any two IFSs A and B are said to be not q- coincident (𝐴𝑞 ̅ B) if and only 

if A ⊆ Bc.  

Definition 2.20: [4] An intuitonistic fuzzy point (IFP in short) written as (𝛼,) is defined to be an 

IFS of X given by  

(𝛼,𝛽)= {(𝛼,) if x=p (0,1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑠𝑖𝑒  

An intuitionistic fuzzy point (𝛼,) is said to belong to as a set A if 𝛼≤𝜇A and 𝛽≥𝜗A.  

Definition 2.21: [3] Let (X, 𝜏) be an IFTS and A, B be IFSs in X. Then the following properties 

hold:  

i i. int(A) ⊆ A  

ii ii. A ⊆ cl(A)  

iii iii. A⊆ B ⟹cl(A) ⊆ cl(B)  

iv iv. A⊆ B ⟹ int(A) ⊆ cl(B)  

v v. int(int(A)) = int(A)  

vi vi. cl(cl(A)) = cl(A)  

vii vii. int(A∩B) = int(A) ∩ int(B)  

viii viii. cl(A∪B) = cl(A) ∪ cl(B)  

ix ix. int(1∼) = 1∼  

x x. cl(0∼) = 0∼  

 

3. Intuitionistic fuzzy 𝝅𝛃 generalized closed sets  

In this section we have introduced intuitionistic fuzzy 𝜋𝛽 generalized closed sets and 

studied some of its properties.  

Definition 3.1:  

An IFS A in (X, ) is said to be an intuitionistic fuzzy πβ generalized closed sets (IF𝜋βGCS in 

short) if 𝛽cl(A)⊆ U whenever A ⊆ U and U is an 𝐼𝐹𝜋𝑂𝑆 in (X, 𝜏). 
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Example 3.2:  

Let X ={a,b} and let 𝜏 ={0∼,𝐺1,𝐺2,1∼} is an IFT on X, where 

𝐺1=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> and 𝐺2=<𝑥,(0.5𝑎,0.6𝑏),(0.5𝑎,0.4𝑏)> . Then the IFS A 

=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> is an IF𝜋βGCS in (X, 𝜏 ).  

Theorem 3.3:  

Every intuitionistic fuzzy closed set (IFCS in short) in (X,  ) is an IF𝜋𝛽GCS in (X, 𝜏 ) but 

not conversely.  

Proof:  

Let A be an IFCS and let A ⊆ U and U be an IF𝜋𝑂𝑆 in (X,  ). As (𝐴)⊆𝑐𝑙(𝐴) = A ⊆𝑈. We 

have (𝐴)⊆𝑈. Therefore A is an IF𝜋βGCS.  

Example 3.4:  

Let X ={a, b} and let 𝜏 ={0∼,𝐺1,𝐺2,1∼} is an IFT on X, where 

𝐺1=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> and 𝐺2=<𝑥,(0.5𝑎,0.6𝑏),(0.5𝑎,0.4𝑏)> . Then the IFS A 

=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> is an IF𝜋βGCS in (X, 𝜏 ) but not an IFCS in X as cl(A)=G1c ≠ A.  

Theorem 3.5:  

Every intuitionistic fuzzy regular closed set (IFRCS in short) in (X,  ) is an IF𝜋𝛽GCS in 

(X, 𝜏 ) but not conversely.  

Proof:  

Since every IFRCS is an IFCS.Hence A is an IF𝜋𝛽GCS in (X,  ).  

Example 3.6:  

Let X ={a,b} and let 𝜏 ={0∼,𝐺1,𝐺2,1∼} is an IFT on X, where 

𝐺1=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> and 𝐺2=<𝑥,(0.5𝑎,0.6𝑏),(0.5𝑎,0.4𝑏)> . Then the IFS A 

=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> is an IF𝜋𝛽GCS in (X, 𝜏 ) but not an IFRCS in X as 

cl(int(A))=cl(G1)= G1c ≠ A.  

Theorem 3.7:  

Every intuitionistic fuzzy semi closed set (IFSCS in short) in (X, 𝜏) is an IF𝜋𝛽GCS in (X,  

) but not conversely.  

Proof:  

Let A be an IFSCS and let A ⊆ U and U be an IF𝜋𝑂𝑆 in (X,  ). As (𝐴)⊆𝑆𝑐𝑙(𝐴) = A ⊆𝑈, 

by hypothesis . Hence (𝐴)⊆𝑈. Therefore A is an IF𝜋𝛽GCS in (X,  ). 
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Example 3.8:  

Let X ={a,b} and let 𝜏 ={0∼,𝐺1,𝐺2,1∼} is an IFT on X, where 

𝐺1=<𝑥,(0.5𝑎,0.6𝑏),(0.5𝑎,0.4𝑏)> and 𝐺2=<𝑥,(0.2𝑎,0.2𝑏),(0.8𝑎,0.8𝑏)> . Then the IFS A 

=<𝑥,(0.4𝑎,0.6𝑏),(0.6𝑎,0.4𝑏)> is an IF𝜋𝛽GCS in (X, 𝜏 ) but not an IFSCS in X as 

int(cl(A)=int(G2c)= G1⊈ A.  

Theorem 3.9:  

Every intuitionistic fuzzy α closed set (IF𝛼CS in short) in (X,  ) is an IF𝜋𝛽GCS in (X, 𝜏) 

but not conversely.  

Proof:  

Let A be an IF𝛼CS and let A ⊆ U and U be an IF𝜋𝑂𝑆 in (X,  ). As (𝐴)⊆𝛼𝑐𝑙(𝐴) = A⊆𝑈. 

By hypothesis (𝐴)⊆𝑈. Therefore A is an IF𝜋βGCS in (X,  ).  

Example 3.10:  

Let X ={a,b} and let 𝜏 ={0∼,𝐺1,𝐺2,1∼} is an IFT on X, where 

𝐺1=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> and 𝐺2=<𝑥,(0.5𝑎,0.6𝑏),(0.5𝑎,0.4𝑏)> . Then the IFS A 

=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> is an IF𝜋𝛽GCS in (X, 𝜏 ) but not an IF𝛼CS in X as 

cl(int(cl(A)))=cl(int(G1c)=cl(G1)= G1c ⊈A.  

Theorem 3.11:  

Every intuitionistic fuzzy pre closed set (IFPCS in short) in (X, ) is an IF𝜋𝛽GCS in (X,𝜏) 

but not conversely.  

Proof:  

Let A be an IFPCS and let A ⊆ U and U be an IF𝜋𝑂𝑆 in (X,  ). As (𝐴) ⊆ pcl(A)= A⊆𝑈. 

By hypothesis (𝐴) ⊆ U. Therefore A is an IF𝜋𝛽GCS in (X,  ).  

Example 3.12:  

Let X ={a,b} and 𝜏 ={0∼,𝐺1,𝐺2,1∼} is an IFT on X, where 

𝐺1=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> and 𝐺2=<𝑥,(0.5𝑎,0.6𝑏),(0.5𝑎,0.4𝑏)> . Then the IFS A 

=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> is an IF𝜋𝛽GCS in (X, 𝜏) but not an IFPCS in (X, 𝜏) as 

cl(int(A))=cl(G1)= G1c⊈ A .  

Theorem 3.13:  

Every intuitionistic fuzzy πclosed set (IF𝜋CS in short) in (X,) is an IF𝜋βGCS in (X,  ) but 

not conversely. 

Proof:  

Let A be an IF𝜋CS in (X, 𝜏) and let A ⊆ U.Since every IF𝜋CS is an IFCS. Therefore A is 

an IF𝜋βGCS (X, 𝜏).  
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Example 3.14:  

Let X ={a,b} and let 𝜏 ={0∼,𝐺1,𝐺2,1∼}is an IFT on X, where 

𝐺1=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> and 𝐺2=<𝑥,(0.5𝑎,0.6𝑏),(0.5𝑎,0.4𝑏)> . Then the IFS A 

=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> is an IF𝜋𝛽GCS in (X, 𝜏 ) but not an IF𝜋CS in (X 𝜏) as cl(int(A)) = 

cl(G1) = G1c ≠ A.  

Theorem 3.15:  

Every Intuitionistic fuzzy 𝛽 closed set (IF𝛽𝐶𝑆 𝑖𝑛 𝑠ℎ𝑜𝑟𝑡) in (X, 𝜏) is an IF𝜋βGCS in (X, 

𝜏) but not conversely.  

Proof:  

Let A be an IF𝛽𝐶𝑆 in (X, 𝜏) and let A ⊆𝑈 and U be an IF𝜋𝑂𝑆 in (X, 𝜏) . As (𝐴)=𝐴⊆ U, 

by hypothesis. Therefore A is an 𝐼𝐹𝜋𝛽𝐺𝐶𝑆 in (X, 𝜏)  

Example 3.16:  

Let X ={a,b} and let 𝜏 ={0∼,𝐺1,𝐺2,1∼} is an IFT on X, where 

G1=<x,(0.4a,0.3b),(0.6a,0.7b)> and 𝐺2=<𝑥,(0.5𝑎,0.4𝑏),(0.5,0.6𝑏)> . Then the IFS A 

=<𝑥,(0.4𝑎,0.6𝑏),(0.6𝑎,0.4𝑏)> is an IF𝜋𝛽GCS in (X, 𝜏 ) but not an IF𝛽CS in (X,𝜏) as 

int(cl(int(A)))= int(cl(G1)) = int(G2c)= G2 ⊈ A .  

Theorem 3.17:  

Every intuitionistic fuzzy generalized closed set (IFGCS in short) in (X, 𝜏) is an 

IF𝜋βGCS in (X,  ) but not conversely.  

Proof:  

Let A be an IFGCS and let A ⊆ U and U be an IF𝜋𝑂𝑆 in (X, 𝜏). As (𝐴)⊆𝑐𝑙(𝐴) ⊆𝑈. We 

have (𝐴)⊆𝑈. Therefore A is an IF𝜋βGCS in (X,  ).  

Example 3.18:  

Let X ={a,b} and let 𝜏 ={0∼,G1,G2,1∼} is an IFT on X, where 

G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,(0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A 

=<x,(0.4a,0.5b),(0.6a,0.5b)> is an IF𝜋βGCS in (X, 𝜏 ) but not an IFGCS in X as cl(A)=G1c ⊈ 

G1,G2 where A ⊆ G1, G2.  

Theorem 3.19:  

Every intuitionistic fuzzy generalized pre closed set (IFGPCS in short) in (X, 𝜏) is an 

IF𝜋𝛽GCS in (X,  ) but not conversely.  

Proof:  

Let A be an IFGPCS and let A ⊆ U and U be an IF𝜋𝑂𝑆 in (X, 𝜏). Now (A) ⊆ 𝑝𝑐(𝐴) ⊆ U, 

by hypothesis, which implies 𝛽(cl(A) ⊆𝑈. Therefore A is an IF𝜋𝛽GCS in (X, 𝜏).  
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Example 3.20:  

Let X ={a,b} and let 𝜏 ={0∼,𝐺1,𝐺2,1∼}is an IFT on X, where 

G1=<x,(0.4a,0.5b),(0.6a,0.5b)> and G2=<x,(0.5a,0.6b),(0.5a,0.4b)> . Then the IFS A 

=<𝑥,(0.4𝑎,0.5𝑏),(0.6𝑎,0.5𝑏)> is an IF𝜋βGCS in (X,𝜏) but not an IFGPCS in (X, 𝜏 ) .  

Theorem 3.21:  

Every intuitionistc fuzzy generalized semi closed set (IFGSCS in short) in (X, 𝜏) is an 

IF𝜋𝛽GCS in (X,  ) but not conversely.  

Proof:  

Let A be an IFGSCS in X. Let A ⊆ U and U be an IF𝜋OS in (X, 𝜏). Therefore scl(A) = A 

∪ int(cl(A)) ⊆ U, by hypothesis. This implies int(cl(A)) ⊆ U. Now int(cl(int(A)) ⊆ cl(int(A)) ∩ 

U ⊆ cl(A) ∩ U ⊆ cl(U) ∩ U ⊆ U. Hence A is an IF𝜋𝛽GCS in (X, 𝜏).  

Example 3.22:  

Let X ={a,b} and let 𝜏 ={0∼,𝐺1,𝐺2,1∼}is an IFT on X, where 

𝐺1=<𝑥,(0.5𝑎,0.3𝑏),(0.5𝑎,0.7𝑏)> and 𝐺2=<𝑥,(0.4𝑎,0.3𝑏),(0.6𝑎,0.7𝑏)> . Then the IFS A 

=<𝑥,(0.3𝑎,0.2𝑏),(0.7𝑎,0.8𝑏)> is an IF𝜋𝛽GCS in (X,𝜏) but not an IFGSCS in (X, 𝜏) as scl(A)= 

A∪ int(cl(A)) =A∪ G1= G1 ⊈ G2, but A ⊆ G2.  

In the following diagram, we have provided relationship between various types of 

intuitionistic fuzzy closed sets.  

 

Remark 3.23:  

  The intersection of any two IF𝜋𝛽GCS need not be an IF𝜋𝛽GCS in (X, 𝜏) in general.  
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Example 3.24:  

Let X={a,b}, G1=<x,(0.4,0.2),(0.6,0.8)> and G2 =<x, (0.4,0.4),(0.5,0.5)>. Then 𝜏 = 

{0~,G1, G2, 1~} is an IFT on X. Here the IFSs A=<x,(0.4,0.5),(0.5,0.4)> and B=<x, 

(0.5,0.2),(04,0.6)> are IF𝜋𝛽GCS in (X,𝜏) but A ∩ B =<x,(0.4,0.2),(0.5,0.6)> is not an IF𝜋𝛽GCS 

in (X,𝜏).  

Theorem 3.25:  

Let (X, 𝜏) be an IFTS. Then for every A 𝜖 IF𝜋𝛽GC(X) and for every B 𝜖 IFS(X), A ⊆B 

⊆ (𝐴) implies B 𝜖 IF𝜋𝛽GC(X) 

Proof:  

Let B ⊆ U and U be an IF𝜋𝑂𝑆. Since A ⊆𝐵, A ⊆𝑈, by hypothesis B⊆ (𝐴). Therefore 

(𝐵)⊆ 𝛽𝑐𝑙(𝛽𝑐𝑙(𝐴))= 𝛽𝑐𝑙(𝐴)⊆ U. since A is an IF𝜋𝛽GCS. Hence B 𝜖 IF𝛽GC(X).  

Theorem 3.26:  

If A is an IF𝛽OS and IF𝜋𝛽GCS in (X, 𝜏) then A is an IF𝛽CS in (X, 𝜏).  

Proof:  

Since A⊆ A and A is an IF𝛽OS ,by hypothesis 𝛽(cl(A)) ⊆ A. But A ⊆ (cl(A). Therefore 

(cl(A))= A. Hence A is an IF𝛽CS in (X, 𝜏).  

Theorem 3.27:  

Let F ⊆ A ⊆ X where A is an IF𝛽OS and an IF𝜋𝛽GCS in X. Then F is an IF𝜋𝛽GCS in A 

if and only if F is an IF𝜋𝛽GCS in (X, 𝜏).  

Proof:  

Necessity:  

Let U be an IF𝜋OS in X and F ⊆ U. Also let F be an IF𝜋𝛽GCS in A. Then clearly F ⊆ A 

∩ U and A ∩ U is an IF𝜋OS in A. Hence (clA(F))⊆ A ∩ U and by theorem 2.1.24 , A is an 

IF𝛽CS. Therefore (cl(A))= A. Now 𝛽cl(F)⊆ 𝛽cl(F)∩𝛽𝑐𝑙(A)= 𝛽cl(F) ∩ A =𝛽𝑐𝑙A(F) ⊆A∩ U.That 

is 𝛽cl(F)⊆ U, whenever F ⊆ U. Hence F is an IF𝜋𝛽GCS in (X,).  

Sufficiency:  

Let V be an IF𝛽OS in A such that F⊆V. Since A is an IF𝛽OS in X, V is an IF𝛽OS in X. 

Therefore 𝛽cl(F) ⊆V as F is an IF𝜋𝛽GCS in (X,𝜏). Thus, βclA(F) = 𝛽cl(F)∩ A ⊆ V ∩ A ⊆ V. 

Hence F is an IF𝛽GCS in A.  

Theorem 3.28:  

Let A ⊆Y ⊆X and suppose that A is an IF𝜋𝛽GCS in X then A is an IF𝜋𝛽GCS relative to 

Y.  
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Proof:  

Given that A ⊆Y ⊆ X and A is an IF𝜋𝛽GCS in X. Now let A ⊆Y ∩ U where U is an 

IF𝜋OS in X. Since A is an IF𝜋𝛾GCS in X, A ⊆ U implies 𝛽ycl(A) ⊆ U. It follows that 

Y∩𝛽cl(A)= 𝛽cl(A) ⊆ Y ∩ U = U. Thus A is an IF𝜋𝛽GCS relative to Y.  

Theorem 3.29:  

If an IFS A of an IFTS (X, 𝜏) is an intuitionistic fuzzy nowhere dense then A is an 

IF𝜋𝛽GCS in X. 

Proof:  

If A is an intuitionistic fuzzy nowhere dense, then by definition int(cl(A))= 0~. Let A ⊆ 

U where U is an IF𝜋OS in X. The 𝛽cl(A) =0~ ⊆ U and hence A is an IF𝜋𝛽GCS in X.  

Theorem 3.30:  

For an IFS A, the following conditions are equivalent:  

i (i) A is an IFOS and an IF𝜋𝛽GCS  

ii (ii) A is an IFROS.  

Proof:  

(i) ⟹ (ii) Let A be an IFOS and an IF𝜋𝛽GCS. Then 𝛽cl(A) ⊆ A and A ⊆ 𝛽cl(A). This 

implies that 𝛽cl(A)= A. Therefore A is an IF𝛽CS, Since int(cl(int(A))) ⊆ A. Since A is an IFOS , 

int(A)=A. Therefore int(cl(A))=A .Since A is an IFOS and IFPOS. Hence A ⊆ int(cl(A)). 

Therefore A=int(cl(A)). Hence A is an IFROS.  

(ii) ⟹ (i) Let a be an IFROS .Therefore A=int(cl(A)). Since every IFROS is an IFOS and 

A⊆ A . This implies int(cl(A)) ⊆ A. That is int(cl(int(A))) ⊆ A. Therefore A is an IF𝛽CS. Hence 

A is an IF𝜋𝛽CS.  

Theorem 3.31:  

If A is both an IF𝛼OS and an IF𝜋𝛽GCS in (X,). Then A is an IF𝛽CS in (X, 𝜏).  

Proof:  

Let A be an IF𝛼OS .Then A is an IF𝛽OS. As A⊆ A, by hypothesis 𝛽cl(A) ⊆ A ⊆ 𝛽cl(A), 

A is an IF𝛽CS in (X,𝜏).  

 

4. Intuitionistic fuzzy 𝝅𝜷 generalized open sets  

In this section we have introduced intuitionistic fuzzy 𝜋𝛽generalized open sets and 

studied some of the properties.  
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Definition 4.1:  

An IFS A is said to be an intuitionistic fuzzy 𝜋𝛽generalized open sets (IF𝜋𝛽𝐺OS in short) 

in (X, 𝜏) if the complement Ac is an IF𝜋𝛽GOS in X.  

The family of all IF𝜋𝛽GOSs of an IFTS (X, 𝜏) is denoted by IF𝜋𝛽GO(X). 

Example 4.2:  

Let X={a,b} and 𝜏 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2= 

<x.(0.7,0.8),(0.3,0.2)>.Then IFS A= <x,(0.5,0.5),(0.5,0.5)> is an IF𝜋𝛽GOS in (X , 𝜏).  

Theorem 4.3:  

For any IFTS (X, 𝜏) ,we have the following:  

 Every IFOS in IF𝜋𝛽GOS in (X, 𝜏) .  

 Every IF𝛼OS in IF𝜋𝛽GOS in (X, 𝜏).  

 Every IFROS in IF𝜋𝛽GOS in (X, 𝜏).  

 Every IFPOS in IF𝜋𝛽GOS in (X, 𝜏).  

 Every IF𝛽OS in IF𝜋𝛽GOS in (X, 𝜏).  

 Every IF𝜋𝛽OS in IF𝜋𝛽GOSin (X, 𝜏). But the converse are not true in general.  

 

Proof: Straight forward.  

Example 4.4:  

Let X={a,b} and 𝜏 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2= 

<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.5a,0.5b)> is an IF𝜋𝛽GOS in (X , 

𝜏),but not an IFOS in (X, 𝜏) as cl(A) = G1 ≠ A.  

Example 4.5:  

Let X={a,b} and 𝜏 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2= 

<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.5a,0.5b)> is an IF𝜋𝛽GOS in (X,𝜏), 

but not an IF𝛼OS in (X, 𝜏) as int(cl(int(A)))=int(cl(G1))=int(G1c)=G1 , A ⊈ G1.  

Example 4.6:  

Let X={a,b} and 𝜏 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2= 

<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.5a,0.5b)> is an IF𝜋𝛽GOS in (X , 

𝜏),but not an IF𝑅OS in (X, 𝜏) as int(cl(A))=int(G1c)=G1,≠A.  

Example 4.7:  

Let X={a,b} and 𝜏 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2= 

<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x.(0.5a,0.5b),(0.5a,0.5b)> is an IF𝜋𝛽GOS in (X , 

𝜏),but not an IF𝑃OS in (X, 𝜏) as int(cl(A))=int(G1c)=G1 ,A ⊈ G1.  
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Example 4.8:  

Let X={a,b} and 𝜏 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2= 

<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.5a,0.5b)> is an  

IF𝜋𝛽GOS in (X,𝜏),but not an IF𝛽OS in (X,𝜏) as cl(int(cl(A)))=cl(int(G1c)=cl(G1) =G1c ,A 

⊈ G1.  

Example 4.9:  

Let X={a,b} and 𝜏 = {0 ~ ,G1,G2,1~ } where G1=<x,(0.4,0.2),(0.6,0.8)> G2= 

<x.(0.7a,0.8b),(0.3a,0.2b)>.Then IFS A= <x,(0.5a,0.5b),(0.5a,0.5b)> is an IF𝜋𝛽GOS in (X , 

𝜏),but not an IF𝜋OS in (X, 𝜏) as int(cl(A))=int(G1c)=G1, A≠G1.  

Theorem 4.10:  

Let (X, 𝜏) be an IFTS. Then for every A 𝜖 IF𝜋𝛽GO(X) and for every B 𝜖 IFS(X), 𝛽 𝑖𝑛𝑡 

(𝐴)⊆ B ⊆A ⇒ B 𝜖 IF𝜋𝛽GO(X).  

Proof:  

Let A be an IF𝜋𝛽GOS of X and B be any IFS on X. Let 𝛽 𝑖𝑛𝑡 (𝐴)⊆B ⊆A. Then Ac is an 

IF𝜋βGCS and Ac ⊆ Bc⊆ 𝛽 (𝐴𝑐). Therefore Bc is an IF𝜋βGCS which implies B is an IF𝜋βGOS 

in X. Hence B 𝜖 IF𝜋βGO(X).  

Theorem 4.11:  

If A is an IFRCS and B is an IFβOS, then A∪B is an IF𝜋βGOS in (X, 𝜏).  

Proof:  

Let B be an IFβOS and A be an IFRCS. Then B⊆𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝐵))) 𝑎𝑛𝑑 𝑐𝑙(𝑖𝑛𝑡(𝐴))= A 

.Therefore A∪B ⊆ A ⊆ cl(int(cl(B)))= cl(int(A)) ∪cl(int(cl(B))) ⊆ cl(int(cl(A)))∪ 

cl(int(cl(B)))=cl(int(cl(A)) ∪ int(cl(B))) ⊆ cl(int(cl(A) ∪ cl(B)) . Therefore A∪B is an IF𝛽OS 

and hence by theorem 2.2.3, A∪B is an IF𝜋𝛽GOS in X.  

Theorem 4.12:  

If an IFS A of an IFTS in both an IFCS and an IFGOS, then A is an IF𝜋𝛽GOS in (X, 𝜏).  

Proof:  

Suppose A is both an IFCS and IFGOS. Then as A ⊆ A, by hypothesis A ⊆ int(A). But 

int(A) ⊆ A. Therefore int(A) = A. We have A is an IF𝜋OS, since every IF𝜋OS is an IF𝜋𝛽GOS. 

Hence A is an IF𝜋𝛽GOS in X.  

Theorem 4.13:  

Let (X, 𝜏) be an IFTS. Then for every A 𝜖 IFS(X) and for every B 𝜖 IF𝛽O(X), B ⊆ A ⊆ 

int(cl(int(B) ) ) ⟹ A𝜖 IFπβGO(X). 
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Proof:  

Let B be an IF𝛽OS. Then B ⊆ cl(int(cl(B))). By hypothesis A ⊆ int(cl(int(B))) ⊆ 

int(cl(int(cl(int(cl(B)))))⊆ int(cl(cl(int(cl(B)))))= int(cl(int(cl(B)))) ⊆ int(cl(cl(A))) ⊆int(cl(A)) 

as B ⊆ A. Therefore A is an IFPOS. By theorem 2.2.3, A is an IFβGOS . Hence A 𝜖IFπβGO(X).  

Theorem 4.14:  

If A is an IF𝛽CS and an IF𝜋𝛽GOS in (X, 𝜏), then A is an IF𝛽OS in (X, 𝜏).  

Proof:  

As A⊇A ,by hypothesis 𝛽int(A) ⊇A. But we have A⊇ 𝛽int(A). This impiles A= 𝛽int(A). 

Hence A is an IF𝛽OS in (X, 𝜏).  
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Abstract:  

This paper is devoted to the study of intuitionistic fuzzy topological spaces. In this paper 

𝜋γ generalized continuous mappings in intuitionistic fuzzy topological spaces is introduced. 

Also, we have analyzed some properties of 𝜋 γ generalized continuous mappings in intuitionistic 

fuzzy topological spaces.  

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy 𝜋γ generalized continuous 

mappings.  

 

1. Introduction:  

In 1965, the concept of Fuzzy sets was introduced by Lofti A. Zadeh [10] and in 1968, 

Chang [3] introduced and developed fuzzy topology. After the introduction of fuzzy set and 

fuzzy topology, several authors conducted researchers on the generalization of these notions. In 

the year 1986, the notion of intuitionistic fuzzy sets was introduced by Atanassov [1] as a 

generalization of fuzzy sets and Coker [4] introduced the concept of intuitionistic fuzzy 

topological spaces in 1997. In 2017, Prema S and Jayanthi D [9] has introduced intuitionistic 

fuzzy γ generalized continuous mappings. In this paper we have introduced 𝜋γ generalized 

continuous mappings in intuitionistic fuzzy topological spaces and investigated some of their 

properties and obtained some interesting characteristics.  

 

2. Preliminaries:  

Definition 2.1: [1]  

Let X be a non-empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an 

object having the form A = { <𝑥,𝜇𝐴(𝑥),𝜈𝐴(𝑥)>/𝑥 𝜖 𝑋} where the functions 𝜇𝐴(𝑥) : X →[0,1] and 

𝜈𝐴(𝑥)∶X→[0,1] denotes the degree of membership (namely 𝜇𝐴(𝑥) ) and the degree of non – 

membership (namely 𝜈𝐴(𝑥) ) of each element x 𝜖 𝑋 to the set A, respectively, and 0 ≤ 𝜇𝐴(𝑥)+ 

𝜈𝐴(𝑥) ≤1 for each x 𝜖 𝑋. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.  
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Definition 2.2: [1]  

Let A and B be IFSs of the form A= {<𝑥,(𝑥),𝜈𝐴(𝑥)>/𝑥 𝜖 𝑋} and B= {<𝑥,𝜇𝐵(𝑥),𝜈𝐵(𝑥)>/𝑥 𝜖 𝑋}. 

Then  

 a) A ⊆ B if and only if 𝜇𝐴 (𝑥)≤𝜇𝐵(𝑥) and 𝜈𝐴 (𝑥)≥𝜈𝐵(𝑥) for all x 𝜖 𝑋  

 b) A=B if and only if A ⊆ B and B ⊆ A  

 c) Ac = {<𝑥,𝜈𝐴 (𝑥),𝜇𝐴 (𝑥)>/𝑥 𝜖 𝑋}  

 d) A ∩ B = {<𝑥,𝜇𝐴 (𝑥)∧𝜇𝐵(𝑥),𝜈𝐴 (𝑥)∨ 𝜈𝐵(𝑥)>/𝑥 𝜖 𝑋}  

 e) A ∪ B = {<𝑥,𝜇𝐴 (𝑥)∨𝜇𝐵(𝑥),𝜈𝐴 (𝑥)∧ 𝜈𝐵(𝑥)>/𝑥 𝜖 𝑋}  

For the sake of simplicity, we shall use the notation A= < 𝑥, (𝜇𝐴,),(𝜈𝐴,𝜈𝐵)> instead of A= 

<𝑥,(𝐴/𝜇𝐴,𝐵/𝜇𝐵),(𝐴/𝜈𝐴,𝐵/𝜈𝐵)>.  

The intuitionistic fuzzy sets 0∼ = {<𝑥,0,1)>/𝑥 𝜖 𝑋} and 1∼ = {<𝑥,0,1)>/𝑥 𝜖 𝑋} are 

respectively the empty set and the whole set of X.  

Definition 2.3: [4]  

An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying 

the following axioms.  

i. 0~, 1~ 𝜖 τ  

ii. G1 ∩ G2 𝜖 τ, for any G1, G2 𝜖 τ  

iii. ∪ Gi 𝜖 τ for any family {Gi / i 𝜖 J} ⊆ τ.  

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in 

short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X.  

The complement Ac of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy 

closed set (IFCS in short) in X.  

Definition 2.4: [6]  

Let A be an IFS in an IFTS in (X,τ). Then the intuitionistic fuzzy 𝛾- interior and 

intuitionistic fuzzy 𝛾-closure of A are defined by  

i. 𝛾int(A)= ∪ {G/G is an IF𝛾OS in X and G⊆ A},  

ii. 𝛾cl(A) = ∩{K/K is an IF𝛾CS in X and A⊆K}.  

Note that for any IFS A in (X,τ), we have 𝛾cl(Ac) = (𝛾int(A))c and 𝛾int(Ac)= (𝛾cl(A))c.  

Definition 2.5: [8]  

Let A be an IFS in (X,τ), then  

i. 𝛾int(A)⊆ A∩((cl(int(A)) ∩int(cl(A)))  

ii. 𝛾cl(A)⊇ A ∪((cl(int(A)) ∩int(cl(A)))  
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Definition 2.6: [8]  

An IFS A is an IFTS (X,τ) is said to be an intuitionistic fuzzy 𝜸 generalized closed set 

(IF𝛾GCS for short) if 𝛾cl(A) ⊆ U whenever A ⊆ U and U is an IF𝛾OS in (X,τ).  

Definition 2.7:[2]  

An IFS A in (X,  ) is said to be a intuitionistic fuzzy 𝜋𝛾 generalized closed sets (IF𝜋γGCS 

in short) if γcl(A)⊆ U whenever A ⊆ U and U is an 𝐼𝐹𝜋𝑂𝑆 in (X, 𝜏 ).  

Definition 2.8:[5]  

Let f be a mapping from an IFTS (X, 𝜏) into an IFTS (Y, 𝜎). Then f is said to be an 

intuitionistic fuzzy continuous (IF continuous) mapping if f -1 (V) is an IFCS in(X,) for every 

IFCS V of (Y,)  

Definition 2.9:[7]  

Let f be a mapping from an IFTS (X,) into an IFTS (Y,). Then f is said to be an  

i. intuitionistic fuzzy semi continuous (IFS continuous) mapping if f-1 (V) is an IFSCS in (X, τ) 

for every IFCS V of (Y, σ),  

ii. intuitionistic fuzzy α continuous (IF𝛼 continuous) mapping if f-1 (V) is an IF𝛼CS in (X, 𝜏) 

for every IFCS V of (Y, 𝜎),  

iii. intuitionistic fuzzy pre continuous (IFP continuous) mapping if f-1 (V) is an IFPCS in (X, 𝜏) 

for every IFCS V of (Y, 𝜎).  

Definition 2.10:[6]  

Let f be a mapping from an IFTS (X, 𝜏) into an IFTS (Y, 𝜎). Then f is said to be an 

intuitionistic fuzzy 𝜸 continuous (IF𝛾 continuous) mapping if f-1 (V) is an IF𝛾CS in (X, 𝜏) for 

every IFCS V of (Y, 𝜎).  

Definition 2.11:[9]  

A mapping f: (x, 𝜏) ⟶ (y,𝜎) is called an intuitionistic fuzzy 𝜸 generalized continuous 

(IF𝛾G continuous) mapping if f-1 (V) is an IF𝛾GCS in (X, 𝜏) for every IFCS V of (Y, 𝜎).  

Definition 2.12: [8]  

An intuitionistic fuzzy point (IFP in short) written as (𝛼,) is defined to be an IFS of X 

given by  

 

An intuitionistic fuzzy point (𝛼,) is said to belong to a set A if 𝛼≤ 𝜇𝐴 and ≥𝜈𝐴.  

 

 

3. INTUITIONISTIC FUZZY 𝝅 𝜸 GENERALIZED CONTINUOUS MAPPINGS  
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In this section we have introduced intuitionistic fuzzy 𝜋𝛾 generalized continuous 

mappings and examined some of the properties.  

Definition 3.1:  

A mapping f: (X,𝜏) → (Y,𝜎) is called an intuitionistic fuzzy 𝜋 𝛾 generalized continuous 

(IF𝜋𝛾G continuous for short) mappings if f-1 (V) is an IF𝜋𝛾GCS in (X,𝜏) for every IFCS V of 

(Y,𝜎).  

For the sake of simplicity, we shall use the notation A= < 𝑥,(𝜇𝐴,𝜇𝐵),(𝜈𝐴,𝜈𝐵)> instead of 

A= <𝑥,(𝑎/𝜇𝐴,𝑏/𝜇𝐵),(𝑎/𝜈𝐴,𝑏/𝜈𝐵)> in the following examples. Similarly, we shall use the notation 

B= < 𝑦,(𝜇𝑢,𝜇𝑣),(𝜈𝑢,𝜈𝑣)> instead of B= <𝑦,(𝑎/𝜇𝑢,𝑏/𝜇𝑣),(𝑎/𝜈𝑢,𝑏/𝜈𝑣)> in the following examples.  

The intuitionistic fuzzy sets 0~ = {<𝑥,0,1)>/𝑥 𝜖 𝑋} and 1~= {<𝑥,0,1)>/𝑥 𝜖 𝑋} are 

respectively the empty set and the whole set of X.  

Example 3.2 :  

Let X={a,b}, Y={u,v} and G1= <x, (0.4a,0.2b),(0.6a,0.8b)>, 

G2=<x,(0.5a,0.4b),(0.5a,0.6b)>,G3=<y,(0.5u,0.6v),(0.5u,0.4v)>. Then 𝜏 = {0∼,1,𝐺2,1∼} and 

𝜎={0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c =<y,(0.5u,0.4v),(0.5u,0.6v)> is an IFCS in Y.   

Then f-1(G3
c) = <x,(0.5a,0.4b),(0.5a,0.6b)> is an IFS in X.  

Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore, f is an IF𝜋γG continuous mapping.  

Theorem 3.3:  

Every IF continuous mapping is an IF𝜋γG continuous mapping in (X,) but not conversely 

in general.  

Proof:  

Let f: (X,) → (Y,) be an IF continuous mapping. Let V be an IFCS in Y. Then f-1 (V) is 

an IFCS in X. Since every IFCS is an IF𝜋γGCS, f-1 (V) is an IF𝜋γGCS in X. Hence f is an IF𝜋γG 

continuous mapping.  

Example 3.4:  

Let X={a,b}, Y={u,v} and G1=<x,(0.4a,0.2b),(0.6a,0.8b)>,  

G2 =<x,(0.5a,0.4b),(0.5a,0.6b)>,G3=<y,(0.5u,0.6v),(0.5u,0.4v)>. Then 𝜏= {0∼,1,𝐺2,1∼} and 

𝜎={0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS (G3
c) = <y,(0.5u,0.4v),(0.5u,0.6v)> is an IFCS in Y.  

Then f-1(G3
c)  = <x,(0.5a,0.4b),(0.5a,0.6b)> is an IFS in X.  
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Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore f is an IF𝜋γG continuous mapping but 

since    f-1(G3
c) is not an IFCS in X, as cl(f-1(G3

c)) = G2
c ≠ f-1(G3

c), f is not an IF continuous 

mapping.  

Theorem 3.5:  

Every IFS continuous mapping is an IF𝜋γG continuous mapping in (X,) but not 

conversely in general.  

Proof:  

Let f: (X,) → (Y,) be an IFS continuous mapping. Let V be an IFCS in Y. Then f-1(V) is 

an IFSCS in X. Since every IFSCS is an IF 𝜋γGCS, f-1(V) is an IF𝜋γGCS in X. Hence f is an 

IF𝜋γG continuous mapping.  

Example 3.6:  

Let X={a,b}, Y={u,v} and G1 = <x,(0.5a,0.6b),(0.5a,0.4b)>, 

G2=<x,(0.4a,0.3b),(0.6a,0.7b)>,G3=<y,(0.7u,0.8v),(0.3u,0.2v)>. Then 𝜏 ={0∼,𝐺1,𝐺2,1∼} and 

𝜎={0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c = <y, (0.3u,0.2v),(0.7u,0.8v)> is an IFCS in Y. Then f-1(G3

c) = <x, 

(0.3a,0.2b),(0.7a,0.8b)> is an IFS in X. Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore f is an 

IF𝜋𝛾G continuous mapping but since f-1(G3
c) is not an IFSCS in X, as int(cl(f-1(G3

c)) = int(G1
c) = 

G1 ⊈ f-1(G3
c), f is not an IFS continuous mapping.  

Theorem 3.7:  

Every IFP continuous mapping is an IF𝜋γG continuous mapping in (X,) but not 

conversely in general.  

Proof:  

Let f: (X,) → (Y,) be an IFP continuous mapping. Let V be an IFCS in Y. Then f-1(V) is 

an IFPCS in X. Since every IFPCS is an IF𝜋γGCS, f-1(V) is an IF𝜋γGCS in X. Hence f is an 

IF𝜋γG continuous mapping.  

Example 3.8:  

Let X={a,b} , Y={u,v} and G1 = <x, (0.4a,0.2b),(0.6a,0.8b)>, 

G2=<x,(0.5a,0.4b),(0.5a,0.6b)>,G3=<y,(0.5u,0.6v),(0.5u,0.4v)>. Then 𝜏 ={0∼,𝐺1,𝐺2,1∼} and 

𝜎={0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c = <y,(0.5u,0.4v),(0.5u,0.6v)> is an IFCS in Y.  

Then f-1(G3
c) = <x,(0.5a,0.4b),(0.5a,0.6b)> is an IFS in X.  
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Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore f is an IF𝜋γG continuous mapping but 

since f-1(G3
c) is not an IFPCS in X, as cl(int(f-1(G3

c))) = cl(G2)=G2
c ⊈ f-1(G3

c), f is not an IFP 

continuous mapping.  

Theorem 3.9:  

Every IFR continuous mapping is an IF𝜋γG continuous mapping in (X,) but not 

conversely in general.  

Proof:  

Let f: (X,) → (Y,) be an IFR continuous mapping. Let V be an IFCS in Y. Then f-1(V) is 

an IFRCS in X. Since every IFRCS is an IF𝜋γGCS, f-1(V) is an IF𝜋γGCS in X. Hence f is an 

IF𝜋γG continuous mapping.  

Example 3.10:  

Let X={a,b} , Y={u,v} and G1 = <x, (0.4a,0.2b),(0.6a,0.8b)>, 

G2=<x,(0.5a,0.4b),(0.5a,0.6b)>,G3=<y,(0.5u,0.6v),(0.5u,0.4v)>. Then 𝜏 ={0∼,𝐺1,𝐺2,1∼} and 

𝜎={0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c = <y,(0.5u,0.4v),(0.5u,0.6v)> is an IFCS in Y.  

Then f-1(G3
c) = <x,(0.5a,0.4b),(0.5a,0.6b)> is an IFS in X.  

Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore f is an IF𝜋γG continuous mapping but 

since f-1(G3c) is not an IFRCS in X, as cl(int(f-1(G3
c))) = cl(G2)=G2

c ≠ f-1(G3
c), f is not an IFR 

continuous mapping.  

Theorem 3.11:  

Every IF𝛼 continuous mapping is an IF𝜋γG continous mapping in (X,) but not conversely 

in general.  

Proof:  

Let f: (X,) → (Y,) be an IF𝛼 continuous mapping. Let V be an IFCS in Y. Then f-1(V) is 

an IF𝛼CS in X. Since every IF𝛼CS is an IF𝜋γGCS, f-1(V) is an IF𝜋γGCS in X. Hence f is an 

IF𝜋γG continuous mapping.  

Example 3.12:  

Let X={a,b} , Y={u,v} and G1 = <x, (0.4a,0.2b),(0.6a,0.8b)>, 

G2=<x,(0.5a,0.4b),(0.5a,0.6b)>,G3=<y,(0.5u,0.6v),(0.5u,0.4v)>. Then 𝜏 ={0∼,𝐺1,𝐺2,1∼} and 

𝜎={0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c = <y,(0.5u,0.4v),(0.5u,0.6v)> is an IFCS in Y.  

Then f-1(G3
c) = <x,(0.5a,0.4b),(0.5a,0.6b)> is an IFS in X.  
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Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore f is an IF𝜋γG continuous mapping but 

since f-1(G3c) is not an IF𝛼CS in X, as cl(int(f-1(G3
c))) = cl(G2)=G2

c ≠ f-1(G3
c), f is not an IFR 

continuous mapping.  

Theorem 3.13:  

Every IF𝜋 continuous mapping is an IF𝜋γG continous mapping in (X,) but not conversely 

in general.  

Proof:  

Let f: (X,) → (Y,) be an IF𝜋 continuous mapping. Let V be an IFCS in Y. Then f-1(V) is 

an IF𝜋CS in X. Since every IF𝜋CS is an IF𝜋γGCS, f-1(V) is an IF𝜋γGCS in X. Hence f is an 

IF𝜋γG continuous mapping.  

Example 3.14:  

Let X={a,b}, Y={u,v} and G1 = <x,(0.5a,0.3b),(0.5a,0.7b)>, 

G2=<x,(0.4a,0.3b),(0.6a,0.7b)>,G3=<y,(0.7u,0.8v),(0.3u,0.2v)>. Then 𝜏 ={0∼,𝐺1,𝐺2,1∼} and 

𝜎={0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c = <y, (0.3u,0.2v),(0.7u,0.8v)> is an IFCS in Y. Then f-1(G3

c) = <x, 

(0.3a,0.2b),(0.7a,0.8b)> is an IFS in X. 

Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore f is an IF𝜋γG continuous mapping but 

not an IF𝜋 continuous mapping, since f-1(G3
c) is not an IF𝜋CS in X, as cl(int(f-1(G3

c))= 0~≠ f-

1(G3
c).  

Theorem 3.15:  

Every IFγ continuous mapping is an IF𝜋γG continous mapping in (X,) but not conversely 

in general.  

Proof:  

Let f: (X,) → (Y,) be an IFγ continuous mapping. Let V be an IFCS in Y. Then f-1(V) is 

an IF𝛾CS in X. Since every IFγCS is an IF𝜋γGCS, f-1(V) is an IF𝜋γGCS in X. Hence f is an 

IF𝜋γG continuous mapping.  

Example 3.16:  

Let X={a,b}, Y={u,v} and G1 = <x,(0.5a,0.4b),(0.5a,0.6b)>, 

G2=<x,(0.4a,0.3b),(0.6a,0.7b)>,G3=<y,(0.5u,0.6v),(0.4u,0.4v)>. Then 𝜏 ={0∼,𝐺1,𝐺2,1∼} and 

𝜎={0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c = <y, (0.4u,0.4v),(0.5u,0.6v)> is an IFCS in Y. Then f-1(G3

c) = 

<x,(0.4a,0.4b),(0.5a,0.6b)> is an IFS in X. Hence f-1(G3c) is an IF𝜋γGCS in (X,). Therefore f is 

an IF𝜋𝛾G continuous mapping but since f-1(G3
c) is not an IFSCS in X, as int(cl(f-1(G3

c))) ∩ 
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cl(int(f-1(G3
c))) = int(G1

c) ∩ cl(G2) = G1 ∩ G1
c ⊈ f-1(G3

c), f-1(G3
c) is not an IFS continuous 

mapping.  

Theorem 3.17:  

Every IFG continuous mapping is an IF𝜋γG continous mapping in (X,) but not 

conversely in general.  

Proof:  

Let f: (X,) → (Y,) be an IFG continuous mapping. Let V be an IFCS in Y. Then f-1(V) is 

an IFGCS in X. Since every IFGCS is an IF𝜋γGCS, f-1(V) is an IF𝜋γGCS in X. Hence f is an 

IF𝜋γG continuous mapping.  

Example 3.18:  

Let X={a,b} , Y={u,v} and G1 = <x,(0.5a,0.4b),(0.5a,0.6b)>, 

G2=<x,(0.4a,0.3b),(0.6a,0.7b)>,G3=<y,(0.5u,0.6v),(0.4u,0.4v)>.Then 𝜏 = {0∼,𝐺1,𝐺2,1∼} and 𝜎 = 

{0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c = <y, (0.4u,0.4v),(0.5u,0.6v)> is an IFCS in Y. Then f-1(G3

c) = 

<x,(0.4a,0.4b),(0.5a,0.6b)> is an IFS in X. Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore f is an 

IF𝜋𝛾G continuous mapping but since f-1(G3
c) is not an IFGCS in X, as cl(f-1(G3

c)) = G1
c ⊈ G, f-

1(G3
c)  is not an IFG continuous mapping.  

Theorem 3.19:  

Every IFGS continuous mapping is an IF𝜋γG continous mapping in (X,) but not 

conversely in general.  

Proof:  

Let f: (X,) → (Y,) be an IFGS continuous mapping. Let V be an IFCS in Y. Then f1(V) is 

an IFGSCS in X. Since every IFGSCS is an IF𝜋γGCS, f-1(V) is an IF𝜋γGCS in X. Hence f is an 

IF𝜋γG continuous mapping.  

Example 3.20:  

Let X={a,b} , Y={u,v} and G1 = <x,(0.5a,0.4b),(0.5a,0.6b)>, 

G2=<x,(0.4a,0.3b),(0.6a,0.7b)>,G3=<y,(0.5u,0.6v),(0.4u,0.4v)>.Then 𝜏 = {0∼,𝐺1,𝐺2,1∼} and 𝜎 = 

{0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c = <y,(0.4u,0.4v),(0.5u,0.6v)> is an IFCS in Y. Then f-1(G3

c) = 

<x,(0.4a,0.4b),(0.5a,0.6b)> is an IFS in X. Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore f is an 

IF𝜋𝛾G continuous mapping but since f-1(G3
c) is not an IFGSCS in X, as f-1(G3

c) ∪ int(cl(f-

1(G3
c))) = f-1(G3

c) ∪ int(G1
c) = f-1(G3

c) ∪ G1 =G1 ⊈ G2, f-1(G3
c) is not an IFGS continuous 

mapping.  
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Theorem 3.21:  

Every IFGP continuous mapping is an IF𝜋γG continous mapping in (X,) but not 

conversely in general.  

Proof:  

Let f: (X,) → (Y,) be an IFGS continuous mapping. Let V be an IFCS in Y.  

Then f-1(V) is an IFGPCS in X. Since every IFGPCS is an IF𝜋γGCS, f-1(V) is an IF𝜋γGCS in X. 

Hence f is an IF𝜋γG continuous mapping.  

Example 3.22:  

Let X={a,b} , Y={u,v} and G1 = <x,(0.5a,0.4b),(0.5a,0.6b)>, 

G2=<x,(0.4a,0.3b),(0.6a,0.7b)>,G3=<y,(0.5u,0.6v),(0.4u,0.4v)>.Then 𝜏 = {0∼,𝐺1,𝐺2,1∼} and 𝜎 = 

{0∼,𝐺3,1∼} are IFTs on X and Y respectively. Define a mapping f : (X,𝜏) → (Y, 𝜎) by f(a)= u 

and f(b) = v. The IFS G3
c = <y,(0.4u,0.4v),(0.5u,0.6v)> is an IFCS in Y. Then f-1(G3

c) = 

<x,(0.4a,0.4b),(0.5a,0.6b)> is an IFS in X. Hence f-1(G3
c) is an IF𝜋γGCS in (X,). Therefore f is an 

IF𝜋𝛾G continuous mapping but since f-1(G3
c) is not an IFGPCS in X, f-1(G3

c) is not an IFGP 

continuous mapping.  

The relationship between various types of intuitionistic fuzzy continuity is given in the 

following figure. In this figure ‘cts’ means continuous.  
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Theorem 3.23  

A mapping f: (X,) → (Y,) is an IF𝜋γG continuous mapping if and only if the inverse 

image of each IF𝜋OS in Y is an IF𝜋γGOS in (X,).   

Proof:  

Necessity:  

Let A be an IF𝜋OS in Y. This implies Ac is an IF𝜋CS in Y. Then f-1 (Ac) is an IF𝜋γGCS 

in X, by hypothesis. Since f-1(Ac) = (f-1(A)c), f-1(A) is an IF𝜋γGOS in X.  

Sufficiency:  

Let A be an IF𝜋CS in Y. Then Ac is an IF𝜋OS in Y. By hypothesis f-1(Ac) is an 

IF𝜋γGOS in X. Since f-1(Ac) = (f-1(A)c), (f-1(A)c) is an IF𝜋γGOS in X. Therefore f-1(A) is an 

IF𝜋γGCS in X. Hence f is an IF𝜋γG continuous mapping.  

Theorem 3.24:  

If f : (X,𝜏) → (Y,𝜎) is an IF𝜋𝛾G continous mapping then for each IFP 𝑝(𝛼,𝛽)of X and each 

A 𝜖 𝜎 such that f(𝑝(𝛼,𝛽)) q A, there exists an IF𝜋𝛾GOS B of X such that 𝑝(𝛼,𝛽) q B and f(B) ⊆ A.  

Proof:  

Let (𝛼,) be an IFP of X and A 𝜖 𝜎 such that f(𝑝(𝛼,𝛽))q A. Put B= f-1(A). Then by 

hypothesis, B is an IF𝜋𝛾GOS in X such that (𝛼,)q B and f(B) =f(f-1(A)) ⊆ A.  

Theorem 3.25:  

A mapping f : (X,𝜏) → (Y,𝜎) is an IF𝜋𝛾G continous mapping if cl(int(cl(f-1(A)))) ⊆         

f-1(cl(A)) for every IFS A in Y.  

Proof:  

Let A be an IF𝜋OS in Y then Ac is an IF𝜋CS in Y. By hypothesis, cl(int(cl(f-1(Ac)))) ⊆    

f-1(cl(Ac))= f-1(Ac). Now (int(cl(int(f-1(A)))))c = cl(int(cl(f-1(Ac)))) ⊆ f-1(Ac) = f-1(cl(A))c. This 

implies that f-1(A) ⊆ (int(cl(int(f-1(A))))). Hence f-1(A) is an IF𝛼OS and hence it is an IF𝜋𝛾GOS. 

Therefore f is an IF𝜋𝛾G continuous mapping.  

Theorem 3.26:  

Let f: (X,) → (Y,) be an IF𝜋𝛾G continuous mapping and g: (Y,) → (Z,𝛿) is an IF 

continuous mapping then g ∘ f : (X,𝜏) → (Z,𝛿) is an IF𝜋𝛾 continuous mapping.  

Proof:  

Let V be an IFCS in Z. Then g-1(V) is an IFCS in Y, by hypothesis. Since f is an IF𝜋𝛾G 

continuous mapping, f-1(g-1(V)) is an IF𝜋𝛾GCS in X. Hence g ∘ f is an IF𝜋𝛾G continuous 

mapping. 
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Theorem 3.27:  

Let f: (X,) → (Y,) be an mapping from an IFTS X into an IFTS Y that satisfies            f-

1(int(B)) = int(cl(f-1(B))) for every IFS B in Y. Then f is an IF𝜋𝛾G continuous mapping.  

Proof:  

Let B be an IF𝜋OS in Y. Then int(cl(B))= B, by hypothesis f-1(B) = int(cl(f-1(B))). This 

implies f-1(B) is an IFROS in X. Therefore it is an IF𝜋𝛾GOS in X. Hence f is an IF𝜋𝛾G 

continuous mapping.  
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Abstract: 

This paper discusses the problem of estimation of finite population mean in stratified 

random sampling. In fact, in this paper two ratio type estimators of population mean have been 

proposed using known parameters of auxiliary variable. Biases and mean squared errors of 

proposed estimators have been obtained upto the first degree of approximation. The suggested 

estimators have been compared with usual unbiased estimator, combined ratio estimator and 

estimators given by Kadilar and Cingi (2003). An empirical study has been carried out to 

demonstrate the performance of the proposed estimators.  

 

1. Introduction: 

Many times, the information on a variable x closely related to the study variable y is 

easily available or it can be collected at very cheap cost. For example, in estimating the total 

production of any crop, information on production of the same crop for previous year may be 

available for all units of the population.  This previous year production of a crop can be 

considered as an auxiliary variable (x). In this situation, estimator for population mean (Y ) of 

study variabley based on information on x would be more efficient than the estimator based on 

information only on the study variable y. 

Use of auxiliary information has been in practice for improving the efficiency of the 

estimators. The basic concept behind the use of auxiliary information is that the correlation 

coefficient between the study variable and auxiliary variable helps in improving the efficiency of 

the estimators of parameters of the study variable. Cochran (1940) envisaged a ratio method of 

estimation that provides classical ratio estimator for population mean. Ratio estimator given by 

Cochran (1940) has better efficiency as compared to the simple mean estimator when the study 

variable and auxiliary variable are positively correlated and the correlation coefficient is greater 
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than half of the ratio of coefficient of variation of the auxiliary variable to the coefficient of 

variation of the study variable.  

Major disadvantage of the ratio type estimators is that these do not perform better in 

terms of efficiency in case of negative correlation between the study variable and auxiliary 

variable. 

For the case of negative correlation coefficient between the study variable and auxiliary 

variable, Robson (1957) suggested a product method of estimation that provides product 

estimator for population mean. 

Many researchers used auxiliary information in the form of known parameters for the 

estimation of unknown parameters. Sisodiya and Dwivedi (1981) used coefficient of variation of 

the auxiliary variable. Singh and Upadhyaya (1999) utilized both coefficient of variation as well 

as coefficient of kurtosis. Singh and Tailor (2003) used correlation coefficient between the study 

variable and auxiliary variable for the estimation of population mean.  

Hansen et al. (1946) developed combined ratio estimator using auxiliary information at 

estimation stage in stratified random sampling. Later Kadilar and Cingi (2003) utilized known 

parameters of auxiliary variable and developed many ratio type estimators in stratified random 

sampling. Singh et al. (2008) studied properties of Bahl and Tuteja (1991) ratio type estimator in 

stratified random sampling. 

Consider a finite population U of size N consisting of units . Associated 

with the unit , there are two real quantities , , representing the values of 

the study variabley and a positively correlated auxiliary variablex. Population U is divided into k 

homogeneous strata of size  (h = 1,2…, k). A sample of size is drawn from each stratum 

following the simple random sampling without replacement method. Let  and 

 be the unbiased estimators of the population mean and  of the study variable 

and auxiliary variable, respectively, where 

: weight of    stratum,   

: sample mean of the study variable y for stratum and    

: sample mean of the auxiliary variable x for stratum. 
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Assuming that  is known, the combined ratio estimator for estimating the population 

mean  is defined as  

.  (1.1) 

The bias and mean squared error expressions of the combined ratio estimator upto the 

first degree of approximation are  

, (1.2) 

.
 

(1.3) 

where  

, , ,  

and . 

Sisodia and Dwivedi (1981) suggested a modified ratio estimator of  using coefficient 

of variation of auxiliary variable x in simple random sampling as   

. (1.4) 

Here,  are the sample means for and  is the coefficient of variation present 

in auxiliary characteristic x.    

Singh et al. (2004) proposed another ratio estimator for , using the coefficient of 

kurtosis  of auxiliary variablex in simple random sampling as   

. (1.5) 

Upadhyaya and Singh (1999) used coefficient of kurtosis and coefficient of variation of 

auxiliary variable and suggested estimators of population mean  in simple random sampling as  

 and (1.6) 

. (1.7) 

Kadilar and Cingi (2003) defined in stratified random sampling as  

, (1.8) 
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,  (1.9)

, (1.10) 

. (1.11) 

To the first degree of approximation, biases and mean squared errors of 

are given by  

, (1.12) 

, (1.13) 

, (1.14) 

, (1.15) 

, (1.16) 

, (1.17) 

,  (1.18) 

. (1.19) 

where , , 

,  

, , 

and . 
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2. Proposed Ratio Estimator 

Kadilar and Cingi (2006) suggested two ratio type estimators using information on 

coefficient of kurtosis  and correlation coefficient    ( ) between study variable and 

auxiliary variable in simple random sampling as   

. (2.  1) 

Here we propose  in stratified random sampling as  

,  (2.  2) 

To obtain the bias and mean squared error expressions of the proposed estimator, we 

assume  and  such that  

, ,   and .  

In terms of ei’s, can be written as  

,  
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where and    .
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 =  . 

To the first degree of approximation the bias and mean squared error of are obtained 

as 

, (2.3) 

, (2.4) 

where  and . 

Expressions 2.3 and 2.4 contains population parameters such as population mean, 

population mean squares, coefficients of kurtosis and covariances for each stratum. Hence 

expressions for bias and mean squared error of the suggested estimator  in (2.3) and (2.4) can 

not be used in real situation so estimator for the bias and mean squared error of the Bias and 

MES of the suggested estimator are given below:  

   (2.5) 

   (2.6) 
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,                (3.3) 

 if  

,                                        (3.4) 

 if  

,  (3.5) 

 if  

,  (3.6) 

 if  

,  (3.7) 

where , ,  

, , 

 and . 

 

4. Bias Comparisons 

Comparing (1.2) with (2.3), it is observed that the bias of proposed estimator   would 

be less than the bias of combined ratio estimator  i.e.  if 

.                                  (4.1) 

From (1.12) and (2.3)it follows that the bias of proposed estimator   would be less 

than the bias of estimator  i.e. if  

.  (4.2) 

Comparison of (1.13) and (2.3)shows that the bias of suggested estimator would be less 

than the bias of  i.e. if  
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.                                  (4.3) 

From (1.14) and (2.3), it can be concluded that the suggested estimator has less bias than 

the bias of Kadilar and Cingi (2003) estimator  i.e. if  

.                                  (4.4) 

From (1.15) and (2.3), it can be seen that proposed estimator has less bias in 

comparison to the bias of Kadilar and Cingi (2003) estimator i.e. if  

.                           (4.5) 

 

5. Generalized Version of Proposed Estimator  

Using power transformation in (2.1) the generalized version of is defined as  

,   (5.1) 

where  is a suitably chosen scalar.  

The bias and mean squared error of to the first degree of approximation are obtained 
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. 
         (5.4)

 

This is the value of  for which we get minimum value of . 

Substituting the value of in (5.3), we get minimum mean squared error of  as  

.(5.5) 

 

Efficiency Comparisons for Generalized Version of Proposed Estimator  

Comparing (3.1)and (5.3), it is observed that the proposed estimator would be more 

efficient than usual unbiased estimator  if
 

 .         (5.6) 

Condition for which the proposed estimator would be more efficient than combined 
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.

  

(5.9) 

From (1.18) and (5.3), it can be seen that the proposed estimator is more efficient 

than   estimator , if 

.

  

    (5.10) 

From (1.19) and (5.3) it is observed that proposed estimator would be more 

efficient than   estimator , if 

.

 

(5.11) 

From (2.4) and (5.3), it can be seen that the proposed estimator is more efficient 

than   estimator , if 

.

  

 

(5.12) 

 

6. Empirical Study 

To compare the proposed estimator numerically with other estimators, we are considering 

two real populations. Descriptions of the populations are given below: 

Population I [Source: Singh and Mangat (1996)] 

Y: Weight of juce in grams 

X : Weight of sugar canes in grams 
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Population II [Source: Kadilar and Cingi (2003)] 

Y: Apple production as a study variable 

X:  No. of Apple trees 

In this population data were collected from 854 villages of Turkey in 1999 (Source: 

Institute of Statistics, Republic of Turkey).  

1 366.6667X  2 310.8333X  3 317.1429X 

1 135Y  2 99.1667Y  3 80.7142Y 

1 2.2865x  2 3.2689x  3 3.1306x 

1 0.1419xC  2 0.1395xC  3 0.1695xC 

1 0.0662yC  2 0.1518yC  3 0.1358yC 

1 52.0256xS  2 43.3712xS  3 53.7631xS 

1 8.9443yS  2 15.0504yS  3 10.9653yS 

1 0.9456  2 0.9482  3 0.7532 

1 0.1267  2 0.0433  3 0.1028 

2
1 0.0576  2

2 0.2304  2
3 0.0784 

      

      

      

      

      

      

    

 

 

      

      

      

1 24375X  2 27421X  3 72409X  4 74365X  5 26441X  6 9844X 

1 1536Y  2 2212Y  3 9384Y  4 5588Y  5 967Y  6 404Y 
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1 49189xS  2 57461xS  3 160757xS  4 285603xS  5 45403xS  6 18794xS 

1 6425yS  2 11552yS  3 29907yS  4 28643yS  5 2390yS 
6 946yS 
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2
1 0.015  2

2 0.015  2
3 0.012  2

4 0.04  2
5 0.057  2

6 0.041 
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Table 6.1: Percent Relative Efficiencies of , ,  , , , , and with 

respect to  

Estimators Percent  Relative  Efficiency  

Population  I Population  II 

 

100.00 100.00 

 

214.84 317.65 

 

215.07 317.55 

 

219.38 317.37 

 

240.73 2356 

 

206.85 326.38 

 

241.17 2356 

 

383.70 248.10 

 

Table 6.2: Percent Relative Efficiencies of   for different values of . 

 Population I Population II 

0.00 100.00 100.00 

0.25 178.70 144.31 

0.50 317.22 201.76 

0.75 374.64 245.12 

1.00 241.17 2356 

1.25 131.85 178.03 

 

383.70
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Table 6.3: Range of   in which generalized estimator   would be more efficient than , 

, , , ,  and  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1 exhibits that there is substantial gain in efficiency by using the suggested 

estimator  over unbiased estimator , combined ratio estimator , and estimators ,

,  and  given by Kadilar and Cingi (2003).  Table 6.2 demonstrates that the larger 

gain in efficiency in the vicinity of the optimum value of the scalar  is observed and the 

maximum gain in efficiency at the optimum value of (say ). 

Table 6.2 shows the range of  in which proposed generalized estimator  performs 

better than , , ,  and .  

At the end, we concl4’ude that there is enough scope of selecting the values of  to obtain 

better estimators from the proposed estimators even when the scalar  departs from its exact 

optimum value  . 
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Abstract: 

This chapter deals with the estimation of population mean in stratified random sampling. 

A separate ratio cum product estimator using coefficient of kurtosis and coefficient of variation 

of auxiliary variable is proposed. The bias and mean squared error of the proposed estimator 

have been derived under large sample approximations. Theoretical conditions for which the 

proposed estimator is more efficient than other estimators considered are obtained. Empirical 

study is also carried out to support the theoretical results.   

MSC: 94A20 

Keywords: Population mean, Mean squared error, Bias, Coefficient of kurtosis, Coefficient of 

variance, Stratified random sampling. 

 

1. Introduction 

It is well known that if information on auxiliary varaiate (s) is suitably used then it may 

provide more efficient estimators. It is also established that stratified random sampling prove to 

be more efficient than simple random sampling in planning surveys. Many researchers including 

Singh (1967), Sisodia and Dwivedi (1981), Singh and Kakran (1993), Upadhyaya and Singh 

(1999) and Singh et al. (2004), Kadilar and Cingi (2003, 2005, 2006), Singh and Vishvakarma 

(2005, 2006) etc. made use of auxiliary information at estimation stage. In stratified random 

sampling ratio estimators can be defined in two ways: Combined ratio estimators and Separate 

ratio estimators. In cases when line of regression on y  on x  passes through origin within each 

stratum, the separate ratio estimator will be more precise than combined one. In this paper a 

separate ratio- cum product estimator of population mean in stratified random sampling is 

suggested. 

Consider a finite population NUUUU ,...,, 21  of size N and it is divided into L strata of 
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Size ).,......2,1( LhNh   Let y and x be the study variate and auxiliary variate respectively taking 

values ),....,2,1;,....2,1(and hhihi NiLhxy  . A sample of size hn is drawn from each stratum 

which constitutes a sample of size h
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Notations: 

y : Study variate, x : Auxiliary variate,  

hiy : Observation on thi unit of thh  stratum on study variate, 

hix : Observation on thi unit of thh  stratum on auxiliary variate, 

hy  :Sample mean of study variate for thh  stratum, 

hx :Sample mean of auxiliary variate for thh  stratum, 
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
 


L

h

N

i
hi

h

x
N

X
1 1

1
: Population mean of auxiliary variate,  





L

h
hhst yW

n
y

1

1
: Unbiased estimator of population mean Y  in stratified random sampling, 





L

h
hhst xW

n
x

1

1
: Unbiased estimator of population mean X  in stratified random sampling, 

N

N
W h

h  :  Stratum weight of thh  stratum. 

The Combined ratio estimator to estimate population mean Y  is given by 











st
stRC x

X
yy                     (1.1) 

Here X  is assumed to be known. 

The classical separate ratio estimator for population mean Y  is defined as 

h

h
L

h
hhRS x

X
yWy 




1           

(1.2)
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Bias and mean squared error of Separate ratio estimator RSy  are  

   



L

h
xhyhyxhxhhhhRS CCCYWyB

1

2)( 
   

    (1.3) 

 



L

h
xhyhyxhhxhhyhhhhRS SSRSRSYWyMSE

1

22222 2)( 
      

(1.4) 

Upadhyaya and Singh (1999) used coefficient of variation )( xC  and coefficient of 

kurtosis  )( 2 x of auxiliary variate x and proposed a ratio type estimator as  













x
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Kadilar and Cingi (2003) defined 1t in stratified random sampling as   

 
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2
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2
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2. Proposed estimator: 

We propose a Separate ratio estimator using coefficient of variation )( xC  and coefficient 

of kurtosis  )( 2 x of auxiliary variate x based on Upadhyaya and Singh (1999) as 
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Where h  are suitably chosen scalars.  

To obtain bias and mean squared error of proposed estimator st , we write  

   hhhhhh eXxeYy 10 1,1   such that  
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      =        hhhhhh
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hhh eeeYW 1
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To the first degree of approximations bias and mean squared error of proposed estimator 

t  are obtained as 
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where  
h

h
h X

Y
R 

 

 

3. Efficiency Comparisons: 

Variance of usual unbiased estimator of mean sty in stratified random sampling is  





L

h
yhhhst SWyV

1

22)(            (3.1) 

Comparison of (2.2) and (3.1) shows that proposed estimator st  would be more efficient 

than unbiased estimator sty  i.e. )yVar()( ststMSE  If 
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where 
xh

yh
yxhh S

S
K   

Comparing   (1.4) and (2.2) it is observed that proposed estimator st  would be more 

efficient than classical separate ratio estimator RSy   

i.e. )()( RSs yMSEtMSE 

 
if
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4. Estimator at optimum h   

Value of h  for which proposed estimator gives optimum results i.e. minimum mean 

squared error, can be obtained using principle of maxima and minima   

i.e. 0
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This is the value of   for which )( tMSE gives minimum mean squared error of t  . 

Substituting the value of  in proposed estimator (3.1.2.1) the optimum estimator )(optt  

can be expressed as  
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and minimum mean squared error of St  is  
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Bias and MSE of 2St are obtained by substituting hh f1
 
as  
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Bias and MSE of 2St are obtained by substituting hh f1
 
as  
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5. Empirical Study 

The performance of the proposed estimator in comparison to other estimators is tested on 

five natural data sets. 

For comparison of different estimators we are calculating percent relative efficiency 

(PRE) 

 100
)(

)(
),( 

RC

st
stRC yMSE

yV
yyPRE

 

100
)(

)(
),( 

RS

st
stRS tMSE

yV
ytPRE

 

100
)(

)(
),(

)(
)( 

Sopt

st
stSopt tMSE

yV
ytPRE




 

100
)(

)(
),(

1
1 

S

st
stS tMSE

yV
ytPRE

 

100
)(

)(
),(

2
2 

S

st
stS tMSE

yV
ytPRE

 

 

 

 



Bhumi Publishing, India 

56 
 

Description of the data is given below: 

Population 1: [Source: Singh and Mangat (1996), p. 180] 

240 
 
 

      n=24 

1n =18 2n =6 

                 1X = 94.35 2X =58.46 

1Y =98.98 2Y =70.6 

1y
C =0.118 

2yC =0.104 

1xC =0.1298 
2xC =0.0962 

1
2
xS =150.134 2

2xS =31.658 
2

1yS =137.261 2

2yS =54.84 

1yxS =136.996 
2yxS =24.084 

 

Population 2: [Source: Singh and Mangat (1996), p. 208] 

N=1344 
 
 

n=53 
 
 

1n =14 2n =9 3n =12 4n =17 

1N =400 2N =216 3N =364 4N =364 

1X =76.21 2X =58.11 3X =69.08 4X =63.71 

1Y =79.35 2Y =59.44 3Y =76.66 4Y =64.57 

 x21 =2.22  x22 =2.29  x23 =1.96  x24 =2.47 

1xC =0.1906 
2xC =0.2416 

3xC =0.201 4xC =0.1908 

1
2
xS =851.00 2

2xS =31.06667 2

3xS =35.00 2
4xS =35.00 

2

1yS =166.70 2

2yS =174.28 2

3yS =226.60 2
4yS =170.61 

1yxS =148.76 
3yxS =161.19 

3yxS =192.21 4yxS =143.83 
 

Population 3: [Source: Singh and Mangat (1996), p. 213] 

N=2119 
 
 

n=39 
 
 

1n =12 2n =13 3n =14 

1N =640 2N =710 3N =769 

1X =103.41 2X =110.92 3X =104.28 

1Y =25.75 2Y =28.94 3Y =25.52 

 x21 =2.27  x22 =3.43  x23 =2.89 

1xC =0.11 
2xC =0.07 

3xC =0.11 

1
2
xS =133.9 2

2xS =66.24 2

3xS =154.99 

2

1yS =40.15 2

2yS =30.33 2

3yS =44.42 

1yxS =67.47 
2yxS =41.03 

3yxS =78.81 
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Population 4: [Source: Singh and Mangat (1996), p. 219] 

N=150 
 
 

n=25 
 
 

1n =6 2n =1 3n =7 

1N =36 2N =72 3N =42 

1X =366.66 2X =310.83 3X =317.14 

1Y =135 2Y =99.16 3Y =80.71 

 x21 =2.28  x22 =3.26  x23 =3.13 

1xC =0.1418 
2xC =0.1395 

3xC =0.1695 

1
2
xS =2706.66 2

2xS =1881.06 2

3xS =2890.47 

2

1yS =80 2

2yS =226.51 2

3yS =120.23 

1yxS =440 
2yxS =618.93 

3yxS =444 

 

Table 5.1: Percent relative efficiency of 1, , , ,st RS sopt Sy y t t and 2St

 
Estimator 

Population    
sty  RSy  soptt  1st  2st  

Population 1 100 331.73 393.78 377.21 235.24 

Population 2 100 224.85 451.85 324.65 281.51 

Population 3 100 331.43 424.64 359.78 298.57 

Population 4 100 199.95 748.631 251.46 273.18 

Population 5 100 169.27 537.63 345.09 99.99 

 

6. Conclusion:  

Table 5.1 reveals that proposed estimator st  is more efficient than usual unbiased 

estimator  sty  and the classical separate ratio estimator RSy  .  Many estimators can be derived by 

substituting suitable values of constant  for instance for  
N

n
f  11

 
proposed estimator 

st

 

perform better than aforesaid estimators for all five populations considered and for f1

it perform better for second and third population. Thus

 

st  is recommended for use in practice. 
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Abstract: 

Horse gram is one of the important pulse crop of Odisha. It has very high nutritive value 

and thus contribute towards the nutritional security of the state. Forecasting of horse gram 

production is very much necessary to enable the agriculture planners to formulate appropriate 

policies regarding the cultivation of the crop. The present research is carried out on forecasting 

area, yield and production of horse gram in Odisha by using ARIMA model. 

ARIMA, the most widely used model for forecasting is used in the study. The data on 

area, yield and production of horse gram are collected from 1970-71 to 2019-20 are used to fit 

the models found suitable from ACF and PACF plots. The ACF and PACF plots are obtained 

from stationarized data. The best fit model is selected on basis of significance of estimated 

coefficients, model diagnostic tests and model fit statistics. The selected best fit model is cross 

validated by refitting the model by leaving last 5 years, 4years, up to last 1 year data and 

obtaining one step ahead forecast for the years 2015-16 to 2019-20. After successful cross 

validation the selected best fit model is used for forecasting the area, yield and production of 

horse gram in Odisha for the future years 2020-21, 2021-22, 2022-23. 

The ARIMA model found to be best fit for area, yield and production of horse gram are 

ARIMA(1,1,0), ARIMA(0,1,1), ARIMA(0,1,1) respectively. All these selected models are fitted 

without constant as the constant term is insignificant for all these cases. The forecasted values for 

area under horse gram found to increase in the future years which is responsible for increase in 

forecasted values of future production despite the yield remaining stagnant for future years. 

Keywords: ARIMA, cross validation, forecast, model diagnostics, model fit statistics 

 

1. Introduction: 

Pulses are grain legumes which have been major part of the diet and rich source of 

nutrients. Pulses occupy a privileged position in Odisha agriculture for their contribution to the 

economy of the state. 
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Pulses like green gram, cowpea, black gram, arhar, Bengal gram, field pea, horse gram, 

lentil etc., are grown in the state of Odisha. Among the pulses horse gram on an average occupies 

16.57 percent of the total pulse grown area and a production of 14.5 percent. During last 5 years 

in Odisha, Nabarangpur district stands first in area and production of horse gram with 19.17 

thousand hectares and 9.81 thousand MT respectively followed by Balangir and Sundargarh 

where as Kendrapara district stands first in yield with 4.73 tonnes/ha followed by Jagatsinghpur 

and Cuttack. Crop area estimation and prediction of crop production and yield beforehand plays 

an important role in supporting agricultural policy decision making. The forecasting of the 

production of horse gram is of utmost importance for framing appropriate food policies and 

ensuring nutritional security of the state. 

Various studies have been found under this area of research. Vishwajit et.al (2018) 

studied about the modelling and forecasting of arhar in major arhar growing states in India using 

ARIMA and other models. Devgowda S.R. et.al (2019) studied the analysis of variability in area, 

yield, production and value of pulses in India and Mishra et.al (2021) studied the trend in the 

production of total  pulses in major growing states in India using ARIMA. 

 

2. Materials and Methods: 

The secondary data on area, yield and production of horse gram are collected for the state of 

Odisha (kharif and rabi seasons combined) for the period 1970-71 to 2019-20 from Five Decades of 

Odisha Agriculture Statistics published by Directorate of Agriculture and Food Production, Odisha. 

An Autoregressive Integrated Moving Average is a statistical model which is used to predict the 

future trends. The ARMA models, which includes the order of differencing (which is to 

stationarize the data) is known as Autoregressive integrated moving average (ARIMA) models. 

A non-seasonal ARIMA model is classified as an "ARIMA (p,d,q)" model, where, the 

parameters p,d,q are the non-negative integers where p is the number of autoregressive terms, 

d is the number of nonseasonal differences necessary for stationarizing the data, and q is the 

number of moving average terms. Thus, the ARIMA (p,d,q) model can be represented y the 

following general forecasting equation: 

𝑌௧ = 𝜇 + ෍ ɸ௜𝑌௧ି௜ +  ෍ 𝜃௝𝜀௧ି௝ + 𝜀௧

௤

௝ୀଵ

௣

௜ୀଵ

 

Where 𝜇 is a mean, ɸଵ, ɸଶ, … . . ɸ௣ and 𝜃ଵ, 𝜃ଶ, … … 𝜃௝  are the parameters of the model, p is 

the order of the autoregressive term, q is the order of the moving average term, and  𝜀௧ 

, 𝜀௧ିଵ, . . 𝜀௧ି௝are noise error terms. 
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3. Model identification: 

The ARIMA model is fitted to stationary data i.e. having constant mean and variance. 

Staionarity of data can be tested by using Augmented Dickey-Fuller test. If it is not stationary 

then it should be converted into stationary series by differencing the data at suitable lag. Usually, 

the data is stationarized after 1 or 2 differencing. After stationarizing the data, the Auto 

Correlation Function (ACF) and Partial Auto Correlation Function (PACF) plots are used to 

identify tentative Auto Regression (AR) and Moving Average (MA) orders. Various tentative 

models based on identified AR and MA orders are fitted and parameters are estimated. After 

fitting the tentative models for a variable (area/yield/production) the estimated coefficients are 

tested for the significance and the normality and independency of the residuals of the fitted 

models are checked by using Shapiro-Wilk’s test statistic and Box-Pierce test statistic 

respectively. The models having all the estimated coefficients significant and satisfying the 

normality and independency of the errors are now compared on the basis of model fit statistics 

like Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and Akaike’s 

Information Criteria corrected (AICc). Then the model having the lowest value of these model fit 

statistics is considered to be the best fit model for the variable. 

The model fit statistics like MAPE, RMSE and AICc are mathematically as follows: 

Mean absolute percentage error: 
ଵ଴଴

௡
∑ ቚ

௬೟ି௬ො೟

௬೟
ቚ௡

௧ୀଵ  

Root mean square error (RMSE): ට
∑ (௬ො೟ି௬೟)మ೙

೅సభ

௡
 

where 𝑦ො௧= forecasted value, 𝑦௧= actual value and n = number of times the summation iteration 

happens 

Akaike’s information criteria corrected:  AIC + 
ଶ௄మାଶ௄

௡ି௞ିଵ
 

Where AIC is the Akaike’s Information criteria, k denotes the number of parameters and n  

The model with lowest denotes the sample size. RMSE, MAPE and AICc values is selected as 

the best fit ARIMA model among selected tentative models and it is taken for forecasting. 

 

4. Results and Discussion: 

The data on area, yield and production of horse gram crop was tested for the presence of 

stationarity by using Augmented Dickey Fuller test and the results are presented in table 1. The test 

results confirmed that the data was not stationary and made stationary by first order differencing at lag 

2. 
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Table 1: Test of stationarity of data on area, yield and production of horse gram in Odisha 

Variable Original series First order differenced series 

ADF test statistic P value ADF test statistic P value 

Area -2.515 0.3694 -3.938 0.0211 
Yield -1.6496 0.7129 -5.0007 0.01 

Production -2.1016 0.5336 -4.1555 0.0105 
After stationarising the data the next step is to identify the order of AR and MA terms 

such as p and q using the ACF and PACF plots of stationary data shown in figures 1, 2 and 3. 

The ACF plot gives the order of Moving Average and PACF plot about the order of 

Autoregression. Different tentative models were identified using the orders of AR and MA 

terms.  

    

Figure 1: ACF and PACF plot of first order difference of Area under Horse gram 

    

Figure 2: ACF and PACF plot of first order difference of Yield of Horse gram 

    

Figure 3: ACF and PACF plot of first order difference of Production of Horse gram 
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The tentative models of area and their estimated coefficients along with error measures 

are shown in the table-2. The study of the table reveals that ARIMA(1,1,0) and ARIMA(0,1,2) 

without constant model has all the estimated coefficients significant 

Table 2: Parameter estimates of the ARIMA (p,d,q) model fitted to area under Horse gram  

ARIMA(p,d,q) Constant ɸ𝟏 ɸ𝟐 ɸ𝟑 𝛉𝟏 𝛉𝟐 𝛉𝟑 

ARIMA (0,1,2) ---- ---- ---- ---- 
-0.539** 

(0.140) 

0.575** 

(0.194) 
---- 

ARIMA  (0,1,2) 
1.601 

(4.330) 
---- ---- ---- 

-0.531** 

(0.133) 

0.571** 

(0.189) 
---- 

ARIMA (1,1,0) ---- 
0.408** 

(0.129) 
---- ---- ---- ---- ---- 

ARIMA    

(1,1,2) 
---- 

0.205 

(0.204) 
---- ---- 

-0.665** 

(0.166) 

0.6671** 

(0.2072) 
---- 

ARIMA  (0,1,3) ---- ---- ---- ---- 
-0.428** 

(0.133) 

0.547** 

(0.140) 

0.218 

(0.175) 

Figures inside the parentheses represents the standard error of the parametric estimates. 

‘*’- at 5% significance level,  ‘**’- at 1% significance level 

 

Table 3: Model fit statistics of the ARIMA (p,d,q) model fitted to area under Horse gram 

ARIMA(p,d,q) Shapiro-wilk test Box – pierce test AICc RMSE MAPE 

W p-value x-

squared 

p-value 

ARIMA (0,1,2) 0.951 0.037 0.248 0.618 477.84 29.066 7.016 

ARIMA  

(0,1,2) 

0.951 0.038 0.263 0.608 480.087 29.544 7.028 

ARIMA 

(1,1,0) 

0.959 0.086 0.098 0.754 480.736 28.491 7.154 

ARIMA    

(1,1,2) 

0.959 0.081 0.012 0.910 479.331 30.910 7.532 

ARIMA  

(0,1,3) 

0.961 0.097 0.013 0.907 478.695 28.769 7.125 

W - Shapiro-wilk test statistic      x-squared - Box – Pierce test statistic 
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Table 3 shows the model diagnostics test and model fit statistics for the fitted ARIMA 

models. ARIMA (1,1,0) model satisfies both the test of normality and independency of residuals. 

The RMSE, MAPE and AICc are less for ARIMA (1,1,0) without constant model. Thus, this 

model is selected to be the best fit model for production of horse gram crop. Figure 4 also shows 

that none of the autocorrelations and partial autocorrelations of residuals are significant. This 

furthers confirms the selection of the respective best fit models. 

 

Figure 4: ACF and PACF of residuals from selected ARIMA (1,1,0) model for Area under 

Horse gram 

 

The tentative ARIMA models of yield and their estimated coefficients along with error 

measures are shown in the table 4. The study of the table reveals that ARIMA (0,1,1) and 

ARIMA (2,1,0) without constant model has all the estimated coefficients significant 

Table 4: Parameter estimates of the ARIMA (p,d,q) model fitted to area under Horse gram  

ARIMA(p,d,q) Constant ɸ𝟏 ɸ𝟐 ɸ𝟑 𝛉𝟏 𝛉𝟐 𝛉𝟑 

ARIMA   (0,1,1) ---- ---- ---- ---- -0.424** 

(0.122) 

---- ---- 

ARIMA  (2,1,0) ---- - 0.406** 

(0.137) 

- 0.268* 

(0.136) 

---- ---- ---- ---- 

ARIMA (0,1,2) ---- ---- ---- ---- -0.409** 

(0.162 ) 

-0.021 

(0.164) 

---- 

ARIMA  (0,1,1) -0.521 

(4.169) 

---- ---- ---- 0.424** 

(0.122) 

---- ---- 

ARIMA (1,1,1) ---- -0.441* 

(0.227) 

---- ---- 0.024 

(0.269) 

---- ---- 

Where, Figure inside the parentheses represents the standard error of the parametric estimators. 

‘*’- at 5% significance level, ‘**’- at 1% significance level 



Advances in Mathematical and Statistical Science 
    (ISBN: 978-93-91768-62-1) 

65 
 

Table 5 shows the model diagnostics test and model fit statistics for the fitted ARIMA 

models for yield of horse gram. ARIMA (0,1,1) without constant model satisfies both the test of 

normality and independency of residuals. The RMSE, MAPE and AICc are  less for ARIMA 

(0,1,1) without constant model. Thus, this model is selected to be the best fit model for 

production of horse gram crop. Figure 5 also shows that none of the autocorrelations and partial 

autocorrelations of residuals are significant. This furthers confirms the selection of the respective 

best fit models. 

Thus this model is selected to be the best fit model for yield under horse gram crop.  

Table 5: Model fit statistics of the ARIMA (p,d,q) model fitted to yield of Horse gram  

ARIMA(p,d,q) Shapiro-wilk test Box – pierce test AICc RMSE MAPE 

W p-value x-squared p-value 

ARIMA   

(0,1,1) 

0.927 0.004 0.0003 0.985 526.817 49.458 9.021 

ARIMA  

(2,1,0) 

0.936 0.009 0.018 0.890 527.906 48.835 9.092 

ARIMA (0,1,2) 0.929 0.005 0.003 0.954 529.072 49.452 9.026 

ARIMA  

(0,1,1) 

0.927 0.004 0.0005 0.981 529.074 49.450 9.051 

ARIMA (1,1,1) 0.928 0.004 0.0002 0.987 529.081 49.455 9.024 

W - Shapiro-wilk test statistic      x-squared - Box – pierce test statistic 

 

Figure 5: ACF and PACF of residuals from selected ARIMA (0,1,1) model for Yield under 

Horse gram 

 

The tentative models of production and their estimated coefficients along with error 

measures are shown in the table 6. The study of the table reveals that ARIMA (0,1,1) and 

ARIMA (1,1,0) without constant model has all the estimated coefficients significant 
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Table 6: Parameter estimates  of the ARIMA (p,d,q) model fitted to production of Horse gram  

ARIMA(p,d,

q) 

Constant ɸ𝟏 ɸ𝟐 ɸ𝟑 𝛉𝟏 𝛉𝟐 𝛉𝟑 

ARIMA 

(0,1,1) 

---- ---- --- --- -0.328** 

(0.116) 

---- 

 

---- 

ARIMA 

(1,1,0) 

---- -0.322* 

( 0.133) 

--- --- ---- ---- ---- 

ARIMA  

(0,1,2) 

---- ---- --- --- -0.421* 

(0.171) 

0.137 

(0.176) 

---- 

ARIMA 

(0,1,3) 

---- ---- --- --- -0.394** 

(0.138) 

0.061 

(0.141) 

0.162 

(0.110) 

ARIMA 

(1,1,1) 

---- -0.130 

(0.278) 

---- --- -0.230 

(0.252) 

---- ---- 

Figure inside the parentheses represents the standard error of the parametric estimators. 

‘*’- at 5% significance level,  ‘**’- at 1% significance level 

 

Table 7 shows the model fit statistics and model diagnostics test for the fitted ARIMA 

models for production of horse gram. ARIMA (0,1,1) and ARIMA (1,1,0) without constant 

model satisfies both the test of normality and independency of residuals. The RMSE, MAPE and 

AICc are  less for ARIMA (0,1,1) without constant model. Thus, this model is selected to be the 

best fit model for production of horse gram crop. Figure 6 also shows that none of the 

autocorrelations and partial autocorrelations of residuals are significant. This furthers confirms 

the selection of the respective best fit models. 

Table 7: Model fit statistics of the ARIMA (p,d,q) model fitted to production of Horse gram  

ARIMA(p,d,q) Shapiro-wilk test Box – pierce test AICc RMSE MAPE 

W p-value x-squared p-value 

ARIMA 

(0,1,1) 

0.928 0.004 0.467 0.494 454.232 23.602 14.267 

ARIMA (1,1,0) 0.921 0.003 0.001 0.973 454.729 23.723 14.354 

ARIMA  

(0,1,2) 

0.920 0.002 0.021 0.885 455.886 23.436 14.185 

ARIMA (0,1,3) 0.932 0.007 0.004 0.950 456.265 22.946 14.370 

ARIMA (1,1,1) 0.921 0.002 0.009 0.922 456.301 23.549 14.357 

W - Shapiro-wilk test statistic      x-squared - Box – Pierce test statistic 
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Figure 6: ACF and PACF of residuals from selected ARIMA (0,1,1) model for Production of 

horse gram 

 

In the table 8, the result of cross validation of the selected best fit ARIMA model by one-step 

ahead forecasting has been presented. The APE (absolute percentage error) of area under horse 

gram is found to be in the range between 1 to 19 and the MAPE(mean APE) is found to be 8.912 

for area of horse gram  crop. Similarly for yield the APE range is found between 0 to 12 and 

MAPE is 4.844 and for production, APE range is between 1 to 19 and MAPE is 9.946. These 

results show that the selected ARIMA models are successfully cross validated. 

 

Table 8: Cross validation of selected ARIMA models for area, yield and production of horse 

gram in Odisha 

Year 
Area Yield Production 

Actual Predicted APE Actual Predicted APE Actual Predicted APE 

2015-16 194.96 231.81 18.89 387 384.02 0.77 75.45 89.35 18.43 

2016-17 216.2 212.09 1.90 436 385.68 11.54 94.26 79.96 15.16 

2017-18 200.01 190.85 4.57 457 413.77 9.45 91.40 89.573 1.99 

2018-19 205.25 200.65 2.23 448 438.81 2.05 91.95 90.79 1.25 

2019-20 235.67 195.73 16.94 446 444.19 0.41 105.11 91.57 12.88 

MAPE 8.912 4.844 9.946 

 

The appropriate ARIMA models which are represented in the previous tables were used 

to forecast the area, yield and production of horse gram crop in Odisha for the years 2020-21, 

2021-22 and 2022-23. 

Figures 7, 8 and 9 shows the actual, fitted and forecast values of area, yield and 

production of horse gram in Odisha. 
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Table 9: Forecast values of horse gram in Odisha for the year 2020-21 to 2022-23 

Year Area (‘000ha) Yield (kg/ha) Production (‘000tonnes) 
Forecasted 95 % 

confidence 
interval 

Forecasted 95 % 
confidence 

interval 

Forecasted 95 % 
confidence 

interval 
Lower 

CI 
Upper 

CI 
Lower 

CI 
Upper 

CI 
Lower 

CI 
Upper 

CI 
2020-21 223.23 164.38 282.08 445.23 346.31 544.17 98.66 53.45 147.88 
2021-22 241.43 176.35 306.51 445.23 331.07 559.40 100.66 43.78 157.54 
2022-23 241.43 152.11 330.75 445.23 317.65 572.82 100.66 35.54 165.79 

CI – Class Interval 

 

 

Figure 7: Actual with fitted and forecasted values of Area under horse gram from 

ARIMA (1,1,0) without constant model 

 

Figure 8: Actual with fitted and forecasted values of Yield of horse gram from ARIMA 

(0,1,1) without constant model 
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Figure 9: Actual with fitted and forecasted values of Production under horse gram from 

ARIMA (0,1,1) without constant model 

Conclusion: 

ARIMA (1,1,0) without model, ARIMA (0,1,1) without constant model and ARIMA 

(0,1,1) without constant model are found to be the best fit model for area, yield and production of 

horse gram in Odisha. These selected models are used for forecasting of area, yield and 

production of horse gram in Odisha. The forecast values shows that area, yield and production of 

horse gram in Odisha remain stagnant in future years with variation in lower and upper class 

interval of the forecast values.   
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This chapter means Magneto hydrodynamic, in simple, sense the motion of the electrical 

conducting fluid in the presence of magnetic field. Due to the effect of magnetic field there is 

created in electrical current in the fluid which modifies the fluid motion. 

 The theory of electric conductivity implies that there are electric charges in motion in the 

fluid. The motion of charges generates a magnetic field which exerts a force on a charged 

particle of fluid moving within the fluid. Such forces are generated by basic laws of electrically 

and magnetism. 

 The basic equations known as Maxwell’s equation BandJ


 are given by Maxwell’s 

equations and Ohms law namely 2Bu  
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                 ]BuE[J


       (1) 

where E


 is the electrical field intensity,  is dielectric constant of medium,  HHB 0


  is a 

magnetic field intensity, 0  is the permeability,  J


 is conjuction current density vector, q is the 

charge per unit volumes and    is conductivity of the equation. U


 is fluid velocity vector, B


  

the magnetic field. 

 It is assumed that the effect of the induced magnetic field and electric field produced by 

the motion of electrically conducting liquid is negligible and no electric field is applied. With 

these assumptions the magnetic term BJ


  of body is given by 
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                  (4) 

 2BuBJ


        (5) 

  

Flow through porous media: 

In recent years, the study of flows through porous media has been causing keen interest 

amongst the engineers and the mathematicians due to its importance and video applications in 

the fields of petroleum technology, soil mechanics, ground water hydrology, seepage of water in 

river beds, purification and filtration process and bio-mechanics etc. 

The porous mateiral containing the field is the fact a non-homogeneous medium but for 

the suke of anlaysie, it may be possible to replce it with a homogeneous liuqid which has 

dynamical poperties equal to the local averages of the original non-homogeneous continum. 

Then one can study the flow of a hypothetical homogeneous fluid under the action of the 

property average of external forces. Hence, a complicated problem of the flow through a porous 

medium reduces to the flow problem of a homogeneous fluid with some additinol resistance.   

Flow of homogeneous fluid through various types of porous media were presented by 

Muskat (1946) following the classical Daracy’s experimental law, which state that seepage 

velocity of the fluid is proportional to the pressure gradient. This law fails to explain the 

phenomenon occurring in highly porous media. The viscous stress at the surface is able to 

penetrate into the medium and produce flow near the surface even in the absence of pressure 

gradient. 

 Brinkman (1947) proposed a general Daracy’s law to study flow through highly porous 

media 

 v
K

vp0 2 


       (A) 

where v  and p  represent velocity and pressure field, m is the velocity coefficient of 

fluid and K is the permeability constant of the medium. Later Tam (1969) derived analytically 

the same equations to study the flow past spherical particles at low Reynolds number. Yamamoto 

(1971, 73) and Gulab Ram and Mishra (1977) examined the flow past porous bodies applying the 

generalized law. 
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This chapter has considered fundamentals of dimensional analysis and similitude, which 

are commonly used in experimental fluid mechanics. The viscous, incompressible fluids for 

which the velocity components of fluid and the pressure p flow the Navier-Stokes equations: 
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 Where, k is a dummy suffix and i, k = 1, 2 or 3.    

 The energy equation is,  
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   (3)  where, 

pc  is specific heat at constant volume, K is coefficient of thermal conductivity, µ is coefficient 

of viscosity and T is temperature. 

 To bring the essential parameters of laminar flow, the fundamental equations stated 

earlier are transformed by introducing the non-dimensional quantities: 
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Where, 0000 Tandt,u,  are respectively characteristic length, velocity, time and 

temperature and R, Nu and Ec are Reynolds number, Nusselt number, Prandtl number and Eckert 

number respectively. 

 Reynolds number R measures the ratio of inertial force to the viscous force. For small R, 

the viscous force is predominant and effect of viscosity is signiticant in the flow field and for 

large R, inertial force dominates and effect of viscosity is important only in the narrow boundary 

layer region near the solid boundary or in the region with large variation in velocity. Nusselt 

number is a measure of the convective heat transfer and the Prandtl number is a measure of 

relative importance of viscosity and heat conduction. It can be written as:  

 

 
ydiffusivitThermal

ityvisosKinematic

c/K
P

p
r 




     (5) 

  

The two flows are similar if they are geometrically similar and if all the relevant 

dimensionless parameters are the same for both flows. To summarize, we model as follows for 

incompressible and compressible flows: 

 R the same  : viscous flow and subsonic aerodynamics,  

 R and K the same : high speed compressible and supersonic flow,  

 R and M0the same : compressible boundary layer,  

 Pr the same  : heat conduction,  

 R, M0 and Pr the same: compressible boundary layer with heat conduction,  

 R and Fr the same : Marine ship modeling,  

  

Where, R, M0, Pr, Fr and K are Reynold's number, Mach number, Prandtl number, Froude 

number and ratio of specific heats respectively.  

Dimensional analysis is very useful for planning, presentation, and interpretation of 

experimental data. As discussed previously, most practical fluid mechanics problems are too 

complex to solve analytically and must be tested by experiment or approximated by 

computational fluid dynamics (CFD). These data have much more generality if they are 

expressed in compact, economic non‐dimensional form. Dimensional analysis is a method for 

reducing the number and complexity of experimental variables that affect a given physical 

phenomena. 
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Abstract:  

This article suggests two separate ratio-cum-product type estimators for estimating the 

finite population mean in stratified random sampling. The efficiency of the suggested estimators 

are compared with the usual unbiased estimator in stratified random sampling, conventional 

separate ratio and product estimators and Tailor and Lone (2014) separate ratio and product type 

estimators on the basis of mean square error (MSE). The bias and mean square error of 

considered estimators are obtained. The results are illustrated by three data sets. 

Keywords: Finite population mean, separate ratio estimator, Auxiliary variable, Bias, Mean 

squared error. 

 

1. Introduction: 

When information of parameters of auxiliary variate is available in each stratum, separate 

ratio type estimators may be constructed easily and perform better as compared to combined 

estimators.   

In this paper, separate ratio-cum -product estimators for finite population mean are 

suggested using known parameters of auxiliary variates in each stratum. 

Let as consider finite population U which is divided into L  strata of sizes 

 LhN h ,...,3,2,1 . From each stratum a sample of size hn is drawn using simple random 

sampling without replacement such that 



L

h
hnn

1

. 

The classical separate ratio and product estimators are defined respectively as  
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Upadhyaya and Singh (1999) used coefficient of kurtosis )(2 x and coefficient of 

variation xC of auxiliary variate x and defined two different ratio type estimators as  
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Kadilar and Cingi (2003) defined Upadhyaya and Singh (1999) estimators in stratified 

random sampling as 
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Tailor and Lone (2014) suggested separate ratio type estimators in stratified random 

sampling as  
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Product version of 1ˆ US
RSY  and 2ˆ US

RSY  can be defined as 
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Mean squared error of the   1t  , 2t  , 7t , 8t , 9t and 10t  
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2. Suggested separate ratio - cum - producrt estimtors 

Assuming that coefficient of variation xhC  and coefficient of kurtosis )(2 xh  in  thh  

stratum are know in advance with stratum mean, suggested separate ratio - cum -product 

estimators for population mean are  
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(2.2) 

To obtain the bias and mean Squared error of the suggested estimator  1ˆ US
RPSY  , we write  

 ohhh eYy  1 ,  hhh eXx 11  and  hhh eZz 21    

Such that       021  hhoh eEeEeE   and 
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  ,21 zhxhxzhhhh CCeeE   

  ,2 zhyhyzhhhoh CCeeE   

Now expressing (2.1) in terms of seih '  we have  
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Finally, the bias and mean squared error of the suggested estimator 1ˆ US
RPSY up to the first 

degree of approximation are obtained as 
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Similarly, the bias and mean squared error of the suggested estimator 2ˆ US
RPSY up to the first 

degree of approximation are obtained as  
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3. Efficiency comparisons 

Variance of the unbiased estimator sty  is 
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From (3.1), (1.11), (1.12), (1.13), (1.14) and (2.4), it is observed that the suggested 
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RPSY  would be more efficient than  
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From (3.1), (1.10), (1.11),(1.15),(1.16) and (2.6) it is observed that the suggested 

estimator 2ˆ US
RPSY  would be more efficient than  

(i)  sty    if 
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(ii)   1t   if 
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Expression (3.2) to (3.11) provides the condition under which the suggested ratio - cum-

product estimators 1ˆ US
RPSY  and 2ˆ US

RPSY  have less mean squared error in comparison to other 

considered estimators. 

  

4. Empirical study 

To see the performance of the suggested estimators in comparison to other estimators 

considered in this paper we are considered three natural population data sets. Descriptions of the 

populations are given below. 
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Population-I [Lone, H.A (2015) ] 

1n =4 2n =4 1N =10 2N =10 

1Z =43.495 2Z =43.495 1X =149.775 2X =149.775 

1Y =2.685 2Y =2.685 2

1z
S =1.4156 2

2zS =117.0401 

2

1xS =12.4609 2

2xS =12457.51 2

1yS =0.254 2

2yS =1.9961 

1z
C =0.188258 

2zC =0.134108 
1xC =0.339097 

2xC =0.386018 

1yC =0.296461 
2yC =0.384968 

1yxS =1.608 
2yxS =144.8752 


1yzS 0.056 

2yzS 7.0459 
1xzS =1.3838 

2xzS 92.0238 

 x21   =1.976816  x22 =2.900364  z21 =120468  z22 =3.664316 

1xS =3.53 
2xS =111.6132 

1z
S =1.18979 

2zS =10.81851 

1
yS =0.503984 

2yS =1.412834 1W =0.5 2W =0.5 

 

 

Population –II [Lone, H. A (2015)] 

1n =3 2n =3 1N =5 2N =5 

1Z =56.2 2Z =56.2 1X =274.4 2X =271 

1Y =2520.7 2Y =2520.7 2

1z
S =0.56 2

2zS =23.44 

2

1xS =5605.84 2

2xS =4401.76 2

1yS =379360.2 2

2yS =115860.2 

1z
C =0.014447 

2zC =0.079893 
1xC =0.349217 

2xC =0.198759 

1yC =0.319827 
2yC =0.109251 

1yxS =39360.68 
2yxS =22356.52 

16.411
1
yzS  24.1536

2
yzS  

1xzS =38.08 92.287
2
xzS  

 x21 =1.885054  x22 =2.321147  z21 =1.846939  z22 =1.499033 

1xS =74.87216 
2xS =66.34576 

1z
S =0.748331 

2zS =4.841487 

1
yS =615.9222 

2yS =340.3825 1W =0.5 2W =0.5 
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Population –III [Lone, H. A. (2015)] 

1n =4 2n =4 1N =10 2N =10 

1Z =1832.975 2Z =1832.975 1X =116.9 2X =116.9 

1Y =126.15 2Y =126.15 2

1z
S =10439.63 2

2zS =10663.53 

2

1xS =37.16 2

2xS =43.2 2

1yS =181.41 2

2yS =158.84 

1z
C =0.062684 

2zC =0.05072 
1xC =0.042688 

2xC =0.072227 

1yC =0.089972 
2yC =0.122838 

1yxS =18.44 
2yxS =23.3 


1xzS 239.252 

2xzS 240.45 
1yzS 1072.8 

2yzS 655.256 

 x21 =1.577361  x22 =2.828575  z21 =2.972256  z22 =2.378116 

1xS =6.0959 
2xS =6.572671 

1z
S =102.1745 

2zS =103.2644 

1
yS =13.46885 

2yS =12.60317 1W =0.5 2W =0.5 

 

Table I: Percent relative Efficiency of sty , 1t  , 2t  , 7t , 8t , 9t , 10t , 1ˆ US
RPSY , and 2ˆ US

RPSY with respect to 

sty   

Estimators Population –I Population -II Population –III 

sty  100 100 100 

1t  223.75 239.89 98.98 

2t  19.54 19.99 64.94 

7t  223.85 240.20 98.99 

8t  19.56 20.00 64.03 

9t  255.02 261.62 104.51 

10t  20.68 20.65 73.74 

1ˆ US
RPSY  288.39 308.94 122.80 

2ˆ US
RPSY  256.49 329.55 141.13 
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Conclusion: 

Table 1 shows that the suggested estimators 1ˆ US
RPSY , and 2ˆ US

RPSY  have higher percent relative 

efficiencies as compared to sty , 1t  ,  2t  , 7t , 8t , 9t  and  10t .  Section 3 deals with the theoretical 

efficiency comparisons of the considered estimators. This section provides the conditions under 

which suggested estimators have less mean squared error in comparison to unbiased estimator 

sty , conventional separate ratio and product estimators )2,1( it i  and Tailor and Lone (2014) 

separate ratio and product type estimators )10,9,8,7( it i . It has been observed from the table 

I that the suggested estimators have highest percent relative efficiencies in comparisons to other 

considered estimators. Thus suggested estimators are recommended for use in practice for 

estimating the finite population mean when conditions obtained in section 3 are satisfied. 
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Abstract: 

Mathematics is an important subject in both science and everyday life. Math is a useful 

tool for understanding the world and for developing mental discipline. Logical thinking, critical 

thinking, creative thinking, abstract or spatial thinking, problem-solving skills, and even 

successful communication skills are all encouraged by Mathematics. Mathematical Inventions: 

Prehistoric Mathematics to Mathematics in Today describes Prehistoric Mathematics and 

Ancient Indian Mathematics. Also, describes the Mathematics in 17th Century, Mathematics in 

18th Century, Mathematics in 19th Century, Mathematics in 20th Century and Mathematics in 

Today.  The main aim of the Chapter is to motivate the researchers and students for thinking 

about the inventions in Mathematics & to develop simplified techniques on top of the existing 

techniques. 

Keywords: Mathematical Inventions, Egyptian, Babylonian, Ancient, Today’s Mathematics, 

Laws, Theorem. 

 

Introduction: 

Education can be seen of as a product or a process, and it can be viewed in both a broad 

and technical meaning. In its broadest definition, education refers to any act or event that has a 

formative effect on an individual's mind, character, or physical aptitude, according to George F. 

Kneller, a philosopher of education. In a technical sense, education is the process by which 

society transfers its cultural heritage its collected knowledge, values, and skills—from one 

generation to another through schools, colleges, universities, and other institutions. [1] 

Mathematics is an abstract study of subjects such as quantity, structure, space, and 

change. Mathematicians solve the truth of guessing through mathematical proofs. If 

mathematical structure is a good model of a real phenomenon, mathematical reasoning can 

provide insights or predictions about nature. The history of mathematics deals with mathematical 
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discoveries, the emergence of mathematical methods and past notations. Before the global spread 

of modernity and knowledge. [2] 

The field of study known as the history of mathematics is primarily a study of the 

origin of new discoveries in mathematics and to a lesser extent a study of standard 

mathematical methods and notation of the past. Before modern times and with the 

worldwide spread of knowledge, written examples of new mathematical developments have 

only come to light in a few places.  

1. Prehistoric Mathematics 

The oldest mathematical texts available are Plimpton 322 (Babylonian mathematics 

ca. 1900 BC), the Moscow Mathematical Papyrus (Egyptian mathematics ca. 1850 BC), the 

Rhind Mathematical Papyrus (Egyptian mathematics ca. 1650 BC) and the Shulba Sutras 

(Indian mathematics). All of these texts concern the so-called Pythagorean theorem, which 

appears to be the oldest and most widespread mathematical development after arithmetic 

and geometry. Egyptian and Babylonian mathematics were then developed further into 

Greek and Hellenistic mathematics, which is generally regarded as one of the most 

important in greatly expanding both the method and the scope of mathematics. The 

mathematics developed in these ancient civilizations was then further developed and greatly 

expanded in Islamic mathematics. Many Greek and Arabic texts on mathematics were then 

translated into Latin in medieval Europe and developed further there. [3] A striking feature of 

the history of ancient and medieval mathematics is that bursts of mathematical development 

were often followed by centuries of stagnation. Beginning in Renaissance Italy in the 16th 

century, new mathematical developments combined with new scientific discoveries were made at 

an ever-increasing pace, and this continues to this day. [4] 

2. Ancient Indian Mathematics 

Vedic mathematics began in the early Iron Age with the Shatapatha Brahmana), which 

approximates the value of to 2 decimal places, and the Sulba Sutras (c. 800-500 B.C. ) were 

geometry texts that used irrational numbers, prime numbers, the rule of three, and cube roots; 

calculates the square root from 2 to 5 decimal places; gave the method of squaring the circle; 

solved linear and quadratic equations; developed Pythagorean triples algebraically and gave a 

statement and a numerical proof of the Pythagorean theorem.[5] Panini (ca. 5th century BC) 

formulated the rules of grammar for Sanskrit. Between 400 B.C. 200 BC and 200 AD Jain 

mathematicians began to study mathematics for the sole purpose of mathematics. They were the 

first to develop transfinite numbers, set theory, logarithms, fundamental laws of indices, cubic 

equations, quadratic equations, sequences and progressions, permutations and combinations, 
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squaring and taking square roots, and finite and infinite powers.[6] The Bakhshali manuscript, 

written between 400 BC and 200 AD, contained solutions of linear equations with up to five 

unknowns, the solution of the quadratic equation, arithmetic and geometric progressions, 

composite series, quadratic indefinite equations, simultaneous equations, and the use of zero and 

negative numbers. Accurate calculations for irrational numbers could be found, including 

calculating square roots of numbers up to a million to at least 11 decimal places. [7] 

3. Mathematics in 17th Century 

The 17th century saw an unprecedented explosion of mathematical and scientific ideas 

across Europe. Galileo, an Italian, observed the moons of Jupiter orbiting this planet with a 

telescope based on a toy imported from Holland. Tycho Brahe, a Dane, had collected an 

enormous amount of mathematical data describing the positions of the planets in the sky. His 

student Johannes Kepler, a German, began working with this data. Partly because he wanted to 

help Kepler with his calculations, John Napier in Scotland was the first to study natural 

logarithms. Kepler succeeded in formulating mathematical laws of planetary motion. Analytical 

geometry developed by Ren Descartes (1596-1650), a French mathematician and philosopher, 

made it possible to represent these orbits in Cartesian coordinates on a graph. Building on the 

earlier work of many mathematicians, Isaac Newton, an Englishman, discovered the laws of 

physics, explained Kepler's laws, and brought together the concepts now known as calculus. 

Independently of this, Gottfried Wilhelm Leibniz developed calculus and a large part of the 

calculus notation still used today in Germany. Science and mathematics had become an 

international endeavor that would soon spread across the world. [8, 9] 

In addition to the application of mathematics to the study of the heavens, applied 

mathematics began to expand into new realms with the correspondence of Pierre de Fermat and 

Blaise Pascal. In their discussions of a game of chance, Pascal and Fermat laid the foundations 

for the study of probability theory and the corresponding rules of combinatorics. With his wager, 

Pascal attempted to use newly developed probability theory to argue for a life devoted to 

religion, on the grounds that even when the probability of success was small, the rewards were 

infinite. In a way, this heralded the development of utility theory in the 18th-19th centuries. [10, 11] 

4. Mathematics in 18th Century 

The most influential mathematician of the 18th century was probably Leonhard Euler. His 

contributions range from justifying the study of graph theory with the problem of the seven 

bridges of Königsberg to the standardization of many modern mathematical terms and notations. 

For example, he named the square root of minus 1 the symbol i, and he popularized the use of 

the Greek letter, which represents the ratio of a circle's circumference to its diameter. He made 
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numerous contributions to the study of topology, graph theory, analysis, combinatorics and 

complex analysis, as evidenced by the large number of theorems and notations named after him. 
[12] 

Other important European mathematicians of the 18th century were Joseph Louis Lagrange, 

who pioneered number theory, algebra, differential calculus, and the calculus of variations, and 

Laplace, who, in the Napoleonic era, did important work on the foundations of celestial 

mechanics and statistics. [13, 14] 

5. Mathematics in 19th Century 

During the 19th century, mathematics became more and more abstract. Carl Friedrich 

Gauss (1777-1855) lived in the 19th century. In addition to his many contributions to science, in 

pure mathematics he did revolutionary work on functions of complex variables, in geometry, and 

on the convergence of series. He provided the first satisfactory proofs of the fundamental algebra 

theorem and the quadratic law of reciprocity. [15] 

This century saw the development of the two forms of non-Euclidean geometry, where 

the parallel postulate of Euclidean geometry no longer holds. Russian mathematician Nikolai 

Ivanovich Lobachevsky and his rival, Hungarian mathematician Janos Bolyai independently 

defined and studied hyperbolic geometry, where uniqueness of parallels no longer holds. With 

this geometry, the sum of the angles in a triangle is less than 180. [16] 

Elliptic geometry was later developed by the German mathematician Bernhard Riemann 

in the 19th century; no parallel can be found here and the angles in a triangle add up to more than 

180. Riemann also developed Riemannian geometry, which unifies and largely generalizes the 

three types of geometry, and he defined the concept of a manifold containing the ideas of curves 

and surfaces generalized. The 19th century saw the beginning of a great deal of abstract algebra. 

William Rowan Hamilton in Ireland developed non-commutative algebra. The British 

mathematician George Boole developed an algebra that soon evolved into what is known as 

Boolean algebra, in which the only numbers were 0 and 1 and in which, as is well known, 1 + 1 

= 1. Boolean algebra is the starting point of mathematical logic and has important applications in 

computer science. Augustin-Louis Cauchy, Bernhard Riemann and Karl Weierstrass 

reformulated the calculus more strictly. [17, 18] 

In addition, the limits of mathematics were explored for the first time. Niels Henrik Abel, 

a Norwegian, and variste Galois, a Frenchman, proved that there is no general algebraic method 

to solve polynomial equations of degree greater than four. Other 19th-century mathematicians 

used this in their proofs that ruler and compass alone are not sufficient to trisect any angle, to 

construct the side of a cube twice the volume of a given cube, nor to construct a square, which 
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has the same area as a given circle. Since the time of the ancient Greeks, mathematicians had 

tried in vain to solve all these problems. [19] 

Abel and Galoiss' investigations into the solution of various polynomial equations laid 

the foundation for the further development of group theory and the associated areas of abstract 

algebra. In the 20th century, physicists and other scientists saw group theory as the ideal way to 

study symmetry. In the late 19th century, Georg Cantor laid the first foundations of set theory, 

which allowed for a rigorous treatment of the notion of infinity and became the common 

language of almost all mathematics. Cantor's set theory and the rise of mathematical logic in the 

hands of Peano, L.E.J. Brouwer, David Hilbert, Bertrand Russell, and A.N. Whitehead, initiated 

a long-running debate about the foundations of mathematics. [20] 

Several national mathematical societies were founded in the 19th century, the London 

Mathematical Society in 1865, the Socit Mathmatique de France in 1872, the Circolo 

Mathematico di Palermo in 1884, the Edinburgh Mathematical Society in 1883, and the 

American Mathematical Society in 1888. [21] 

6. Mathematics in 20th Century 

In the 20th century, mathematics became a main occupation. Thousands of new Ph.D. 

degrees in mathematics are awarded each year, and positions are available both in the classroom 

and in industry. In earlier centuries, there were few creative mathematicians in the world at any 

one time. Most mathematicians were either born to wealth, like Napier, or supported by wealthy 

patrons, like Gauss. A few, like Fourier, made a meager living teaching at universities. Unable to 

get a job, Niels Henrik Abel died in poverty at the age of 26 from malnutrition and tuberculosis. 
[22, 23] 

In a 1900 speech to the International Congress of Mathematicians, David Hilbert 

presented a list of 23 unsolved problems in mathematics. These problems, which span many 

areas of mathematics, formed a central focus for much of 20th-century mathematics. Today 10 

are solved, 7 partially solved and 2 still open. The remaining 4 are too loosely worded to be 

called solved or not. Famous historical conjectures have finally been proven. In 1976, Wolfgang 

Haken and Kenneth Appel used a computer to prove the four-color theorem. Building on the 

work of others, Andrew Wiles proved Fermat's Last Theorem in 1995. Paul Cohen and Kurt 

Gdel proved that the continuum hypothesis is independent (neither proved nor disproved) of the 

standard axioms of set theory. [24] 

Mathematical collaborations of never-before-seen extent and scope occurred. The 

classification of finite simple group("enormous theorem"), whose proof took 500-plus journal 

articles by around 100 authors and tens of thousands of pages between 1955 and1983. Under the 
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pseudonym "Nicolas Bourbaki" a group of French mathematicians, notably Jean Dieudonne and 

Andre Weil, aimed to present all known mathematics as a coherent, rigorous whole. The dozens 

of volumes that resulted have had a contentious impact on mathematics education. [25] 

In 1929 and 1930, it was demonstrated that the truth or falsity of all statements made 

about natural numbers plus one of addition and multiplication could be determined by algorithm. 

Kurt Gödel discovered in 1931 that this was not the case for natural numbers including both 

addition and multiplication. Peano arithmetic suffices for much number theory, including the 

concept of prime numbers. Because of Godel's two incompleteness theorems, truth always 

outruns evidence in every Mathematical system containing Peano arithmetic (including all of 

analysis and geometry). As a result, mathematics cannot be reduced to its simplest form. [26] 

Self-educated Srinivasa Aiyangar Ramanujan (1887–1920) proved over 3000 theorems, 

including properties of highly composite numbers, the partition function and related asymptotics, 

and mock theta functions. Gamma functions, modular forms, divergent series, hyper geometric 

series, and prime number theory were among the topics he researched. [27] 

7. Mathematics in Today 

The most notable modification within the field of arithmetic within the late twentieth and 

early twenty first centuries has been the growing recognition and acceptance of probabilistic 

strategies in several branches of the topic, going well on the far side their ancient uses in 

mathematical physics. In 2000, the clay Mathematics institute declared the seven millennium 

prize issues, and in 2003. [28]The Poincare conjecture was resolved by Grigori. Ben Green and 

Afer Tao in 2004 proved that the set of prime numbers includes long arithmetic progression. In 

2006 Tao being awarded as a Fields honor. [29] 

In our lives and in the progress of our mathematics, the computer also plays a completely 

positive function. The computer is revolutionizing mathematics by bringing certain issues to the 

forefront; it is even inspiring mathematicians to develop new fields of study such as 

computational complexity theory, automata theory, and mathematical cryptology. 

Simultaneously, it relieves us of some of the most boring components of traditional mathematical 

activity, which it performs faster and more correctly than we can. It allows us to perform 

numerical work quickly and comfortably, allowing us to combine our analysis of a problem with 

the actual calculation of numerical examples. On the other hand, the computer makes several 

mathematical procedures that were popular in the past outdated. As demonstrated by the 

discoveries of the last half of the 20th century, mathematics can enrich not only physics and 

other scientific disciplines, but also medicine and biomedical sciences and engineering. It can 

also play a role in matters as practical as speeding up the flow of Internet traffic or sharpening 
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the transmission of digitized images, better understanding and potentially predicting stock 

market patterns, and even enriching the entertainment world with contributions to digital 

technology. Through mathematical modeling, numerical experiments, analytical studies, and 

other mathematical techniques, mathematics can make enormous contributions in many areas. 

Mathematics has to do with human genes, the world of finance and geometric movements. For 

example, science now has a vast amount of genetic information, and researchers need 

mathematical methods and algorithms to sift through the data, as well as clustering methods and 

computer models to interpret the data. Finance is very mathematical; it has to do with 

derivatives, risk management, portfolio management and stock options. All of this is modeled 

mathematically, and consequently mathematicians have a real impact on how these companies 

perform. Motion driven by the geometry of interfaces is ubiquitous in many areas of science, 

from growing crystals for semiconductor fabrication to tracking tumors in biomedical images. 

 

Conclusion: 

It is concluded that, there are numerous compelling reasons to study mathematical 

inventions. It allows students to have a better understanding of the mathematics they have 

already learned by demonstrating how it has evolved over time and in different locations. It 

promotes creative and flexible thinking by letting pupils to see historical evidence that several 

and entirely valid methods of viewing things and performing computations exist. Seeing the 

existing mathematical concepts, they will have generated a thought process to invent newer 

theorems and algorithms for further research in Mathematics. They would also be inspired to 

create simpler techniques on top of the existing ones. 
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      There are several different tests that we can use to analyze data and test hypothesis. This 

type of test that we choose depends on the data available and what question we are trying to 

answer. We analyze simple descriptive statistics such as the mean, median, mode and standard 

deviation to give us an idea of the distribution and to remove outliers, if necessary. We calculate 

probabilities to determine the likelihood of something happening. Finally we use regression 

analysis to examine the relationship between two or more continuous variables. In this chapter 

we are studying the chi square test and students‘t’ test.  

A) Chi Square Test:  

The primary distribution between a chi square test and the tests we have worked with 

before is that chi square test are for used for categorical data. The chi square test can be used to 

estimate how closely the distribution of a categorical variable matches an expected distribution 

(the goodness fit test), or to estimate whether two categorical variables are independent of one 

another (the test of independence). The chi square test of independence is a natural extension of 

what we did earlier with contingency tables to examine whether or not two variables appeared to 

be independent of each other. In this chapter we will examine the goodness of fit test in more 

data. 

      The Greek letter ‘chi’ written as ꭓ, is the symbol used to identify a chi square statistics 

which we will use here to evaluate how well a set of observed categorical data fits a 

hypothesized distribution. The chi square statistics is actually pretty straight forward to calculate. 

         ꭓ2 =   ∑( Observed – Expected)2 

                             Expected 

Observed = actual count values in each category 

Expected = the predicted (expected) counts in each category if the null hypothesis were 

true. 

      Chi square is applied in biostatistics to test the goodness of fit to verify the distribution of 

observed data with assumed theoretical distribution. Therefore it is measure to study the 
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difference of actual and expected frequencies. It has great use in biostatistics especially in 

sampling studies.  

      In Sampling studies we never expect that there will be perfect coincidence between 

expected and observed frequencies. Since chi square the difference between actual and expected 

frequencies, ꭓ2 is zero. Thus the chi square test describes the discrepancy between theory and 

observation. 

Characteristics of ꭓ2 Test:  

1. The test is based on events or frequencies and based on mean or standard deviation etc.  

2. The test can be used between the entire set of observed and expected frequencies.  

3. To draw inferences this test is applied especially testing the hypothesis.  

4. It is general test and highly useful in research. 

Assumption: 

1. The observation must be large.  

2. All the observation must be independent.  

3. All the event must be mutually exclusive.  

4. For comparison purposes the data must be in original units.  

Degree of Freedom:  

When we compare value of ꭓ2 with the table value the degree of freedom is evident. The 

degree of freedom means the number of classes to which values can be assigned. If we have n 

number of observed frequencies, the corresponding ꭓ2 distribution will have (n-1) degree of 

freedom. For example in the case of tossing of coins there are also two possibilities or classes 

namely head and tail. Here df = n – 1 i.e. n = head and tail. Therefore df = 2- 1 =1. In such away 

that, according to classes we fix df namely n – 1. 

How to calculate chi square value:  

1. A hypothesis is established i.e. null hypothesis.  

2. Calculate the difference between observed and expected value (O -E ).  

3. Square the difference (O – E)2.  

4. Divide the difference by its expected frequency (O - E)2/E.  

5. Add the obtained values in formula ∑ (O – E)2/E. 6. Find the ꭓ2 from table at certain 

level of significance usually 5 % or 1 % level. 

Inference: 

If the calculated value of ꭓ2 is greater than the table value of ꭓ2 at certain degree of level 

of significance we reject the hypothesis. If the calculated value of ꭓ2 is zero. The observed value 
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and expected values completely coincide. If the calculated value of ꭓ2 is less than the table value 

the certain degree of level of significance, it is said to be non significant. It implies that the 

difference between the observed and expected frequencies may be due to fluctuations in 

sampling. 

      On the basis of chi square test some examples are solved as below. 

Example 1: A cross involving different genes gave rise to F2 generation of tall and dwarf in the 

ratio of 110:90. Test by means of chi square whether this value is deviated from the Mendel’s 

monohybrid ratio 3:1. 

Solution: Steps: 

1. Null hypothesis:  

1. There is no difference between 110:90 and Mendel’s monohybrid ratio 3:1.  

2. Level of significance is 5%.  

3. Determining the expected values (E).  

4. Mendel’s monohybrid ratio Tall : Dwarf = 3:1.  

5. Observed total number =110 + 90 = 200.  

6. Expected values = Tall : Dwarf = 3:1 i.e. 150:50 =200.  

7. Fixing of degree freedom df = n – 1 = 2-1=1. 

8. Result: Calculated ꭓ2 value is 42.6. 

For 1 df, at 5% level of significance the table value = 3.84 

9. Inference: The calculate ꭓ2 value is 42.6 is greater than the table value 3.84. Therefore 

the hypothesis is rejected. In other words the value 110:90 is deviated from Mendel’s 

monohybrid ratio. 

 

Calculation: 

ꭓ2=  ∑ (O – E)2 /E 

Where O = observed value and E = Expected value 

Variables O E O-E (O-E)2 (O-E)2/E 

Tall 

Dwarf 

110 

90 

150 

50 

-40 

40 

1600 

1600 

10.6 

32.0 

     42.6 

 

ꭓ2 =  ∑ (O – E)2 /E  = 42.6 



Advances in Mathematical and Statistical Science 
    (ISBN: 978-93-91768-62-1) 

97 
 

Example 2: When two heterozygous pea plants are crossed, 1600 plants are produced in F2 

generation out of which 940 are yellow round, 260 are wrinkled, 340 are green round and 60 are 

green wrinkled. By means of chi square test whether these values are derived from Mendel’s 

dihybrid ratio 9:3:3:1. 

Solution: Steps: 

1. Null hypothesis:  

1. There is no difference between 110:90 and Mendel’s monohybrid ratio 9:3:3:1. 

2. Level of significance is 5%. 

3. Determining the expected values (E) related to the dihybrid ratio 9:3:3:1. 

Yellow Round = 9 Total 1600        ⸫ E = 9/16 x 1600 = 900 

Yellwo Wrinkled = 3 Total 1600   ⸫ E = 3/16 x 1600 = 300 

Green Round = 3 Total 1600   ⸫ E = 3/16 x 1600 = 300 

Green Wrinkled = 1 Total 1600   ⸫ E = 1/16 x 1600 = 100 

4. Observed Values: Yellow Round : Yellow Wrinkled : Green Round : Green Wrinkled 

= 940:260:340:60 

5. Fixing of degree freedom df = n-1=4-1=3 

Calculation: 

ꭓ2 =  ∑ (O – E)2 /E   

Where O = observed value and E = Expected value 

Variables O E O-E (O-E)2 (O-E)2/E 

Yellow Round 

Yellow Wrinkled 

Green Round 

Green Wrinkled 

940 

260 

340 

60 

900 

300 

300 

100 

40 

-40 

40 

-40 

1600 

1600 

1600 

1600 

1.77 

5.33 

5.33 

16 

     ∑27.43 

 

ꭓ2 =  ∑ (O – E)2 /E  = 27.43 

6. Result: Calculated 2 value is 2743 

For df, at 5 % level of significance the table value = 7.81 

7. Inference: The calculated ꭓ2value is 27.43 is greater than the table value 7.81. 

Therefore the hypothesis is rejected. In other words there is no real independent 

assortment i.e the observed values are deviated from Mendel’s dihybrid ratio. 
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Significance:  

It is used to test the goodness of fit. The test enables to find out whether the difference 

between the expected and observed values is significant or not. If the difference is little then the 

fit is good otherwise fit is poor. 

Introduction:  

There are several statistical tests that use the t-test distribution and can be called a t-test. 

One is student’s t-test for one sample, named after student the pseudonym that William Gosset 

used to hide his employment by the Guinness brewery in the early 1950s (they had a rule that 

their employees weren’t allowed to publish, and Guinness didn’t want other employees to know 

that they were making an exception for Gosset). Students t-test for one sample compares a 

sample to a theoretical mean. It has so few uses in biology. When you have one measurement 

variable, and you want to campare the mean value of the measurement variable to some 

theoretical expectation then you use students t-test. If the sample size is less than 30 i.e. n<30 

then those sample may be regarded as small samples. Principles of statistical inference are the 

same as in large sample but the techniques differ in the case of small samples. Here student t-test 

can be used. It is commonly used in fields such as physics and product testing in drug science. It 

is rare to have this kind of theoretical expectation in biology so you will probably never use the 

one sample t-test. 

      A t-test is most commonly applied when the test statistic would follow a normal 

distribution. If the value of a scaling term in the test statistic were known. When the scaling term 

is unknown and is replaced by an estimate based on the data, the test statistics (under certain 

condition) follow a students t distribution. The t-test can be used for example to determine if two 

sets of data are significantly different from each other.  

      t-test are normally used to campare the means of two samples of numeric data to 

determine whether they are significantly different from one another, although there is such a 

thing as a one sample t-test, which has a related but slightly different purpose. The data can be 

either be continuously distributed or discrete as long as they have a normal distribution.  

      Continuously distributed numeric variables are one that in principle, can take an infinite 

number of values if measured precisely enough-for example: body mass, height, nitrogen 

concentration in a water sample, or cholesterol level in the blood stream. 

Descrete numeric variables are ones that can take only a certain set of values-for 

example: the number of leaves on a tree, the number of bacterial colonies on a petridish. Both 

these variables can take only integer values, although the number of possible values is very large.  

      To learn how to determine whether data have a normal distribution. If data are not 

normally distributed, alternative tests are available. 
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     If there are three or more samples of data, rather than just one or two then one factor 

analysis of variance may be used. 

      For testing hypothesis about means when your data have a normal distribution there are 

three types of t-test. 

A one sample t-test is used to compare the mean of a single sample with a value that is 

expected bases on some prior knowledge. For example the long term average high temperature in 

the Twin Cities on 1 April is 50o F. If we had data on the high temperature for each 1 April from 

1998-2017 (n=20), and if these data had a normal distribution we could perform a one sample t-

test to determine whether the average high for the past 20 years was significantly different from 

the long term average 50o F. 

A two sample t-test is used to compare two sample means to determine if they are 

significantly different from each other. For example if we had data on the Twin Cities 1 April 

high temperature for the years 1978-1997 and 1998-1017, we could use a two sample t-test to 

determine whether the average high for the most recent 20 year period was significantly different 

from the average high for the previous 20 year period. 

A period t-test us used to compare two sample means if each value within one of the 

samples can be sensibly paired with an equivalent value in the other sample. For example if we 

had data on the 1 April high temperature in Duluth for 1998-2017, we could do a paired t-test to 

determine whether the average Duluth temperature during this period was significantly different 

from the average Twin Cities temperature during the same period. In this example, the two high 

temperature for 1998 (Duluth and Twin Cities) can be sensibly paired with one another as can 

every other pair of temperature taken on 1 April of the same year. Contrast this with the two 

sample test above where there is no sensible justification for pairing 1978 in the first sample with 

1998 (or any other year) in the second sample. 

      The null hypothesis for the independent samples t-test is µ1-µ2. In other words, it assumes 

the means are equal. With the paired t-test the null hypothesis is that the pair wise difference 

between the two test is equal (HO: µd-0). The difference between the two tests is very subtle 

which one you choose is based on data collection method.  
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Abstract: 

The research can be taken up this experimental research with a view to assess an 

effectiveness of teaching-learning process in the concept of limits of functions in mathematics 

through the graphical approach in raising the overall the knowledge, skill, and attitude towards 

the mathematics. The graphical approach in understanding the mathematical concept of limits of 

functions through the Inquiry Oriented Approach (IOA)3 model can have found effective in 

enhancing the level of understanding of this concept. 

 

1. Introduction: 

Together with philosophy, Mathematics is the oldest academic discipline known to 

human being3. Currently, mathematics is a huge complex enterprise, far beyond the keen of 

anyone individual. Those of us who choose to study the subject can only choose a micro of it, 

and in the end must specialize rather drastically in order to make any contribution to the 

evolution of ideas involved.   

This research article in this chapter provides an outline of the current research in 

students’ understanding of topics in limits of functions. The intent of work is to provide an 

overview of specific difficulties based on education research in the subject communication in 

Mathematics in the context of limits of functions. 

1.1. Limits of functions 

The limits of the functions, in brief limits concept is an important part of the foundations 

of mathematical analysis and not understanding it clearly might lead to problems when dealing 

with concepts such as infinity, infinitesimals, convergence, continuity and derivatives which are 

the main aspects of Calculus. If the student grasps the concept of limits, the above connected 

concepts become easier to work with, but it is difficult for the students to make sense of this 

concept. In India, limits of functions are the main topic treated almost in all branches viz. 

graduate and undergraduate as well as Engineering, Science, Commerce, and Chartered 
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Accountants etc. Here attempts have been made the approach of students for understanding 

mathematics through geometrical one rather the conventional one for the limits. 

In fact, even many great mathematics researchers have found it hard to accurately handle 

limits through time, this is one more. 

1.2 Importance and learning of mathematics 

Learning Mathematics is the endeavor requiring a number of abilities, which may vary 

from different mathematical topics. How students learn mathematics, may also vary. 

Mathematics has several characteristic properties viz. the use of models describing the real 

world, the compact and unambiguous formulations for clear expositions, and the deductive 

reasoning in proving problem solving. Each property offers its own set of challenges for 

mathematics students as well as teachers, for example, from a model to the real world, from 

everybody language to a mathematical expression or from one step to another in mathematical 

proof.  

As mathematics is the queen of science, calculus is the soul of mathematics and limits is 

at the heart of the calculus. Hence, proper learning of mathematics is the most important part of 

mathematics in teaching-learning process of mathematics. One aspect focused on this research 

article is transition, e.g. in inquisition and replication. 

1.3 History of mathematics in context of limits of functions 

Mathematical history is exciting, and it is a significant slice of the intellectual pie. A 

good education consists of learning difficulties of the students at different methods of 

conversation, and certainly, mathematics is one of the most well developed and important 

models of conversation that the world has observed so far. 

For many centuries, the idea of a limit was confused with vague and something philosophical 

ideas of infinity i.e. infinitely large, infinitely small numbers and other mathematical entities. 

The idea of limit was also confused with subjective and undefined geometric intuitions. Here in 

this research article, the researcher’s aim is to highlight the contribution of geometrical approach 

in understanding the concept of limits. 

The history of limits of functions shows that it was not obvious how a definition of limits should 

be stated or even if limits were useful. One of the research in which the idea of limit was 

introduced to resolve three types of difficulties1: 

 Geometric problems, e.g. the calculations of area, ‘exhaustion’ and consideration of the 

nature of geometric lengths;  

 The problem of the sum and rate of convergence of a series; 
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 The problems of differentiation that come from the relationship between two quantities that 

simultaneously tends to zero. 

This research work focuses on calculus teacher’s knowledge of student thinking about 

limit and, using historical development as a lens that explores the nature of the difficulties 

associated with the concept of limit. More specifically, the research study addresses the 

following questions: 

(a) What do the teachers of calculus know of their student’s thinking of limit? and  

(b) How can the historical development of the limit help us make sense of college teacher’s 

knowledge of student thinking about limit? 

 

2. Purpose and significance of the study: 

The researcher became aware of student’s problems with the idea of the concept of limits 

in a huge branch of Calculus in vigorous subject Mathematics. The concept of limit is included 

in the curriculum of XIIth Science and undergraduate courses of Science stream at University 

level of an Indian education system. This covers the definition of a limit, formal as well as 

epsilon-delta form, a limit as x approaches to infinity and the obvious relation between limits and 

continuity in addition to these properties of the limits, continuity, problems on continuity. To 

finish the same, the little time, about four clock hours is given for its teaching-learning in 

University curriculum.         

Research in common parlance refers to search for knowledge. One can also define as a 

scientific and systematic search for pertinent information on a specific topic. Indeed, research is 

an art of scientific investigation. The advance learner’s dictionary of current English lays down 

meaning of research as a careful investigation or inquiry especially through search for new facts 

in any branch of knowledge. “All progress is born of inquiry. Doubt is often better than 

confidence, which leads to inquiry, and inquiry leads to invention and invention finally can leads 

to replication.” The said quotation is an extension of famous Hudson Maxim in context of 

significance of research. 

There are three ways to study Mathematics through the following three approaches: 

1) Analytical Approach, 

2) Geometrical Approach, 

3) Practical Approach. 

Here the researcher used to apply second approach of geometrical to better understand 

the concept of limits instead of the traditional way. Geometrical approach is nothing but the 

graphical way of understanding the concept in mathematics. As far as the concept of limit is 
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concerned, it is defined on the functions and functions can be drawn by using graphs at all times 

and once able to draw the graphs, apply the concept of understanding of limit via graphical 

approach, then you are through. Many attempts have been made to break through this dilemma 

but without much success.  

Hence, there is an urgent need to develop some Inquiry Oriented Approach (IOA) in 

Learning Difficulties of Mathematics in general and especially for limit theory. Here the 

researcher focuses on the theory of limits and hopes that this IOA can be applied to the rest fields 

of Mathematics.  

 

3. Scope of the study: 

The following limitations of the research study have been observed. 

1. The study can be limited to your own class of mathematics background students. 

2. The authenticity of the data used depends entirely on the accuracy of such data. 

3. During course of personal interviews, the prejudices or bias on part of interviews may have 

influence on the response received. 

4.  The study comprises both genders in equal numbers to overcome the gender differences. 

5. Time is the biggest constraint. 

6. Sample is randomly selected. 

7. Questionnaire tool is used for data collection. 

8. Replication Principle is used for selected students. 

 

4. Objectives of the study: 

As the main body of mathematical analysis, Calculus is mankind’s a greatest discovery in 

the 20th century, and a statue of human’s wisdom. Limit theory is the basic theory of calculus, 

and limit concept is the core concept of limit theory, henceforth it is very important for students 

to learn limit concept well. However, to teach limit concept well is a worldwide difficult job as 

far as teaching learning concerned, and this situation urgently need to be changed by times and 

calculus teaching reform.  

On the other hand, inquiry teaching has made remarkable achievements on elementary 

mathematics teaching reform, but there is not even a single progress on advanced mathematics 

teaching reform. Absolutely, the way in elementary mathematics teaching reform is not quit fit 

advanced mathematics teaching reform. Therefore, combining with improving students’ learning 

style and learning enthusiasm, limit concept inquiry teaching is a very important significant 

research subject. Here research objective itself makes a question originated in hypothesis-born 
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from individual’s experience right from the student till to a mathematics teacher and discussions 

with colleagues-which “inquiry” practices in the form of definitions, properties, examples, 

problems, curiosity, confidence, intelligence, skill etc. strongly influence what students learn 

about limits at college level. 

In order to progress this experimental research among junior college and undergraduate 

students in a class of students, it had proposed in mind the following objectives. 

 To diagnose learning difficulties along with misconceptions in the concept and applications 

in Limit Theory (Limits of Functions). 

 To raise the level of students’ living, impact of literacy of their parents and curiosity and 

confidence in their own in about this concept during the teaching-learning process. 

 To analyze gender differences and/or differences in living status and/or impact of literacy 

of the parents of students’ in their study and/or overall curiosity, confidence of the students 

for the topic considered and hence in mathematics, in general. 

 To prescribe and introduce the graphical approach, called the inquiry-oriented approach 

(IOA) of understanding the concept of limits better than the formal approach.    

 

5. Experience of the study: 

Mathematics at the higher secondary and undergraduate level in India is formally 

presented in textbooks and at lectures. An initial course in mathematics at Indian  universities 

usually comprises algebra and calculus including the notion of limits of functions, which has 

been proven to be difficult for students to learn at a formal base only.  Many different 

aspects regarding the notion of limits and the nature of learning that cause these difficulties 

are addressed in this research study. The experience, as a student and later on as a college 

mathematics teacher, implied to researcher that learning limits of functions expense time and 

effort, perhaps to a greater extent than other parts of basic calculus. Here, the expectations 

wanted to understand more about how students perceive and learn limits of functions. The 

overall research question became:  How do students deal  with the concept of limits of 

functions at the basic higher secondary and undergraduate level in India? In an attempt to 

answer this vast question, it is conducted studies at a large in five stages in a Mathematics 

class. No such study on limits probably had previously been done in In d i a  and it was 

therefore compared mostly to foreign research results. It is important that teachers who work 

with c o l l e ge  level mathematics education are aware of the learning situation of students 
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and are prepared to meet them at their levels i n  their teaching- learning p r o c e s s e s , 

m e a n i n g  t h a t  the pre-knowledge o f  students is crucial. 

6. Hypothesis: 

A statistical hypothesis is unproven statement about the distribution of the random 

variables under consideration. 

H0:- There is no significant difference in the achievement of learning ‘limit theory’ after using 

IOA in the classroom.  

H1:- There is significant difference in the achievement of learning ‘limit theory’ after using 

IOA in the classroom. 

The conclusion will be drawn according to the acceptance or rejection of the hypothesis 

H0. 

 

7. Methodology adopted: 

To carry out any type of research work an adoption of correct methodology is an art and 

way of success for that particular research. The researcher shall choose the most appropriate 

instruments procedures and methods that will provide the collection and analysis of data upon 

which hypothesis may be tested. The researcher shall a meet with mathematics teachers teaching 

mathematics especially Calculus at junior colleges and undergraduate classes to seek their 

opinion about inquisition and replication with difficulties in understanding the concept of limit in 

teaching-learning process of mathematics. 

The investigator shall assume the research work as an experimental research for assessing 

the effectiveness in enhancing the level of knowledge, curiosity level along with parents’ literacy 

in addition to the residential status of the students involved under the study. This is an 

experimental research for assessing the effectiveness of the strategy of adopting the geometrical 

approach especially graphical view in understanding of the limit concept. Much attempt may 

have been done so far with this, but this can be one more with specially covered the 

psychological attitudes among the students, together with the residential impact for their 

understanding in topic considered.   

As an example, students from Junior college and undergraduate level with mathematics 

are one of the subjects were taken as population for this research study, which is summarizing in 

the following Table 1.1. 
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Table 1.1: Distribution of the sample for the study 

Sex/Group Controlled Group Experimental 

Group 

Total 

Boys 125 125 250 

Girls 125 125 250 

Total 250 250 500 

 

8. Design of the study: 

The sample had divided into two groups namely the controlled group (CG) and an 

experimental group (EG) with equal number of boys and girls students from the sample. 

The research work was conducted at the college. The researcher lectures mathematics in 

the college. The students are enrolled for the 12th Science undergraduate students with 

mathematics is one of the subjects. The main topics are limits, continuity, differentiation and 

integration including their applications in real-life. It is multi-cultural, multi-status classroom and 

the students are taught through the medium of English, which is their second language. 

The concepts of limits under the study were to be taught in class by making use of 

discussions, problem solving tasks, viz. interviews and questionnaires etc. These tasks were to 

assessed in order to determine possible misconceptions of the limits of functions and through 

pre-test, post-test and retention-test by understanding the limit concept using graphical approach 

more better by conventional one. The same planed to analyze with the help of several statistical 

tools viz. t-test, chi-test, z-test ANOVA etc. Absolutely, might be the first time use of principle 

of replication in this research study.  

It had been prepared four tests Pre-Test, Post-Test, Retention-Test and the test for 

effectiveness of Principle of Replication in five stages accordingly with four major related topics 

of the limits of functions which is depicted in the following Table 1.2 

Table 1.2: Plan of research study 

Test Level Plan of Period Actual Action 

Period 

Concept I: Basic concept of limits of 

functions 

At the beginning of the 

research 

August 2010 

Concept II: Epsilon-delta definition of limit After Two Weeks August 2010 

Concept III: Problems of limit After Four Weeks September 2010 

Concept IV: Problems of continuity After Four Months January 2011 
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9. Variables of the study: 

In this typical research experiment, there are two types of variables used-independent and 

dependent. An independent variable is the variable that scientist manipulates (the treatment) to 

determine its effect on some research (the dependent). 

In present study, it has taken into account eight types of variables as observed from the 

specific objectives and corresponding to the null hypothesis as mentioned earlier. 

These variables are as under2: 

Pedagogical Dependent Variables (Attributes) 

 Curiosity gained 

 Confidence gained 

 Literacy status of the family 

 Residential status of the family 

Psychological Independent Variables 

 Intelligence 

 Interest 

 Attitude 

 Skill 

10. Organization of the study: 

It can be organized the plan of study as in Table 1.1 following ways, there are five stages; 

A, B, C, D, and E in which Pre-Test, Post-Test and Retention- Test was planned to conduct for 

the study in hand for both the Controlled group (CG) and the Experimental group (EG).   

Table 1.3: Stages of research study 

Test Teaching-Learning and 

Questionnaire Schedule 

Groups Stages 

Pre-Test - CG+EG A 

- About limits of Functions EG B 

Post-Test - CG+EG C 

Retention-Test - CG+EG D 

- Proposition Type 

Questionnaires 

Randomly Selected 

100 respondents from 

EG 

E 
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11. Population and sample for the study: 

An experimental research cannot be done without the population. Here, the sample is a 

group of students, which will evaluate the applicability of   an Inquiry Oriented Approach (IOA) 

technique. 

Total Population  :  5000 

Sample Size   :  500 

Geographical Area  :  Local College 

Sampling Procedure  :  Random Sample 

The sample was taken randomly from local colleges of the city to achieve the goal of the study.    

 

Conclusions:  

This covers a research work that presents a research investigation into the effect on 

student conceptual understanding of the central topics in the limit concepts, and overall 

achievement, with incorporation of an Inquiry Oriented Approach (IOA) with the attributable 

variables under study. There can be several significant differences between the groups of 

students who completed limit concepts without the IOA. The IOA group can score significantly 

higher in conceptual understanding and achievement. 
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Abstract: 

This chapter gives an introduction to the simplest method of machine learning which is 

called as k-Nearest Neighbor. The k-Nearest Neighbor algorithm (k-NN) is a supervised non-

parametric machine learning model which is based on a simple distance measure, and it can be 

used for both classification and regression problems. The chapter starts with an introduction to 

the basics of machine learning and the theory of k-Nearest Neighbor with a focus on 

classification. In the subsequent sections, the advantages and disadvantages of k-NN will be 

discussed.  

Keywords: k-Nearest Neighbor, supervised learning, machine learning, classification 

 

Introduction:  

Machine learning is a field in data analytics that uses statistical learning algorithms to 

build systems that have the capability to automatically learn and improve from experiences 

without being explicitly programmed (Mitchell, 1997). Machine learning algorithms are broadly 

categorized into two major types i.e. supervised and unsupervised learning. The supervised 

algorithm takes a known set of input dataset and its known outputs to learn the classification 

model, and this model generate an appropriate classification when a new unlabelled dataset is 

given. Thus, supervised machine learning aims to infer a function from labelled training data, 

which can be used for classifying new unknown observations. While in case of unsupervised 

machine learning the data is unlabelled, and the algorithms groups the unlabelled information by 

finding the similarities and pattern in the data. 

Classification belongs to the category of supervised machine learning where the outputs 

are also provided with the input dataset.  The learning algorithm of the classifiers is employed to 

build a model which is used to find the relationship between the variables and the class label of 

the given data. A major amount of literature within machine learning has been published on the 

problems of classification. In classification, the new unlabelled observations is assigned into a 
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correct class by learning from previous labelled data. Classes are sometimes called as labels, 

categories or targets.  

General algorithm of a machine learning classifier is illustrated in figure 1. 

 

Figure 1: General structure of a classification algorithm 

 

k-Nearest Neighbor (k-NN): 

k-Nearest Neighbor is a type of supervised machine learning algorithm which can be 

used for both regression as well as classification problems. However, it is mainly used for 

classification or predictive problems. It was proposed by Cover and Hart (1967) for performing 

pattern classification task. The k-NN was developed with the need to perform discriminant 

analysis when reliable parametric estimates of probability densities are not known and are 

difficult to determine (Beckmann et al., 2015). K-Nearest Neighbor is one of the most famous 

classification algorithms because it is very simple to use and ease of interpretation (Wu et. al., 

2008). This machine learning algorithm assumes that similar things/observations exist in close 

proximity. In other words, observations which are similar are close to each other. The k-NN 

algorithm can be defined well by the following two properties: 

 Lazy learner: k-NN is a lazy learning algorithm as it does not explicitly learn the model, 

but it tries to memorize the training/labelled data. This information is then used as 

knowledge for the classification phase. 

 Non-parametric: In k-NN no assumptions are made about the distribution of the 

underlying data. It is useful because the practical data which is available in the real 

world, does not obey theoretical assumptions most of the times and hence, this algorithm 

comes to rescue. 
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The k-NN Algorithm: 

k-Nearest Neighbor algorithm uses similarity of variables/observations to predict the 

class/label of new data points, which means that the new data point will be assigned a class based 

on how closely it matches to the points in the training data set.  

The implementation of k-NN algorithm is given as: 

(i) For implementing k-NN algorithm the whole dataset is loaded, and then split into training 

and test dataset. 

(ii) The value of k which is the number of nearest neighbor is chosen and it can be any 

integer. 

(iii) For each observation in the dataset: 

a. Calculate the distance between the test data and each row of training data using 

any of the distance measures. The most widely used measure to calculate the 

distance is Euclidean distance. 

b. Add the distance and the index of the observations into an ordered collection. 

(iv)  Sort the ordered collection of distances and indices in ascending order i.e. from smallest 

to largest by the distances. 

(v) Pick the first k values from the sorted collection. 

(vi)  Note the labels of selected k entries and assign a class/label to the test data observation 

based on the most frequently occurring class of these entries. 

The figure 2 illustrates the working algorithm of k-Nearest Neighbor classifier. 

  

(a) (b) 
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(c) 

Figure 2: k-NN algorithm representation: 

(a) new observation, (b) find distances, (c) classification based on distance 

 

In the figure 2, suppose blue coloured star (let it as point P) is a new data point, for which 

label/class needs to be predicted. The k closest point/neighbor to the point P are found and then 

by majority voting the point P is assigned either to the class A or class B. For example, when 

k=3, there are two observations which belongs to the class B and one observation belongs to the 

class A, so by majority rule the test point P is classified to class B. Similarly, when we take 

k=11, majority of the nearest neighbor are again from class B, hence the new data point is 

assigned to the class B. 

In the process of creating a k-NN classifier, k is an important parameter and different k 

values will cause different performances in classifying an individual. Choosing the number of 

nearest neighbor that is determining the value of k is the most critical problem (Mody, 2009). To 

select the optimum value of k, the k-NN algorithm can be run several times with different values 

of k and that value of k is chosen which reduces the number of errors or we can say that which 

increases the accuracy to make predictions when it is given the test data. 

Below are some points to keep in mind while choosing the value of k: 

 If the value of k is decreased to one, predictions become less stable. For example, if we 

take k=1 and we have a test point surrounded by several observations of class say A and 

one observation of class B, but that one observation of class B is the single nearest 

neighbor. Reasonably, we would think that the test data point most likely belong to class 

A, but the value of k=1 that is one nearest neighbor. So, the k-NN incorrectly classifies 

the test data point into the class B. 
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 Inversely, if the value of k is increased, the predictions become more stable due to 

majority voting or averaging, and hence, more likely to make more accurate 

classifications but up to a certain point. Eventually, we begin to witness an increase in the 

number of errors. It is at this point we can conclude that we have pushed the value of k 

too far. 

 In cases where we are taking a majority vote that is picking the mode in a classification 

problem among class labels, we usually take k as an odd number to have a tiebreaker. 

 Usually, k is taken as square root of the number of observations, and value of k can also 

be checked by generating the model for different values of k and checking their 

performance at all values. 

 

Advantages of k-Nearest Neighbor  

 The k nearest neighbor algorithm is highly unbiased in nature and there are no prior 

assumptions about the underlying data.  

 This algorithm is mostly considered over the other classification algorithms because of its 

less calculation time and easy interpretation of the output.  

 k-NN algorithm is easy to implement and has gained good popularity, as it is very simple 

and effective in nature. 

 The accuracy is pretty high but not competitive in comparison to some other supervised 

machine learning algorithms. 

  No re-training of model is required if a new training data point is added to the existing 

training set.  

 It is a versatile algorithm and can be used for both classification and regression. 

 

Disadvantages of k-Nearest Neighbor 

 This algorithm is computationally expensive, because the algorithm need to store all of 

the training data.  

 Classification stage gets significantly slower as the number of predictors or observations 

increases.  

 For every unlabeled test data point, the distance has to be computed between the test data 

point and all the training data points. Thus a lot of time is taken for the classification 

phase.  

 The k-NN algorithm is sensitive to irrelevant features and scale of the data.  
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 It is not good at classifying the boundary data points where they can be classified one 

way or another.  

 It performs better with a lower number of features/variables and when the number of 

features/variables increases than it requires large data. Increase in the dimension also 

leads to the problem called over fitting. This problem of higher dimension is known as 

curse of dimensionality. 
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Abstract:  

The purpose of this paper is to define Micro 𝑔∗-continuous maps and Micro 𝑔∗-irresolute 

maps in Micro topological spaces.  Further we investigate the properties and characterizations of 

Micro 𝑔∗-continuous maps and Micro 𝑔∗-irresolute maps with pertinent examples.  
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1. Introduction 

The concept of rough set theory was studied by Pawlak [6] and he introduced the notion 

of lower approximation, upper approximation and boundary region of a subset of the universe.  

Carmel Richard [4] introduced the concept of Nano topology.  The Micro topology was 

introduced by Sakkraiveeranan Chandrasekar [8] and he also studied the concepts of Micro pre-

open and Micro semi-open sets.  Further he introduced the concept of Micro continuous map.  

He also defined Micro pre-continuous and Micro semi-continuous maps in Micro topological 

spaces.  Chandrasekar and Swathi [5] introduced Micro 𝛼-continuity in Micro topological 

spaces.  Taha et al. [11] initiated the concept of Micro 𝑔-continuous map.  Anandhi and 

Balamani [1,2,3] initiated the concept of Micro 𝛼-generalized closed set, separation axiom and 

Micro 𝛼𝑔-continuous map in Micro topological spaces.  Recently, Sandhiya and Balamani [9] 

introduced the concept of Micro 𝑔∗-closed sets in Micro topological spaces and analyzed some 

of its properties.  Moreover, Micro 𝜓-closed sets are introduced by Sowmiya and Balamani [10].  

In this paper we have introduced a new class of Micro continuous and Micro irresolute maps 

called Micro 𝑔∗-continuous and Micro 𝑔∗-irresolute maps in Micro topological spaces.  Also the 

relationship between these maps and other existing maps are obtained and their properties are 

analyzed. 
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2.  Preliminaries 

Definition 2.1[6] Let 𝑈 be a non-empty finite set of objects called the universe and 𝑅 be an 

equivalence relation on 𝑈 named as the indiscernibilty relation. Then 𝑈 is divided into disjoint 

equivalence classes.  Elements belonging to the same equivalence class are said to be in 

indiscernible with one another.  The pair (𝑈, 𝑅) is said to be the approximation space.  Let 𝑋 ⊆

𝑈. 

1. The lower approximation of 𝑋 with respect to 𝑅 is the set of all objects, which can be for 

certain classified as 𝑋 with respect to 𝑅 and it is denoted by  𝐿ோ(𝑋).  That is,  𝐿ோ(𝑋) =

𝑈௫∈௎ {𝑅(𝑥): 𝑅(𝑥) ⊆ 𝑋}, where 𝑅(𝑥) denotes the equivalence class determined by 𝑥 ∈ 𝑈. 

2. The upper approximation of 𝑋 with respect to 𝑅 is the set of all objects, which can be 

possibly classified as 𝑋 with respect to 𝑅 and it is denoted by 𝑈ோ(𝑋).  That is, 𝑈ோ(𝑋) =

𝑈୶∈୙ {𝑅(𝑥): 𝑅(𝑥) ∩ 𝑋 ≠  𝜙}. 

3. The boundary region of 𝑋 with respect to 𝑅 is the set of all objects, which can be 

classified neither as 𝑋 nor as not 𝑋 with respect to 𝑅 and it is denoted by 𝐵ோ(𝑋).  That is, 

𝐵ோ(𝑋) = 𝑈ோ(𝑋)  − 𝐿ோ(𝑋) 

Definition 2.2[4] Let 𝑈 be the universe, 𝑅 be an equivalence relation on 𝑈 and 𝜏ோ(𝑋) =

{𝑈, 𝜙, 𝐿ோ(𝑋), 𝑈ோ(𝑋),  𝐵ோ(𝑋)}, where 𝑋 ⊆ 𝑈.  Then, 𝜏ோ(𝑋) satisfies the following axioms: 

1. 𝑈 and 𝜙 ∈ 𝜏ோ(𝑋) 

2. The union of the elements of any sub-collection of 𝜏ோ(𝑋) is in 𝜏ோ(𝑋) 

3. The intersection of the elements of any finite sub-collection of 𝜏ோ(𝑋) is in 𝜏ோ(𝑋)  

That is, 𝜏ோ(𝑋) is a topology on 𝑈 called the Nano topology on 𝑈 with respect to 𝑋.  We 

call (𝑈, 𝜏ோ(𝑋)) as the Nano topological space.  The elements of 𝜏ோ(𝑋) are called as Nano open 

sets and the complement of a Nano open set is called a Nano closed set. 

Definition 2.3[8] Let ൫𝑈, 𝜏ோ(𝑋)൯ be a Nano topological space. Then 𝜇ோ(𝑋) = {𝑁 ∪

(𝑁ᇱ ∩ 𝜇): 𝑁, 𝑁ᇱ ∈ 𝜏ோ(𝑋) and 𝜇 ∉ 𝜏ோ(𝑋)} and 𝜇ோ(𝑋) satisfies the following axioms: 

1. 𝑈 and 𝜙 ∈ 𝜇ோ(𝑋) 

2. The union of the elements of any sub-collection of 𝜇ோ(𝑋) is in 𝜇ோ(𝑋) 

3. The intersection of the elements of any finite sub-collection of 𝜇ோ(𝑋) is in 𝜇ோ(𝑋)  

Then, 𝜇ோ(𝑋) is called the Micro topology on 𝑈 with respect to 𝑋. The triplet 

(𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is called Micro topological space and the elements of  𝜇ோ(𝑋) are called Micro 

open sets and the complement of a Micro open set is called a Micro closed set. 

Definition 2.4[9] Let (𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)) be a Micro topological space.  A subset 𝐴 of 𝑈 is said to 

be Micro 𝑔∗-closed if Mic-𝑐𝑙(𝐴) ⊆  𝐿 and 𝐿 is Micro 𝑔-open in 𝑈. 
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Definition 2.5 Let (𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)) and (𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)) be two Micro topological spaces.  A 

map 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) is called a 

(i) Micro continuous map [8]  if 𝑓ିଵ(𝑃) is Micro closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ for every 

Micro closed set 𝑃 in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. 

(ii) Micro pre-continuous map [8]  if 𝑓ିଵ(𝑃) is Micro pre-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ for 

every Micro closed set 𝑃 in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. 

(iii)Micro semi-continuous map [8]  if 𝑓ିଵ(𝑃) is Micro semi-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ for 

every Micro closed set 𝑃 in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. 

(iv) Micro 𝑔-continuous map [11]  if 𝑓ିଵ(𝑃) is Micro 𝑔-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ for 

every Micro closed set 𝑃 in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. 

(v) Micro 𝛼-continuous map [5,7]  if 𝑓ିଵ(𝑃) is Micro 𝛼-closed in 𝑈 for every Micro closed 

set 𝑃 in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. 

(vi)  Micro 𝛼𝑔-continuous map [3]  if 𝑓ିଵ(𝑃) is Micro 𝛼𝑔-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ for 

every Micro closed set 𝑃 in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. 

 

3. Micro 𝒈∗-Continuous Maps  

In this section, Micro 𝑔∗-continuous maps in Micro topological spaces are introduced and 

its properties are derived.  It is shown that the composition of two Micro 𝑔∗-continuous maps 

need not be Micro 𝑔∗-continuous. 

Definition 3.1 Let (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) and (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be two Micro topological spaces. A 

map 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) is called a Micro 𝑔∗-continuous map if 𝑓ିଵ(𝑃) 

is Micro 𝑔∗-closed in 𝑈 for every Micro closed set 𝑃 in 𝑉. 

Example 3.2 Let 𝑈 = {𝑎, 𝑏, 𝑐}, 𝑈/𝑅 =  {{𝑎}, {𝑏, 𝑐}}. Let 𝑋 =  {𝑎, 𝑏}  ⊆  𝑈.  Then, 𝜏ோ(𝑋)  =

{𝜙, {𝑎}, 𝑈}.  Let 𝜇  =  {𝑏} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝑈, 𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}}.  Micro 𝑔∗-closed 

sets in 𝑈 are 𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐}, 𝑉/𝑅 =  {{𝑎}, {𝑏}, {𝑐}}. Let 𝑌 =  {𝑏, 𝑐}  ⊆

 𝑉.  Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙 }.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑌).  Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎}, 𝑉}.  Micro closed 

sets in 𝑉are 𝜙, {𝑏, 𝑐}, 𝑉.  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a map defined by 

𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏, 𝑓(𝑑) = 𝑑.  Therefore for every Micro closed set 𝑃 in 𝑉, 𝑓ିଵ(𝑃) 

is Micro 𝑔∗-closed in 𝑈.  Hence 𝑓 is Micro 𝑔∗-continuous. 

Proposition 3.3 Every Micro continuous map is Micro 𝑔∗-continuous but not conversely. 

Proof: Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be Micro continuous.  Let 𝑃 be a Micro 

closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since 𝑓 is Micro continuous, 𝑓ିଵ(𝑃) is Micro closed.  Since 
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every Micro closed set is Micro 𝑔∗-closed, 𝑓ିଵ(𝑃) is Micro 𝑔∗-closed.  Hence 𝑓 is Micro 𝑔∗-

continuous. 

Example 3.4  Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 =  {{𝑎}, {𝑏}, {𝑐, 𝑑}}. Let 𝑋 =  {𝑐, 𝑑}  ⊆  𝑈.  Then, 

𝜏ோ(𝑋)  = {𝑈, 𝜙, {𝑐, 𝑑}}.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑈}.  

Micro closed sets in 𝑈 are 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, 𝑈.  Micro 𝑔∗-closed sets in 𝑈 are 

𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =

 {{𝑎, 𝑏}, {𝑐}, {𝑑}}. Let 𝑌 =  {𝑎, 𝑏}  ⊆  𝑉.  Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙, {𝑎, 𝑏} }.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑌).  

Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎}, {𝑎, 𝑏}, 𝑉}.  Micro closed sets in 𝑉 are 𝜙, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑉.  Let 

𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a map defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) =

𝑏, 𝑓(𝑑) = 𝑑.  Then 𝑓 is Micro 𝑔∗-continuous but not Micro continuous, since for the Micro 

closed set {𝑐, 𝑑} in 𝑉, 𝑓ିଵ({𝑐, 𝑑}) = {𝑏, 𝑑} is not Micro closed in U.  

Proposition 3.5   Every Micro 𝑔∗-continuous map is Micro 𝑔-continuous but not conversely. 

Proof:  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be Micro 𝑔∗-continuous.  Let 𝑃 be a 

Micro closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since 𝑓 is Micro 𝑔∗-continuous, 𝑓ିଵ(𝑃) is Micro 𝑔∗-

closed.  Since every Micro 𝑔∗-closed set is Micro 𝑔-closed, 𝑓ିଵ(𝑃) is Micro 𝑔-closed.  Hence 

𝑓 is Micro 𝑔-continuous. 

Example 3.6 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 =  {{𝑎}, {𝑐}, {𝑏, 𝑑}}. Let 𝑋 =  {𝑏, 𝑑}  ⊆  𝑈.  Then, 

𝜏ோ(𝑋)  = {𝑈, 𝜙, {𝑏, 𝑑}}.  Let 𝜇  =  {𝑏} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑏}, {𝑏, 𝑑}, 𝑈}.  Micro 𝑔∗-

closed sets in 𝑈 are 𝜙, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, 𝑈.  Micro 𝑔-closed sets in 𝑈 are 

𝜙, {𝑎}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.  Let 𝑉 = 

{𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =  {{𝑎}, {𝑏}, {𝑐, 𝑑}}. Let 𝑌 =  {𝑐, 𝑑}  ⊆  𝑉.  Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙, {𝑐, 𝑑} }.  Let 

𝜇  =  {𝑎} ∉  𝜏ோ(𝑌).  Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑉}.  Micro closed sets in 𝑉 are 

𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, 𝑉.  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a map defined by 

𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏, 𝑓(𝑑) = 𝑑.  Then 𝑓 is Micro 𝑔-continuous but not Micro 𝑔∗-

continuous, since for the Micro closed set {𝑏, 𝑐, 𝑑} in 𝑉, 𝑓ିଵ({𝑏, 𝑐, 𝑑}) = {𝑏, 𝑐, 𝑑} is not Micro 

𝑔∗-closed in U.  

Proposition  3.7 Every Micro 𝑔∗-continuous map is Micro 𝛼𝑔-continuous but not conversely. 

Proof: Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be Micro 𝑔∗-continuous.  Let 𝑃 be a 

Micro closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since 𝑓 is Micro  𝑔∗ -continuous, 𝑓ିଵ(𝑃) is Micro 𝑔∗-

closed.  Since every Micro 𝑔∗-closed set is Micro 𝛼𝑔-closed, 𝑓ିଵ(𝑃) is Micro 𝛼𝑔-closed.  Hence 

𝑓 is Micro 𝛼𝑔-continuous. 

Example 3.8  Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 =  {{𝑐}, {𝑑}{𝑎, 𝑏}}. Let 𝑋 =  {𝑎, 𝑏}  ⊆  𝑈.  Then, 

𝜏ோ(𝑋)  = {𝑈, 𝜙, {𝑎, 𝑏}}.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑎}, {𝑎, 𝑏}, 𝑈}.  Micro 𝑔∗-
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closed sets in 𝑈 are 𝜙, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.  Micro 𝛼𝑔-closed sets in 𝑈 are 

𝜙, {𝑏}, {𝑐}, {𝑑}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.  Let 𝑉 = 

{𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =  {{𝑎}, {𝑏}, {𝑐, 𝑑}}. Let 𝑌 =  {𝑐, 𝑑}  ⊆  𝑉.  Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙, {𝑐, 𝑑} }.  Let 

𝜇  =  {𝑎} ∉  𝜏ோ(𝑌).  Then, 𝜇ோ(𝑌)  =  {𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑉}.  Micro closed sets in 𝑉are 

𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, 𝑉.  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a map defined by 

𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏, 𝑓(𝑑) = 𝑑.  Then 𝑓 is Micro 𝛼𝑔-continuous but not Micro 𝑔∗-

continuous, since for the Micro closed set {𝑏} in 𝑉, 𝑓ିଵ({𝑏}) = {𝑐} is not Micro 𝑔∗-closed in U.  

Remark 3.9  Micro 𝑔∗-continuous maps and Micro semi continuous maps are independent as 

observed from the following examples. 

Example 3.10  Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 =  {{𝑐}, {𝑑}, {𝑎, 𝑏}}. Let 𝑋 =  {𝑎, 𝑏}  ⊆  𝑈.  

Then,𝜏ோ(𝑋)  = {𝑈, 𝜙, {𝑎, 𝑏}}.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑎}, {𝑎, 𝑏}, 𝑈}.  

Micro semi closed sets in 𝑈 are 𝜙, {𝑏}, {𝑐}, {𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.  Micro 𝑔∗-closed 

sets in 𝑈 are 𝜙, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =  {{𝑎, 𝑏}, {𝑐}, {𝑑}}. Let 

𝑌 =  {𝑎, 𝑏, 𝑐}  ⊆  𝑉. Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙, {𝑎, 𝑏, 𝑐} }.  Let 𝜇  =  {𝑎, 𝑏} ∉  𝜏ோ(𝑌).  

Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, 𝑉}.  Micro closed sets in 𝑉 are 𝜙, {𝑑}, {𝑐, 𝑑}, 𝑉.  Let 

𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a map defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) =

𝑏, 𝑓(𝑑) = 𝑑.  Then 𝑓 is Micro semi continuous but not Micro 𝑔∗-continuous, since for the Micro 

closed set {𝑑} in 𝑉, 𝑓ିଵ({𝑑}) = {𝑑} is not Micro 𝑔∗-closed in U.  

Example 3.11  Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 =  {{𝑐}, {𝑑}, {𝑎, 𝑏}}. Let 𝑋 =  {𝑐, 𝑑}  ⊆  𝑈.  Then, 

𝜏ோ(𝑋)  = {𝑈, 𝜙, {𝑐, 𝑑}}.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑈}.  

Micro 𝑔∗-closed sets in 𝑈 are 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.  Micro 

semi closed sets in 𝑈 are 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =  {{𝑐}, {𝑑}, {𝑎, 𝑏}}. 

Let 𝑌 =  {𝑎, 𝑏}  ⊆  𝑉.  Then,  𝜏ோ(𝑌)  = {𝑉, 𝜙, {𝑎, 𝑏} }.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑌).  Then,  𝜇ோ(𝑌)  =

 {𝜙, {𝑎}, {𝑎, 𝑏}, 𝑉}.  Micro closed sets in 𝑉 are 𝜙, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑉.  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  →

(𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a map defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏, 𝑓(𝑑) = 𝑑.  Then 𝑓 is 

Micro 𝑔∗-continuous but not Micro semi continuous, since for the Micro closed set {𝑐, 𝑑} in 𝑉, 

𝑓ିଵ({𝑐, 𝑑}) = {𝑏, 𝑑} is not Micro semi closed in U.  

Remark 3.12  Micro 𝑔∗-continuous maps and Micro pre continuous maps are independent as 

observed from the following examples. 

Example 3.13   Let 𝑈 = {𝑎, 𝑏, 𝑐}, 𝑈/𝑅 =  {{𝑎}, {𝑏}, {𝑐}}. Let 𝑋 = {𝑏, 𝑐}  ⊆  𝑈.  Then, 𝜏ோ(𝑋)  =

{𝑈, 𝜙}.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑎}, 𝑈}.  Micro 𝑔∗-closed sets in 𝑈 are 

𝜙, {𝑏, 𝑐}, 𝑈.  Micro pre-closed sets in 𝑈 are 𝜙, {𝑏}, {𝑐}, {𝑏, 𝑐}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐}, 𝑉/𝑅 =

 {{𝑎}, {𝑏, 𝑐}}. Let 𝑌 =  {𝑎, 𝑏}  ⊆  𝑉.  Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙, }.  Let 𝜇  =  {𝑎, 𝑏} ∉  𝜏ோ(𝑌).  
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Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎, 𝑏}, 𝑉}.  Micro closed sets in 𝑉 are 𝜙, {𝑐}, 𝑉.  Let 

𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be the identity map.  Then 𝑓 is Micro pre 

continuous but not Micro 𝑔∗-continuous, since for the Micro closed set {𝑐} in 𝑉, 𝑓ିଵ({𝑐}) = {𝑐} 

is not Micro 𝑔∗-closed in 𝑈.  

Example 3.14  Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 =  {{𝑐}, {𝑑}, {𝑎, 𝑏}. Let 𝑋 =  {𝑎, 𝑏}  ⊆  𝑈.  Then, 

𝜏ோ(𝑋)  = {𝑈, 𝜙, {𝑎, 𝑏} }.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑎}, {𝑎, 𝑏}, 𝑈}.  Micro pre 

closed sets in 𝑈 are 𝜙, {{𝑏}, {𝑐}, {𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}}, 𝑈.  Micro 𝑔∗closed sets in 𝑈 

are 𝜙, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =  {{𝑐}, {𝑑}, {𝑎, 𝑏}}. Let 𝑌 =  {𝑐}  ⊆

 𝑉.  Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙, {𝑐} }.  Let 𝜇  =  {𝑏} ∉  𝜏ோ(𝑌).  Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑏}, {𝑐}, {𝑏, 𝑐}, 𝑉}.  

Micro closed sets in 𝑉 are 𝜙, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑉.  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  →

(𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a map defined by 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑏, 𝑓(𝑐) = 𝑎, 𝑓(𝑑) = 𝑑.  Then 𝑓 is 

Micro 𝑔∗ -continuous but not Micro pre-continuous, since for the Micro closed set {𝑎, 𝑐, 𝑑} in 𝑉, 

𝑓ିଵ({𝑎, 𝑐, 𝑑}) = {𝑎, 𝑐, 𝑑} is not Micro pre-closed in U. 

Remark 3.15  Micro 𝑔∗-continuous maps and Micro 𝛼-continuous maps are independent as 

observed from the following examples . 

Example 3.16  Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 =  {{𝑎}, {𝑐}, {𝑏, 𝑑}}. Let 𝑋 =  {𝑏, 𝑑}  ⊆  𝑈.  Then, 

𝜏ோ(𝑋)  = {𝑈, 𝜙, {𝑏, 𝑑}}.  Let 𝜇  =  {𝑏} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑏}, {𝑏, 𝑑}, 𝑈}.  Micro 𝛼-

closed sets in 𝑈 are 𝜙, {𝑎}, {𝑐}, {𝑑}, {𝑎, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑈.  Micro 𝑔∗-closed sets in 𝑈 are 

𝜙, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =  {{𝑎, 𝑏}, {𝑐}, {𝑑}}. Let 𝑌 =  {𝑎, 𝑏}  ⊆

 𝑉.  Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙, {𝑎, 𝑏} }.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑌).  Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎}, {𝑎, 𝑏}, 𝑉}.  

Micro closed sets in 𝑉 are 𝜙, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑉.  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) 

be a map defined by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑐, 𝑓(𝑑) = 𝑑.  Then 𝑓 is Micro 𝛼-continuous 

but not Micro 𝑔∗-continuous, since for the Micro closed set {𝑐, 𝑑} in 𝑉, 𝑓ିଵ({𝑐, 𝑑}) = {𝑐, 𝑑} is 

not Micro 𝑔∗-closed in U.  

Example 3.17  Let 𝑈 = {𝑎, 𝑏, 𝑐}, 𝑈/𝑅 =  {{𝑎}, {𝑏, 𝑐}}. Let 𝑋 = {𝑎, 𝑏}  ⊆  𝑈.  Then, 𝜏ோ(𝑋)  =

{𝑈, 𝜙}.  Let 𝜇  =  {𝑎, 𝑏} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑎, 𝑏}, 𝑈}.  Micro 𝛼-closed sets in 𝑈 are 

𝜙, {𝑐}, 𝑈.  Micro 𝑔∗-closed sets in 𝑈 are 𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐}, 𝑉/𝑅 =

 {{𝑐}, {𝑎, 𝑏}}. Let 𝑌 =  {𝑏}  ⊆  𝑉.  Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙, {𝑏}}.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑌).  

Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, 𝑉}.  Micro closed sets in 𝑉 are 𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑉.  Let 

𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be the identity map .  Then 𝑓 is Micro 𝑔∗-

continuous but not Micro 𝛼-continuous, since for the Micro closed set {𝑎, 𝑐} in 𝑉, 𝑓ିଵ({𝑎, 𝑐}) =

{𝑎, 𝑐} is not Micro 𝛼-closed in U.  
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Remark 3.18 

The following diagram shows the dependency and independency relations of  Micro 𝑔∗-

continuous maps with already existing Micro continuous maps. 

 

Theorem 3.19 Let (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) and (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)  be two Micro topological spaces.   

A map 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) is Micro 𝑔∗-continuous if and only if 

𝑓ିଵ(𝑀) is Micro 𝑔∗-open in ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯ whenever 𝑀 is Micro open 

in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) . 

Proof: Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝑔∗-continuous map and 𝑀 be 

Micro open in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Then 𝑀௖ is Micro closed in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  By 

hypothesis 𝑓ିଵ(𝑀௖) is Micro 𝑔∗-closed in ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯. i.e. [𝑓ିଵ(𝑀)]௖ is Micro 𝑔∗-closed 

in ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯.  Hence 𝑓ିଵ(𝑀) is Micro 𝑔∗-open in 𝑈.  Conversely, suppose 𝑓ିଵ(𝑀) is 

Micro 𝑔∗-open in ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯ whenever 𝑀 is Micro open in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Let 𝑃 be 

Micro closed in ൫𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)൯, then 𝑃௖ is Micro open in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  By assumption  

𝑓ିଵ(𝑃௖) is Micro 𝑔∗-open in ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯. i.e. [𝑓ିଵ(𝑃)]௖ is Micro 𝑔∗-open in 

൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯.  Then 𝑓ିଵ(𝑃) is Micro 𝑔∗-closed in ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯.  Hence 𝑓 is a Micro 

𝑔∗-continuous map. 

Remark 3.20 The composition of two Micro 𝑔∗-continuous maps need not be a Micro 𝑔∗-

continuous map as seen from the following example. 

Example 3.21 Let 𝑈 = {𝑎, 𝑏, 𝑐}, 𝑈/𝑅 =  {{𝑐}, {𝑎, 𝑏}}. Let 𝑋 =  {𝑎, 𝑏}  ⊆  𝑈.  Then, 𝜏ோ(𝑋)  =

{𝑈, 𝜙, {𝑎, 𝑏}}.  Let 𝜇  =  {𝑐} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑐}, {𝑎, 𝑏}, 𝑈}.  Micro 𝑔∗-closed sets 

in 𝑈 are 𝜙, {𝑐}, {𝑎, 𝑏}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐}, 𝑉/𝑅 =  {{𝑎}, {𝑏, 𝑐}}.  Let 𝑌 =  {𝑎, 𝑏}  ⊆  𝑉.  Then, 

𝜏ோ(𝑌)  = {𝑉, 𝜙 }.  Let 𝜇  =  {𝑎, 𝑏} ∉  𝜏ோ(𝑌).  Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎, 𝑏}, 𝑉}.  Micro closed sets 

in 𝑉 are 𝜙, {𝑐}, 𝑉.  Micro 𝑔∗-closed sets in 𝑉 are 𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑉.  Let 𝑊 = {𝑎, 𝑏, 𝑐}, 
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𝑊/𝑅 =  {{𝑐}, {𝑎, 𝑏}}.  Let 𝑍 =  {𝑏}  ⊆  𝑊.  Then, 𝜏ோ(𝑍)  = {𝑊, 𝜙, {𝑏}}.  Let 𝜇  =  {𝑎} ∉

 𝜏ோ(𝑍).  Then,  𝜇ோ(𝑍)  =  {𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, 𝑊}.  Micro closed sets in 𝑊 are 

𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑊.  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) and 

𝑔: (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌))  → (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)) be the maps defined by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) =

𝑎, 𝑓(𝑐) = 𝑐,  𝑔(𝑎) = 𝑏, 𝑔(𝑏) = 𝑎, 𝑔(𝑐) = 𝑐.  Then the maps 𝑓and 𝑔 are Micro 𝑔∗-continuous 

but their composition 𝑔 ∘ 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)) is not a Micro 𝑔∗-

continuous map, since for the closed set {𝑎, 𝑐} in (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)), (𝑔 ∘ 𝑓)ିଵ({𝑎, 𝑐}) = {𝑎, 𝑐} is 

not Micro 𝑔∗-closed in (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)). 

Theorem 3.22  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝑔∗-continuous map 

and 𝑔: (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌))  → (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)) be a Micro continuous map.  Then                          

𝑔 ∘ 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → ൫𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)൯ is a Micro 𝑔∗-continuous map. 

Proof: Let 𝑃 be a Micro closed set in (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)).  Since 𝑔 is Micro continuous, 𝑔ିଵ(𝑃) 

is Micro closed in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since 𝑓 is Micro 𝑔∗-continuous, (𝑔 ∘ 𝑓)ିଵ(𝑃) =

𝑓ିଵ൫𝑔ିଵ(𝑃)൯ is Micro 𝑔∗-closed.  Hence 𝑔 ∘ 𝑓 is a Micro 𝑔∗-continuous map.  

Definition 3.23 A Micro topological space (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is said to be Micro 𝑇ଵ/ଶ
∗ - space 

(briefly Mic- 𝑇ଵ/ଶ
∗ - space) if every Micro 𝑔∗-closed subset of (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is Micro closed 

in ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯. 

Definition 3.24 A Micro topological space (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is said to be a Micro α
 𝑇௖-space 

(briefly Mic- α
 𝑇௖- space) if every Micro 𝛼𝑔-closed subset of (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is Micro 𝑔∗-

closed in ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯. 

Definition 3.25 A Micro topological space (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is said to be a Micro 
* 𝑇ଵ/ଶ-space 

(briefly Mic-* 𝑇ଵ/ଶ-space) if every Micro 𝑔-closed subset of (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is Micro 𝑔∗-

closed in ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯. 

Theorem 3.26 Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝑔∗-continuous map 

and if (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro 𝑇ଵ/ଶ
∗ - space then 𝑓 is a Micro continuous map. 

Proof: Let 𝑃 be a Micro closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since 𝑓 is a Micro 𝑔∗-continuous map, 

𝑓ିଵ(𝑃) is Micro 𝑔∗-closed in (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)).  Since (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro 𝑇ଵ/ଶ
∗ - 

space, 𝑓ିଵ(𝑃) is Micro closed in (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)).  Hence 𝑓 is a Micro continuous map. 

Theorem 3.27 Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝑔∗-continuous map 

and if (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro 𝑇ଵ/ଶ
∗ - space then 𝑓 is a Micro 𝑔 continuous map. 

Proof: Let 𝑃 be a Micro closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since 𝑓 is a Micro 𝑔∗-continuous map, 

𝑓ିଵ(𝑃) is Micro 𝑔∗-closed in (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)).  Since (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro 𝑇ଵ/ଶ
∗ - 
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space, 𝑓ିଵ(𝑃) is Micro closed.  Since every Micro closed set is Micro 𝑔-closed, 𝑓ିଵ(𝑃) is 

Micro 𝑔-closed.  Hence 𝑓 is a Micro 𝑔-continuous map in (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)). 

Theorem 3.28 Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝛼𝑔-continuous map 

and if (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro α 𝑇௖- space then 𝑓 is a Micro 𝑔∗-continuous map. 

Proof: Let 𝑃 be a Micro closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since every Micro 𝑔∗-closed set is 

Micro 𝛼𝑔-closed and  𝑓 is Micro 𝛼𝑔-continuous, 𝑓ିଵ(𝑃) is Micro 𝛼𝑔-closed in 

(𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)).  Since (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro α𝑇௖- space, 𝑓ିଵ(𝑃) is Micro 𝑔∗-closed    

in (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)).  Hence 𝑓 is a Micro 𝑔∗-continuous map. 

Theorem 3.29 Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝑔-continuous map 

and if (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro * 𝑇ଵ/ଶ- space, then 𝑓 is Micro 𝑔∗- continuous. 

Proof: Let 𝑃 be a Micro closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since 𝑓 is Micro 𝑔- 

continuous, 𝑓ିଵ(𝑃) is  Micro 𝑔-closed in (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)).  Since (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a 

Micro*  𝑇ଵ/ଶ-space, 𝑓ିଵ(𝑃) is Micro 𝑔∗-closed.  Hence 𝑓 is Micro 𝑔∗-continuous. 

 

4. Micro 𝒈∗-Irresolute Maps 

In this section, the strong form Micro 𝑔∗-continuous maps, namely Micro 𝑔∗-irresolute 

maps is introduced and its properties are analyzed.  It is shown that composition of two Micro 

𝑔∗-irresolute maps is also a Micro 𝑔∗-irresolute map. 

Definition 4.1 Let (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) and (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be two Micro topological spaces. A 

map 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) is called a Micro 𝑔∗-irresolute map if 𝑓ିଵ(𝐺) 

is Micro 𝑔∗-closed in 𝑈 for every Micro 𝑔∗-closed set 𝐺 in 𝑉. 

Example 4.2 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 =  {{𝑎}, {𝑏}, {𝑐, 𝑑}}. Let 𝑋 =  {𝑐, 𝑑}  ⊆  𝑈.  Then, 

𝜏ோ(𝑋)  = {𝑈, 𝜙, {𝑐, 𝑑}}.  Let 𝜇  =  {𝑎} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑈}.  

Micro 𝑔∗-closed sets in 𝑈 are 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.  Let 𝑉 = 

{𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =  {{𝑎, 𝑏}, {𝑐}, {𝑑}}. Let 𝑌 =  {𝑎, 𝑏}  ⊆  𝑉.  Then, 𝜏ோ(𝑌)  = {𝑉, 𝜙, {𝑎, 𝑏}}.  Let 

𝜇  =  {𝑎} ∉  𝜏ோ(𝑌).  Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎}, {𝑎, 𝑏}, 𝑉}.  Micro 𝑔∗-closed sets in 𝑉 are 

𝜙, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑉.  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a map defined 

by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏, 𝑓(𝑑) = 𝑑.  Therefore for every Micro 𝑔∗-closed set   𝑃 in 𝑉, 

𝑓ିଵ(𝑃) is Micro 𝑔∗-closed in 𝑈. Hence 𝑓 is a Micro 𝑔∗-irresolute map. 

Proposition 4.3 Every Micro 𝑔∗-irresolute map is a Micro 𝑔∗-continuous map but not 

conversely. 

Proof: Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝑔∗-continuous map.  Let 𝑃 be 

a Micro closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since every Micro closed set is Micro 𝑔∗-closed and 𝑓 

is Micro 𝑔∗-irresolute, 𝑓ିଵ(𝑃) is  Micro 𝑔∗-closed.  Hence 𝑓 is a Micro 𝑔∗-continuous map. 
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Example 4.4  Let 𝑈 = {𝑎, 𝑏, 𝑐}, 𝑈/𝑅 =  {{𝑎, 𝑏}, {𝑐}}. Let 𝑋 =  {𝑎, 𝑏}  ⊆  𝑈.  Then ,𝜏ோ(𝑋)  =

{𝑈, 𝜙, {𝑎, 𝑏}}.  Let 𝜇  =  {𝑐} ∉  𝜏ோ(𝑋).  Then,  𝜇ோ(𝑋)  =  {𝜙, {𝑐}, {𝑎, 𝑏}, 𝑈}.  Micro 𝑔∗-closed sets 

in 𝑈 are 𝜙, {𝑐}, {𝑎, 𝑏}, 𝑈.  Let 𝑉 = {𝑎, 𝑏, 𝑐}, 𝑉/𝑅 =  {{𝑎}, {𝑏, 𝑐}}. Let 𝑌 =  {𝑎, 𝑏}  ⊆  𝑉.  Then, 

𝜏ோ(𝑌)  = {𝑉, 𝜙 }.  Let 𝜇  =  {𝑎, 𝑏} ∉  𝜏ோ(𝑌).  Then,  𝜇ோ(𝑌)  =  {𝜙, {𝑎, 𝑏}, 𝑉}.  Micro closed sets 

in 𝑉 are 𝜙, {𝑐}, 𝑉.  Micro 𝑔∗-closed sets in 𝑉 are {𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑉}. Let 

𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a map defined by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑐.  

Then 𝑓 is Micro 𝑔∗-continuous but not Micro 𝑔∗-irresolute, since for the Micro closed set {𝑎, 𝑐} 

in 𝑉, 𝑓ିଵ({𝑎, 𝑐}) = {𝑏, 𝑐} is not Micro 𝑔∗-closed in 𝑈.  

Theorem 4.5  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝑔∗-irresolute map and 

𝑔: (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌))  → (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)) be a Micro 𝑔∗-irresolute map then                                    

𝑔 ∘ 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)) is a Micro 𝑔∗-irresolute map. 

Proof: Let 𝑃 be a Micro 𝑔∗-closed set in (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)).  Since 𝑔 is Micro 𝑔∗-

irresolute, 𝑔ିଵ(𝑃) is  Micro 𝑔∗-closed in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since 𝑓 is Micro 𝑔∗-irresolute, 

(𝑔 ∘ 𝑓)ିଵ(𝑃) =  𝑓ିଵ൫𝑔ିଵ(𝑃)൯ is Micro 𝑔∗-closed.  Hence 𝑔 ∘ 𝑓 is a Micro 𝑔∗- irresolute map. 

Theorem 4.6  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝑔∗-irresolute map and 

𝑔: (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌))  → (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)) be a Micro 𝑔∗-continuous map then                                 

𝑔 ∘ 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)) is a Micro 𝑔∗- continuous map. 

Proof: Let 𝑃 be a Micro closed set in (𝑊, 𝜏ோ(𝑍),  𝜇ோ(𝑍)).  Since 𝑔 is Micro 𝑔∗- 

continuous, 𝑔ିଵ(𝑃) is  Micro 𝑔∗-closed in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since 𝑓 is Micro 𝑔∗-irresolute, 

(𝑔 ∘ 𝑓)ିଵ(𝑃) = 𝑓ିଵ൫𝑔ିଵ(𝑃)൯ is Micro 𝑔∗-closed.  Hence 𝑔 ∘ 𝑓 is a Micro 𝑔∗- continuous map. 

Theorem 4.7 Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝑔-irresolute map and if 

(𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro * 𝑇ଵ/ଶ- space, then 𝑓 is Micro 𝑔∗-irresolute. 

Proof: Let 𝑃 be a Micro 𝑔∗-closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since  every Micro 𝑔∗-closed set is 

Micro 𝑔-closed and 𝑓 is Micro 𝑔-irresolute, 𝑓ିଵ(𝑃) is  Micro 𝑔-closed in (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)).  

Since (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro*  𝑇ଵ/ଶ-space, 𝑓ିଵ(𝑃) is Micro 𝑔∗-closed.  Hence 𝑓 is Micro 

𝑔∗-irresolute. 

Theorem 4.8  Let 𝑓: (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋))  → (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)) be a Micro 𝛼𝑔-irresolute map and 

if (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)) is a Micro α 𝑇௖- space, then 𝑓 is Micro 𝑔∗-irresolute. 

Proof: Let 𝑃 be a Micro 𝑔∗-closed set in (𝑉, 𝜏ோ(𝑌),  𝜇ோ(𝑌)).  Since  every Micro 𝑔∗-closed set is 

Micro 𝛼𝑔-closed and 𝑓 is Micro 𝛼𝑔- irresolute, 𝑓ିଵ(𝑃) is  Micro 𝛼𝑔-closed 

in (𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)).  Since ൫𝑈, 𝜏ோ(𝑋),  𝜇ோ(𝑋)൯ is a Micro α
 𝑇௖-space, 𝑓ିଵ(𝑃) is Micro 𝑔∗-

closed.  Hence 𝑓 is Micro 𝑔∗-irresolute. 
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Conclusion:  

In this article, we have introduced Micro 𝑔∗-continuous map and Micro 𝑔∗-irresolute map 

in Micro topological spaces.  Further the fundamental properties of the defined maps are 

examined. 
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Abstract:  

The aim of this paper is to introduce Micro ψ-continuous maps and Micro ψ-irresolute 

maps in Micro topological spaces. Fundamental properties are derived and associations with the 

previously existing maps are obtained. 

Mathematics Subject Code: 54B05, 54A10, 54C05. 

Keywords: Micro continuous map, Micro ψ-continuous map, Micro ψ-irresolute map. 

 

1. Introduction: 

Rough set theory is a new mathematical approach. The notion of rough set theory was 

proposed by Pawlak [6].The concept of Nano topology was introduced by Carmel Richard [4]. 

He has defined the nano topological space with respect to a subset X of a universe 𝑈 which is 

defined on lower, upper approximations and boundary region of 𝑋. Sakkaraiveeranan 

Chandrasekar [8] introduced  the concepts of Micro continuous map and he also studied Micro 

semi-continuous and Micro pre-continuous maps in Micro topological spaces. The concept of 

Micro α-continuous maps was introduced by Chandrasekar and Swathi [5].  Anandhi and 

Balamani [1,2,3] studied the concept of Micro αg-closed sets, separation axioms and Micro αg-

continuous maps and presented basic properties and theorems. Micro g-continuous map was 

introduced by Taha et al. [11]. Recently Sandhiya and Balamani [9] introduced Micro g*-closed 

sets in Micro topological spaces and also Sowmiya and Balamani [10] introduced Micro ψ-

closed sets in Micro topological spaces and examined their properties. In this paper we have 

introduced Micro ψ-continuous maps in Micro topological spaces. Dependency and 

independency relations are obtained by comparing the Micro ψ-continuous maps with already 

existing Micro continuous maps.  
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2. Premilinaries: 

Definition 2.1 [6] Let 𝑈  be a nonempty finite set of objects called the universe and 𝑅 be an 

equivalence relation on 𝑈 named as the indiscernibility relation. Then 𝑈 is divided into disjoint 

equivalence classes. Elements belonging to the same equivalence class are said to be 

indiscernible with one another.  The pair (𝑈,𝑅) is said to be the approximation space.  Let 𝑋 ⊆

𝑈. 

1. The lower approximation of 𝑋 with respect to 𝑅 is the set of all objects, which can be for 

certain classified as 𝑋 with respect to 𝑅 and it is denoted by  𝐿ோ(𝑋).That is,  𝐿ோ(𝑋) =

⋃ {𝑅(𝑥): 𝑅(𝑥) ⊆ 𝑋}௫∈௎ , where 𝑅(𝑥) denotes the equivalence class determined by x. 

2. The upper approximation of 𝑋 with respect to 𝑅 is the set of all objects, which can be 

possibly classified as 𝑋 with respect to 𝑅 and it is denoted by 𝑈ோ(𝑋).That is,  𝑈ோ(𝑋)= 

⋃ {𝑅(𝑥): 𝑅(𝑥) ∩ 𝑋 ≠  𝜙}௫∈௎ . 

3. The boundary region of 𝑋 with respect to 𝑅 is the set of all objects, which can be 

classified neither as 𝑋 nor as not 𝑋 with respect to 𝑅 and it is denoted by 𝐵ோ(𝑋).That is, 

𝐵ோ(𝑋) = 𝑈ோ(𝑋) − 𝐿ோ(𝑋). 

Definition 2.2[4] Let 𝑈 be the universe, 𝑅 be an equivalence relation on 𝑈 and 𝜏ோ(𝑋) =  {𝑈, 𝜙, 

 𝐿ோ(𝑋),  𝑈ோ(𝑋),  𝐵ோ(𝑋)}, where 𝑋 ⊆ 𝑈. Then 𝜏ோ(𝑋) satisfies the following axioms: 

1. 𝑈 and 𝜙 ∈ 𝜏ோ(𝑋). 

2. The union of the elements of any sub-collection of 𝜏ோ(𝑋) is in 𝜏ோ(𝑋). 

3. The intersection of the elements of any finite sub-collection of 𝜏ோ(𝑋) is in 𝜏ோ(𝑋). 

That is, 𝜏ோ(𝑋)is a topology on 𝑈 called the Nano topology on 𝑈 with respect to 𝑋.  We 

call (𝑈, 𝜏ோ(𝑋)) as the Nano topological space.  The elements of 𝜏ோ(𝑋) are called as Nano open 

sets and the complement of a Nano open set is called a Nano closed set. 

Definition 2.3[8] Let (𝑈, 𝜏ோ(𝑋)) be a Nano topological space.  Then 𝜇ோ(𝑋) = {𝑁 ∪

(𝑁ᇱ ∩ 𝜇): 𝑁, 𝑁ᇱ ∈ 𝜏ோ(𝑋) and 𝜇 ∉ 𝜏ோ(𝑋)} and 𝜇ோ(𝑋) satisfies the following axioms: 

(i) 𝑈, 𝜙 ∈ 𝜇ோ(𝑋). 

(ii) The union of the elements of any sub-collection of 𝜇ோ(𝑋) is in 𝜇ோ(𝑋). 

(iii) The intersection of the elements of any finite sub-collection of 𝜇ோ(𝑋) is in 𝜇ோ(𝑋). 

Then, 𝜇ோ(𝑋) is called the Micro topology on 𝑈 with respect to  𝑋.  The triplet (𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)) 

is called Micro topological space and the elements of 𝜇ோ(𝑋)are called Micro open sets and the 

complement of a Micro open set is called a Micro closed set. 

Definition 2.4[10]  Let (𝑈, 𝜏ோ(𝑋), μோ(𝑋)) be a Micro topological space. A subset 𝐴 of 𝑈 is said 

to be Micro ψ-closed if 𝑀𝑖𝑐-𝑠𝑐𝑙(𝐴) ⊆ 𝐿 whenever 𝐴⊆𝐿 and 𝐿 is 𝑀𝑖𝑐-sg-open in 𝑈. 
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Definition 2.5 Let ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ and ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be two Micro topological spaces. A 

map 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ is called a 

(i) Micro continuous map [8] if 𝑓ିଵ(𝐾) is Micro closed in 𝑈 for every Micro closed set  𝐾 

in  𝑉. 

(ii) Micro pre-continuous map [8] if 𝑓ିଵ(𝐾) is Micro pre-closed in 𝑈 for every Micro closed 

set  𝐾 in 𝑉. 

(iii) Micro semi-continuous map [8] if 𝑓ିଵ(𝐾) is Micro semi-closed in 𝑈 for every Micro 

closed set  𝐾 in 𝑉. 

(iv)  Micro α-continuous map [5,7] if 𝑓ିଵ(𝐾) is Micro α-closed in 𝑈 for every Micro closed 

set  𝐾 in 𝑉. 

(v) Micro αg-continuous map [3] if 𝑓ିଵ(𝐾) is Micro αg-closed in 𝑈 for every Micro closed 

set 𝐾 in 𝑉.  

(vi)  Micro g-continuous map [11] if 𝑓ିଵ(𝐾) is Micro g-closed in 𝑈 for every Micro closed 

set 𝐾 in  𝑉 . 

 

3. Micro ψ-continuous maps and its properties: 

In this section we introduce Micro ψ-continuous maps in Micro topological spaces and 

derive the dependency and independency relations of newly defined map with already existing 

Micro continuous maps.  Also we derive the composition of mappings with respect to the newly 

defined Micro ψ-continuous maps. 

Definition 3.1 Let ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ and ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be two Micro topological spaces. A 

map 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ is called Micro ψ-continuous if 𝑓ିଵ(𝐾) is Micro 

ψ-closed in 𝑈 for every Micro closed set K in V. 

Example 3.2 Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑},𝑈/𝑅 = {{𝑎}, {𝑐}, {𝑏, 𝑑}}.Let𝑋={𝑏, 𝑑} ⊆ 𝑈. Then 

𝜏ோ(𝑋)=൛𝑈, 𝜙, {𝑏, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑋). Then 𝜇ோ(𝑋) = {𝑈, 𝜙, {𝑎}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}}.Micro ψ-

closed sets in U are  𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.Let  𝑉 =

{𝑎, 𝑏, 𝑐, 𝑑},𝑉/𝑅 = {{𝑎}, {𝑏}, {𝑐, 𝑑}}.Let 𝑌={𝑐, 𝑑} ⊆ 𝑉.Then𝜏ோ(𝑌)=൛𝑉, 𝜙, {𝑐, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉

𝜏ோ(𝑌).Then 𝜇ோ(𝑌) = {𝑉, 𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}}. Micro closed sets in V 

are 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, 𝑉.  Let  𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined 

by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏, 𝑓(𝑑) = 𝑑. Therefore for every Micro closed set  K in V, 

𝑓ିଵ(𝐾) is Micro ψ-closed in 𝑈. Hence 𝑓 is a Micro ψ-continuous map. 

Proposition 3.3 Every Micro continuous map is Micro ψ-continuous but not conversely. 
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Proof: Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a Micro continuous map. Let  𝐾 be a 

Micro closed set in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since 𝑓 is Micro continuous, 𝑓ିଵ(𝐾) is Micro closed 

in 𝑈. Since every Micro closed set is Micro ψ-closed, 𝑓ିଵ(𝐾) is Micro ψ-closed. Hence 𝑓 is 

Micro ψ-continuous. 

Example 3.4 Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 = {{𝑎}, {𝑏}, {𝑐, 𝑑}}.Let𝑋={𝑐, 𝑑} ⊆ 𝑈.Then 

𝜏ோ(𝑋)=൛𝑈, 𝜙, {𝑐, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑋). Then  𝜇ோ(𝑋) = {𝑈, 𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}}. Micro 

closed sets in 𝑈 are  𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, 𝑈. Micro ψ-closed sets in 𝑈  are  

𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.Let  𝑉 = {𝑎, 𝑏, 𝑐, 𝑑},𝑉/𝑅 =

{{𝑐}, {𝑑}, {𝑎, 𝑏}}.Let 𝑌={𝑎, 𝑏} ⊆ 𝑉. Then 𝜏ோ(𝑌)=൛𝑉, 𝜙, {𝑎, 𝑏}ൟ. Let 𝜇 = {𝑑} ∉ 𝜏ோ(𝑌). Then 

𝜇ோ(𝑌) = {𝑉, 𝜙, {𝑑}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑑}}. Micro closed sets in 𝑉 are  𝜙, {𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, 𝑉. Let  

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) =

𝑏, 𝑓(𝑑) = 𝑑.Then 𝑓 is Micro ψ-continuous but not Micro continuous, since for the Micro closed 

set {𝑐, 𝑑} in 𝑉, 𝑓ିଵ({𝑐, 𝑑}) = {𝑏, 𝑑} is not Micro closed in 𝑈. 

Proposition 3.5 Every Micro semi-continuous map is Micro ψ-continuous but not conversely. 

Proof: Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a Micro semi-continuous map. Let  𝐾 

be a Micro closed set in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since 𝑓 is Micro semi continuous, 𝑓ିଵ(𝐾) is Micro 

semi closed in 𝑈. Since every Micro semi-closed set is Micro ψ-closed, 𝑓ିଵ(𝐾) is Micro ψ-

closed. Therefore  𝑓 is Micro ψ-continuous. 

Example 3.6 Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑},𝑈/𝑅 = {{𝑎}, {𝑐}, {𝑏, 𝑑}}.Let𝑋={𝑏, 𝑑} ⊆ 𝑈.Then 

𝜏ோ(𝑋)=൛𝑈, 𝜙, {𝑏, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑋). Then 𝜇ோ(𝑋) = {𝑈, 𝜙, {𝑎}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}}.Micro 

semi-closed sets in 𝑈 are  𝜙, {𝑎}, {𝑐}, {𝑑, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑈.  Micro ψ-closed sets in 𝑈 are  

𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.Let  𝑉 = {𝑎, 𝑏, 𝑐, 𝑑},𝑉/𝑅 =

{{𝑐, 𝑑}, {𝑎, 𝑏}}.Let 𝑌={𝑎, 𝑏, 𝑐} ⊆ 𝑉. Then 𝜏ோ(𝑌)=൛𝑉, 𝜙, {𝑎, 𝑏}ൟ. Let 𝜇 = {𝑐} ∉ 𝜏ோ(𝑌). Then 

𝜇ோ(𝑌) = {𝑉, 𝜙, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}}. Micro closed sets in 𝑉 are  𝜙, {𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, 𝑉. Let  

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑏, 𝑓(𝑐) =

𝑑, 𝑓(𝑑) = 𝑐.Then 𝑓 is Micro ψ-continuous but not Micro semi continuous, since for the Micro 

closed set {𝑎, 𝑏, 𝑑} in 𝑉, 𝑓ିଵ({𝑎, 𝑏, 𝑑}) = {𝑎, 𝑏, 𝑐} is not Micro semi-closed in 𝑈. 

Proposition 3.7 Every Micro 𝛼-continuous map is Micro ψ-continuous but not conversely. 

Proof: Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a Micro 𝛼-continuous map. Let  𝐾 be a 

Micro closed set in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since 𝑓 is Micro 𝛼-continuous, 𝑓ିଵ(𝐾) is Micro 𝛼-closed 

in 𝑈.Since every Micro 𝛼- closed set is Micro ψ-closed,  𝑓ିଵ(𝐾) is Micro ψ-closed. Therefore  𝑓 

is Micro ψ-continuous. 
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Example 3.8 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 = {{𝑎}, {𝑐}, {𝑏, 𝑑}. Let𝑋 = {𝑏, 𝑑} ⊆ 𝑈. Then 𝜏ோ(𝑋) =

൛𝑈, 𝜙, {𝑏, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑋).Then 𝜇ோ(𝑋) = ൛𝑈, 𝜙, {𝑎}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}ൟ.Micro 𝛼-closed 

sets in𝑈 are  𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐, 𝑑}, 𝑈.Micro ψ-closed sets in 𝑈 are  

𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.Let𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =

{{𝑎}, {𝑏}, {𝑐, 𝑑}}.Let 𝑌={𝑐, 𝑑} ⊆ 𝑉.Then 𝜏ோ(𝑌)=൛𝑉, 𝜙, {𝑐, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑌). Then 

𝜇ோ(𝑌) = {𝑉, 𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}}.  Micro closed sets in 𝑉 are  𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, 𝑉.Let  

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined by 𝑓(𝑎) = 𝑑, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) =

𝑏, 𝑓(𝑑) = 𝑎.Then 𝑓 is Micro ψ-continuous but not Micro 𝛼-continuous, since for the Micro 

closed set {𝑎, 𝑏} in 𝑉, 𝑓ିଵ({𝑎, 𝑏}) = {𝑐, 𝑑} is not Micro 𝛼-closed in 𝑈. 

Remark 3.9 Micro ψ-continuous maps and Micro pre-continuous maps are independent as 

observed from the following examples. 

Example 3.10 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑},𝑈/𝑅 = {{𝑎}, {𝑏}, {𝑐, 𝑑}}.Let 𝑋 = {𝑐, 𝑑} ⊆ 𝑈.Then 𝜏ோ(𝑋) =

൛𝑈, 𝜙, {𝑐, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑋).Then 𝜇ோ(𝑋) = ൛𝑈, 𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}ൟ. Micro pre closed 

sets in 𝑈 are  𝜙, {𝑏}, {𝑐}, {𝑑}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑏, 𝑐, 𝑑}, 𝑈. Micro ψ-closed sets in 𝑈 

are 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈. Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑},𝑉/𝑅 =

{{𝑐}, {𝑑}, {𝑎, 𝑏}}.  Let 𝑌 = {𝑐} ⊆ 𝑉.  Then 𝜏ோ(𝑌) = ൛𝑉, 𝜙, {𝑐}ൟ. Let 𝜇 = {𝑏} ∉ 𝜏ோ(𝑌). Then 

𝜇ோ(𝑌) = {𝑉, 𝜙, {𝑏}, {𝑐}, {𝑏, 𝑐}}. Micro closed sets in 𝑉 are 𝜙, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, 𝑉.Let  

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑑, 𝑓(𝑐) =

𝑏, 𝑓(𝑑) = 𝑐.Then 𝑓 is Micro ψ-continuous but not Micro pre-continuous, since for the Micro 

closed set {𝑎, 𝑐, 𝑑} in 𝑉, 𝑓ିଵ({𝑎, 𝑐, 𝑑}) = {𝑎, 𝑏, 𝑑} is not Micro pre-closed in 𝑈. 

Example 3.11 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑},𝑈/𝑅 = {{𝑐}, {𝑑}, {𝑎, 𝑏}}.Let 𝑋 = {𝑎, 𝑏} ⊆ 𝑈.Then 𝜏ோ(𝑋) =

൛𝑈, 𝜙, {𝑎, 𝑏}ൟ. Let𝜇 = {𝑑} ∉ 𝜏ோ(𝑋).Then 𝜇ோ(𝑋) = ൛𝑈, 𝜙, {𝑑}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑑}ൟ. Micro pre closed 

sets in 𝑈 are  𝜙, {𝑏}, {𝑐}, {𝑑}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑏, 𝑐, 𝑑}, 𝑈.   Micro ψ-closed sets in 

𝑈are 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈. Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑉/𝑅 =

{{𝑎}, {𝑐}, {𝑏, 𝑑}.  Let  𝑌 = {𝑏, 𝑑} ⊆ 𝑉.  Then 𝜏ோ(𝑌) = ൛𝑉, 𝜙, {𝑏, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑌). Then 

𝜇ோ(𝑌) = {𝑉, 𝜙, {𝑎}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}}. Micro closed sets in 𝑉 are 𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐, 𝑑}, 𝑉.Let  

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be the identity map.  Then 𝑓 is Micro pre-continuous 

but not Micro ψ-continuous, since for the Micro closed set {𝑎, 𝑐} in 𝑉, 𝑓ିଵ({𝑎, 𝑐}) = {𝑎, 𝑐} is not 

Micro ψ-closed in 𝑈. 

Remark 3.12 Micro ψ-continuous maps and Micro g-continuous maps are independent as 

observed from the following examples. 

Example 3.13 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 = {{𝑎, 𝑏}, {𝑐, 𝑑}.Let 𝑋 = {𝑎, 𝑏, 𝑐} ⊆ 𝑈. Then 𝜏ோ(𝑋) =

൛𝑈, 𝜙, {𝑎, 𝑏}ൟ. Let 𝜇 = {𝑐} ∉ 𝜏ோ(𝑋).Then 𝜇ோ(𝑋) = ൛𝑈, 𝜙, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}ൟ. Micro g-closed 
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sets in 𝑈 are  𝜙, {𝑑}, {𝑎, 𝑑}, {𝑏, 𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈. Micro ψ-closed sets in 

𝑈are 𝜙, {𝑑}, {𝑎, 𝑑}, {𝑏, 𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, 𝑈. Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑},𝑉/𝑅 = {{𝑎}, {𝑐}, {𝑏, 𝑑}}. Let 

𝑌 = {𝑏, 𝑑} ⊆ 𝑉. Then 𝜏ோ(𝑌) = ൛𝑉, 𝜙, {𝑏, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑌). Then 𝜇ோ(𝑌) =

൛𝑉, 𝜙, {𝑎}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}ൟ. Micro closed sets in 𝑉 are  𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐, 𝑑}, 𝑉. Let  

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑏, 𝑓(𝑐) =

𝑑, 𝑓(𝑑) = 𝑐.Then 𝑓 is Micro g-continuous but not Micro ψ-continuous, since for the Micro 

closed set {𝑏, 𝑐, 𝑑} in 𝑉, 𝑓ିଵ({𝑏, 𝑐, 𝑑}) = {𝑏, 𝑐, 𝑑} is not Micro ψ-closed in 𝑈. 

Example 3.14 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 = {{𝑎}, {𝑐}, {𝑏, 𝑑}.Let 𝑋 = {𝑏, 𝑑} ⊆ 𝑈. Then 𝜏ோ(𝑋) =

൛𝑈, 𝜙, {𝑏, 𝑑}ൟ. Let𝜇 = {𝑎} ∉ 𝜏ோ(𝑋). Then 𝜇ோ(𝑋) = ൛𝑈, 𝜙, {𝑎}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}ൟ.Micro g-closed 

sets in 𝑈 are  𝜙, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈. 

Micro ψ-closed sets in 𝑈 are 𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈.Let 𝑉 =

{𝑎, 𝑏, 𝑐, 𝑑},𝑉/𝑅 = {{𝑎, 𝑏}, {𝑐, 𝑑}.Let 𝑌 = {𝑎, 𝑏, 𝑐} ⊆ 𝑉.Then𝜏ோ(𝑌) = ൛𝑉, 𝜙, {𝑎, 𝑏}ൟ. Let 𝜇 = {𝑐} ∉

𝜏ோ(𝑌). Then 𝜇ோ(𝑌) = {𝑉, 𝜙, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}. Micro closed sets in 𝑉 are 

𝜙, {𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, 𝑉.  Let  𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined by 

𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑑, 𝑓(𝑑) = 𝑐.  Then 𝑓 is Micro ψ-continuous but not Micro g-

continuous, since for the Micro closed set {𝑑} in 𝑉, 𝑓ିଵ({𝑑}) = {𝑐} is not Micro g-closed in 𝑈. 

Remark 3.15 Micro ψ-continuous maps and Micro 𝛼𝑔-continuous maps are independent as 

observed from the following examples. 

Example 3.16 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑},𝑈/𝑅 = {{𝑐}, {𝑑}, {𝑎, 𝑏}}.Let 𝑋 = {𝑎, 𝑏} ⊆ 𝑈. Then𝜏ோ(𝑋) =

൛𝑈, 𝜙, {𝑎, 𝑏}ൟ. Let 𝜇 = {𝑑} ∉ 𝜏ோ(𝑋). Then 𝜇ோ(𝑋) = ൛𝑈, 𝜙, {𝑑}, {𝑎, 𝑏}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑑}ൟ.Micro αg-

closed sets in 𝑈 are  𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈. Micro ψ-closed sets 

in 𝑈 are 𝜙, {𝑐}, {𝑑}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, 𝑈. Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑},𝑉/𝑅 = {{𝑎}, {𝑏}, {𝑐, 𝑑}}.Let 𝑌 =

{𝑐, 𝑑} ⊆ 𝑉.Then𝜏ோ(𝑌) = ൛𝑉, 𝜙, {𝑐, 𝑑}ൟ.Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑌). Then 𝜇ோ(𝑌) =

{𝑉, 𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}}. Micro closed sets in 𝑉 are 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, 𝑉.Let  

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) =

𝑏, 𝑓(𝑑) = 𝑑. Then 𝑓 is Micro 𝛼𝑔-continuous but not Micro ψ-continuous, since for the Micro 

closed set {𝑎, 𝑏} in 𝑉, 𝑓ିଵ({𝑎, 𝑏}) = {𝑎, 𝑐} is not Micro ψ-closed in 𝑈. 

Example 3.17 Let  𝑈 = {𝑎, 𝑏, 𝑐},𝑈/𝑅 = {{𝑎}, {𝑏, 𝑐}}.Let 𝑋 = {𝑎, 𝑏} ⊆ 𝑈,𝜏ோ(𝑋) = ൛𝑈, 𝜙, {𝑎}ൟ. 

Let  𝜇 = {𝑏} ∉ 𝜏ோ(𝑋). Then 𝜇ோ(𝑋) = {𝑈, 𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}}. Micro 𝛼𝑔-closed sets in 𝑈 are  

𝜙, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑈. Micro ψ-closed sets in 𝑈 are 𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑈. Let 𝑉 =

{𝑎, 𝑏, 𝑐},𝑉/𝑅 = {{𝑐}, {𝑎, 𝑏}}. Let 𝑌 = {𝑎, 𝑏} ⊆ 𝑉. Then 𝜏ோ(𝑌) = ൛𝑉, 𝜙, {𝑎, 𝑏}ൟ. Let 𝜇 = {𝑐} ∉

𝜏ோ(𝑌). Then 𝜇ோ(𝑌) = {𝑉, 𝜙, {𝑐}, {𝑎, 𝑏}}. Micro closed sets in 𝑉 are 𝜙, {𝑐}, {𝑎, 𝑏}, 𝑉. Let  

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑎. 
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Then 𝑓 is Micro ψ-continuous but not Micro 𝛼𝑔-continuous, since for the Micro closed set {𝑐} 

in 𝑉,   𝑓ିଵ({𝑐}) = {𝑏} is not Micro 𝛼𝑔-closed in 𝑈.  

Remark 3.18 The following diagram shows the dependency and independency relations of 

Micro ψ-continuous map with already existing various Micro continuous maps. 

 

Remark 3.19 The composition of two Micro ψ-continuous maps need not be a Micro ψ-

continuous map as seen from the following example. 

Example 3.20 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 = ൛{𝑎}, {𝑏}, {𝑐, 𝑑}ൟ.  Let 𝑋 = {𝑐, 𝑑} ⊆ 𝑈.Then 𝜏ோ(𝑋) =

൛𝑈, 𝜙, {𝑐, 𝑑}ൟ.  Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑋). Then 𝜇ோ(𝑋) = {𝑈, 𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}}.Micro ψ-closed 

sets in 𝑈 are 𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈. Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑},𝑉/𝑅 =

{{𝑐}, {𝑑}, {𝑎, 𝑏}}. Let 𝑌 = {𝑎, 𝑏} ⊆ 𝑉.  Then 𝜏ோ(𝑌) = ൛𝑉, 𝜙, {𝑎, 𝑏}ൟ. Let 𝜇 = {𝑑} ∉ 𝜏ோ(𝑌). Then 

𝜇ோ(𝑌) = ൛𝑉, 𝜙, {𝑑}, {𝑎, 𝑏}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑑}ൟ.Micro closed sets in 𝑉 are 𝜙, {𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, 𝑉.  

Micro ψ-closed sets in 𝑉 are 𝜙, {𝑐}, {𝑑}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, 𝑉.  Let  𝑊 = {𝑎, 𝑏, 𝑐, 𝑑},𝑊/𝑅 =

{{𝑎}, {𝑐}, {𝑏, 𝑑}}.  Let 𝑍 = {𝑏, 𝑑} ⊆ 𝑊,𝜏ோ(𝑍) = ൛𝑊, 𝜙, {𝑏, 𝑑}ൟ. Let 𝜇 = {𝑏} ∉ 𝜏ோ(𝑍).Then 

𝜇ோ(𝑍) = ൛𝑊, 𝜙, {𝑏}, {𝑏, 𝑑}ൟ.  Micro closed sets in 𝑊 are 𝜙, {𝑎, 𝑐}, {𝑎, 𝑐, 𝑑}, 𝑊.  Let 

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ and 𝑔: ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ → ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯ be 

the maps defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏, 𝑓(𝑑) = 𝑑 and 𝑔(𝑎) = 𝑎, 𝑔(𝑏) = 𝑐, 𝑔(𝑐) =

𝑑, 𝑔(𝑑) = 𝑏.  Then both 𝑓and 𝑔 are Micro ψ-continuous but their composition  𝑔 ∘

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯ is not Micro ψ-continuous, since for the Micro 

closed set {𝑐} in 𝑊, (𝑔 ∘ 𝑓)ିଵ({𝑎, 𝑐}) = 𝑓ିଵ(𝑔ିଵ({𝑎, 𝑐})) = 𝑓ିଵ{𝑎, 𝑏} = {𝑎, 𝑐} is not Micro ψ-

closed in 𝑈. 

Micro ψ-continuous map 

𝒈∗

Micro continuous map 

Micro α-continuous 
map 

Micro semi-
continuous map 

Micro pre- 
continuous map  

Micro 𝜶𝒈-continuous 
map 

Micro-continous 
map 
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Theorem 3.21 Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a Micro ψ-continuous map 

and𝑔: ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ → ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯ be a Micro continuous map, then                        

 𝑔 ∘ 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯ is a Micro ψ-continuous map.  

Proof: Let K be a Micro closed set in ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯. Since 𝑔 is Micro continuous, 𝑔ିଵ(𝐾) 

is Micro closed in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since 𝑓 is Micro ψ-continuous,                            (𝑔 ∘

𝑓)ିଵ(𝐾) = 𝑓ିଵ൫𝑔ିଵ(𝐾)൯ is Micro ψ-closed. Hence 𝑔 ∘ 𝑓 is Micro ψ-continuous. 

Definition 3.22 A Micro topological space (𝑈, 𝜏ோ(𝑋), μோ(𝑋))  is said to be a Micro semi-T1/3 -

space (briefly Mic-semi-T1/3 -space) if every Micro ψ-closed subset of (𝑈, 𝜏ோ(𝑋), μோ(𝑋)) is 

Micro semi-closed in (𝑈, 𝜏ோ(𝑋), μோ(𝑋)). 

Definition 3.23 A Micro topological space (𝑈, 𝜏ோ(𝑋), μோ(𝑋))  is said to be a Micro semi-T1/2 -

space (briefly Mic-semi-T1/2 -space) if every Micro sg-closed subset of (𝑈, 𝜏ோ(𝑋), μோ(𝑋)) is 

Micro semi-closed in (𝑈, 𝜏ோ(𝑋), μோ(𝑋)). 

Definition 3.24 A Micro topological space (𝑈, 𝜏ோ(𝑋), μோ(𝑋))  is said to be a Micro ψTc -space 

(briefly Mic- ψTc -space) if every Micro ψ-closed subset of (𝑈, 𝜏ோ(𝑋), μோ(𝑋)) is Micro closed in 

(𝑈, 𝜏ோ(𝑋), μோ(𝑋)). 

Theorem 3.25 Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯  be a Micro ψ-continuous map and 

if ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro semi-T1/3 -space then 𝑓 is a Micro semi continuous. 

Proof: Let K be a Micro closed set in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since 𝑓 is Micro ψ-continuous, 𝑓ିଵ(𝐾) 

is Micro ψ-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Since ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro semi-T1/3 space, 

𝑓ିଵ(𝐾) is Micro semi-closed in൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Hence 𝑓 is Micro semi-continuous. 

Theorem 3.26 Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯  be a Micro ψ-continuous map and 

if ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro semi-T1/2 -space then 𝑓 is Micro semi continuous. 

Proof: Let K be a Micro closed set in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since 𝑓 is Micro ψ- continuous,𝑓ିଵ(𝐾) 

is Micro ψ-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Since every Micro ψ-closed set  is Micro sg-closed and  

൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro semi-T1/2-space, 𝑓ିଵ(𝐾) is Micro semi-closed in 

൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Hence 𝑓 is Micro semi-continuous. 

Theorem 3.27 Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯  be a Micro ψ-continuous map and 

if ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro ψTc-space then 𝑓 is  Micro continuous. 

Proof: Let K be a Micro closed set in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since 𝑓 is Micro ψ- continuous,𝑓ିଵ(𝐾) 

is Micro ψ-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Since ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro ψTc-space, 𝑓ିଵ(𝐾)  

is Micro closed in൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Hence 𝑓 is Micro continuous. 
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Theorem 3.28 Let ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯and ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be any two maps. Then 

𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ is Micro ψ-continuous if and only if 𝑓ିଵ(𝐵)is Micro 

ψ-open in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ whenever 𝐵 is a Micro open set in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ . 

Proof: Let 𝑓 be a Micro ψ-continuous map and 𝐵 be Micro open in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ . Then 𝐵௖ 

is Micro closed in൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. By hypothesis  𝑓ିଵ(𝐵௖) is Micro ψ-closed in 

൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯, i.e.,[𝑓ିଵ(𝐵)]c is a Micro ψ-closed set in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Hence 𝑓ିଵ(𝐵) is 

a Micro ψ-open in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Conversely, suppose  𝑓ିଵ(𝐵) is a Micro ψ-open set in 

൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ whenever 𝐵 is Micro open in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Let 𝐻 be a  Micro closed set 

in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Then 𝐻௖ is Micro open set in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. By assumption 𝑓ିଵ(𝐻௖)is 

Micro ψ-open in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯, i.e., [𝑓ିଵ(𝐻)]c is a Micro ψ-open set in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. 

Then 𝑓ିଵ(𝐻) is Micro ψ-closed in  ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Hence 𝑓 is a Micro ψ-continuous map. 

 

4.  Micro ψ-Irresolute Maps and its Properties: 

This section presents the definition and properties of Micro ψ-irresolute maps.  

Definition 4.1 A map  𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ is called Micro ψ-irresolute if 

𝑓ିଵ(𝐾) is Micro ψ-closed in 𝑈 for every Micro ψ- closed set K in V. 

Proposition 4.2 Every Micro ψ-irresolute map is Micro ψ-continuous but not conversely. 

Proof: Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a Micro ψ-irresolute map. Let 𝐾 be a 

Micro closed set in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯.Since every Micro closed set is Micro-ψ-closed and 𝑓 is 

Micro ψ-irresolute,𝑓ିଵ(𝐾) is Micro ψ-closed. Hence 𝑓 is Micro ψ-continuous.   

Example 4.3 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑈/𝑅 = {{𝑎}, {𝑏}, {𝑐, 𝑑}.Let 𝑋 = {𝑐, 𝑑} ⊆ 𝑈. Then 𝜏ோ(𝑋) =

൛𝑈, 𝜙, {𝑐, 𝑑}ൟ. Let 𝜇 = {𝑎} ∉ 𝜏ோ(𝑋).Then 𝜇ோ(𝑋) = ൛𝑈, 𝜙, {𝑎}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}ൟ. Micro closed sets 

in 𝑈 are  𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}, 𝑈. Micro ψ-closed sets in 𝑈are 

𝜙, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}{𝑎, 𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}, 𝑈. Let 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑},𝑉/𝑅 =

{{𝑐}, {𝑑}, {𝑎, 𝑏}}.Let 𝑌 = {𝑎, 𝑏} ⊆ 𝑉. Then 𝜏ோ(𝑌) = ൛𝑉, 𝜙, {𝑎, 𝑏}ൟ. Let 𝜇 = {𝑑} ∉ 𝜏ோ(𝑌). Then 

𝜇ோ(𝑌) = ൛𝑉, 𝜙, {𝑑}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑑}ൟ. Micro closed sets in 𝑉 are  𝜙, {𝑐}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, 𝑉. Micro 

ψ-closed sets in 𝑉 are 𝜙, {𝑐}, {𝑑}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, 𝑉. Let  𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ →

൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a map defined by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏, 𝑓(𝑑) = 𝑑. Then 𝑓 is 

Micro ψ-continuous but not Micro ψ-irresolute, since for the Micro ψ-closed set {𝑑} in 𝑉,  

𝑓ିଵ({𝑑}) = {𝑑} is not Micro ψ-closed in 𝑈. 
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Theorem 4.4 Let𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a Micro ψ-irresolute map 

and𝑔: ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ → ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯ be a Micro ψ-irresolute map then                       

𝑔 ∘ 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯ is a Micro ψ-irresolute map.  

Proof: Let K be a Micro ψ-closed set in ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯. Since 𝑔 is Micro ψ-irresolute, 

𝑔ିଵ(𝐾) is Micro ψ-closed in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since 𝑓 is Micro ψ-irresolute,                           

(𝑔 ∘ 𝑓)ିଵ(𝐾) = 𝑓ିଵ൫𝑔ିଵ(𝐾)൯ is Micro ψ-closed. Hence 𝑔 ∘ 𝑓 is Micro ψ-irresolute. 

Theorem 4.5 Let𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ be a Micro ψ-irresolute map 

and𝑔: ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯ → ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯ be a Micro ψ-continuous map then                    

 𝑔 ∘ 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯ is a Micro ψ-continuous map.  

Proof: Let K be a Micro closed set in ൫𝑊, 𝜏ோ(𝑍), 𝜇ோ(𝑍)൯. Since 𝑔 is Micro ψ-continuous, 

𝑔ିଵ(𝐾) is Micro ψ-closed in ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since 𝑓 is Micro ψ-irresolute,                           

(𝑔 ∘ 𝑓)ିଵ(𝐾) = 𝑓ିଵ൫𝑔ିଵ(𝐾)൯ is Micro ψ-closed. Hence 𝑔 ∘ 𝑓 is Micro ψ-continuous. 

Theorem 4.6 Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯  be a Micro ψ-irresolute map and if 

൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is Micro semi-T1/3 -space then 𝑓 is a Micro semi continuous map. 

Proof: Let K be a Micro closed set in  ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since every Micro closed set is Micro 

ψ-closed and 𝑓 is Micro ψ-irresolute,  𝑓ିଵ(𝐾) is Micro ψ-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. 

Since൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro semi-T1/3-space, 𝑓ିଵ(𝐾)  is Micro semi-closed in 

൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯.  Hence 𝑓 is Micro semi-continuous.  

Theorem 4.7 Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯  be a Micro ψ-irresolute map and if 

൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is Micro semi-T1/2 -space then 𝑓 is a Micro semi continuous map. 

Proof: Let K be a Micro closed set in  ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since every Micro closed set is Micro 

ψ-closed and 𝑓 is Micro ψ-irresolute,  𝑓ିଵ(𝐾) is Micro ψ-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Since 

every Micro ψ-closed set is Micro sg-closed and ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro semi-T1/2 -space, 

 𝑓ିଵ(𝐾)  is Micro semi-closed in  ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. Hence 𝑓 is Micro semi-continuous. 

Theorem 4.8 Let 𝑓: ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ → ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯  be a Micro ψ-irresolute map and if 

൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro ψTc -space then 𝑓 is a Micro continuous map. 

Proof: Let K be a Micro closed set in  ൫𝑉, 𝜏ோ(𝑌), 𝜇ோ(𝑌)൯. Since every Micro closed set is Micro 

ψ-closed and 𝑓 is Micro ψ-irresolute,  𝑓ିଵ(𝐾) is Micro ψ-closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. 

Since ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯ is a Micro ψTc-space,  𝑓ିଵ(𝐾)is Micro closed in ൫𝑈, 𝜏ோ(𝑋), 𝜇ோ(𝑋)൯. 

Hence 𝑓 is Micro continuous. 
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Conclusion:  

The study of Micro ψ-continuous maps and Micro ψ-irresolute maps in Micro topological 

spaces have been initiated in this article. We have presented the definition of Micro ψ-continuous 

maps and Micro ψ-irresolute maps. Later, we have derived the vital properties and interrelations 

are obtained substantially with counter examples. 
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