


 

INVENTORY MODELS WITH UNCERTAIN DATA 
ISBN: 978-81-951982-0-7 

 

 
Dr. Rahul Waliv 

Department of Statistics, 

Kisan Veer Mahavidyalaya, 

Wai, Dist – Satara, M.S., India 

 

and 

 

Dr. Hemant Umap 
Department of Statistics, 

Yashwantrao Chavan Institute of Science (Autonomous), 

Satara, M.S., India 

 

 

 

  2021 



 

First Edition: 2021 

ISBN: 978-81-951982-0-7 

 

 

 Dr. Rahul Waliv 

Publication, Distribution and Promotion Rights reserved by Bhumi Publishing, Nigave Khalasa, Kolhapur 

Despite every effort, there may still be chances for some errors and omissions to have crept in 

inadvertently.  

No part of this publication may be reproduced in any form or by any means, electronically, mechanically, 

by photocopying, recording or otherwise, without the prior permission of the publishers. 

The views and results expressed in various articles are those of the authors and not of editors or 

publisher of the book. 

 

Published by:  

Bhumi Publishing,  

Nigave Khalasa, Kolhapur 416207, Maharashtra, India 

Website: www.bhumipublishing.com  

E-mail: bhumipublishing@gmail.com 

Book Available online at:  

   https://www.bhumipublishing.com/books/ 

    

 

http://www.bhumipublishing.com/
mailto:bhumipublishing@gmail.com
https://www.bhumipublishing.com/books/


 
 

PREFACE 

Basic Optimization Techniques introduces the fundamentals of all the commonly 

used techniques in Operations Research. Operations Research is the application of the 

methods of science to complex problems in the directions and managements of large 

systems of men, machines, materials and money in industry, business, government sector 

etc. The purpose is to help management in determining its policy and actions scientifically. 

 The book is designed as a text for an introductory course in Operations Research. 

Specially target the needs of students who are learning Operations Research as a subject. In 

various institutes the course may be taught in Statistics, Management Science, Applied 

Mathematics, Computer Science, Engineering etc. at either the undergraduate level of post 

graduate level.  

The aim is to explain the concepts and simultaneously to develop in readers an 

understanding of problem solving methods based upon model formulation and solution 

procedures. Throughout the book, numerous solved business oriented examples have been 

presented. In writing this book I have benefited immensely by too many books and 

publications. I express my gratitude to all such authors and publications. I express my 

sincere gratitude to my guide Dr. H. P. Umap. I wish to acknowledge my thanks to my 

colloguesfor their help during the preparation of book. At the end let me thank my wife 

Madhuri for their support andencouragement.  

I welcome comments and suggestions from the readers towards the improvement of 

this book.   

 

- Dr. R. H. Waliv 
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Chapter 1           Basics of Inventory Control System 

 

1.1 History and Origin of Operations Research (OR): 

Operations Research (OR) can be traced all the way back many decades when early 

efforts to use a scientific approach to technical issues and organizational management have 

been made.British military resources were very limited during World War II, so it was 

necessary to effectively allocate these resources to various military operations and activities 

within each operation.Therefore British military appointed a team of scientists to apply a 

scientific strategy to tackle tactical and strategic troubles related to land defense and air of the 

country. Because the crew dealt with military operations research, the work of this crew of 

scientists in Britain was named Operations Research. The success of operations research in 

the military has attracted industrial management's interest in finding solutions to their 

complicated issues of execution type. In this way OR get introduced in industry and business. 

OR activities encompass transportation systems, libraries, hospitals, urban planning, financial 

institutions, etc. besides military and business applications. The scientific study of operations 

of the system is called OR.  

 After the war, according to needs of various fields many scientists were motivated to 

pursue research in OR for different fields. Various techniques have been developed in OR. 

The first technique, recognized as the simplex method, was developed to solve linear 

programming problems.American mathematician George Dantzing developed this technique 

in 1947.Since then many techniques are developed. Some of the techniques which are applied 

to various fields for example linear programming,  PERT and CPM, replacement theory, 

game theory,dynamic programming, investment analysis, goal programming, queuing theory, 

inventory control, etc. These techniques have widen the scope of OR to various fields such as 

defense, industry, planning, agriculture, public utilities like hospitals, transport system etc. 

 In India OR came into existence with the opening of OR unit in 1949 at Regional 

Research Laboratory in Hyderabad. At the same time another OR unit was set up at the 

Defense Science Laboratory to tackle the problems of stores, purchase and weapon 

evaluation. An OR unit under Prof. Mahalonobis was established in 1953 in Indian Statistical 

Institute, Kolkata to apply OR methods in national planning and survey. Towards the 

application of OR in India, Prof. Mahalonobis made the first important application. He 

developed the second five - year plan using OR technology to forecast demand trends, 

resource availability and scheduling complex schemes necessary for developing country‟s 
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economy.India has been estimated to become self - sufficient in food by reducing food waste 

by 15 %. To achieve this goal, OR techniques are used. Planning commission used OR for 

planning the optimum size of the Carville fleet of Indian Airlines. 

 In short, OR is the collection of modern methods on the problems of men, machines, 

materials and money systems in the industry, defense,business, etc. According to Churchman 

et al. OR is defined as “The application of scientific methods, techniques and tools for 

decision making problems (DMP) involving the operations of systems so as to provide these 

in the control of the operations with optimum solution to the problems”. 

 

1.2 Inventory system in Operations Research: 

 As mentioned above one of the most applied technique of OR is inventory control. 

This methodis used to determine maximum profit, economic ordered quantities, reorder 

levels, stock level etc. Many of the Indian companies that use this method are Indian 

Railways, Hindustan Lever, Delhi Cloth Mills, Defense Organizations, Indian Fertilizer 

Corporation etc.In large production firms as well as in departmental stores or shops, the 

storage of items depends on different factors such as demand, time of order, the time lag 

between orders and actual receipts, deterioration, amelioration, time value of money, 

inflation, etc. and the impression of these factors. So the problem for the managers and 

retailers is to have a compromise between overstocking and under stocking. The study of 

such type of problems is known by the terms “Material management” or “Inventory control”. 

 The Inventory control may be defined as “the function of directing the movement of 

goods through the entire manufacturing cycle from the requisitioning of raw materials to the 

inventory of finishing goods orderly mannered to meet the objectives of maximum customer 

service with minimum investment and efficient (low-cost) plant operation”. Inventory can be 

defined as” the stock of goods, commodities or other economic recourses that are stored or 

reserved in order to ensure the smooth and efficient running of business affairs”. Total 

investment in inventories in any country amounts to a significant proportion of General Net 

Production (G.N.P.). This is the situation where inventory control and management is of great 

concern in any sector of the economy. Some costs are involved in an inventory system, such 

as holding, set-up, shortage, purchasing, material costs, etc. although inventories are an ideal 

resource that incurs costs of holding, they are justified by the results of saving in cost of 

shortage, set-up, and procurement.  
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The two main issues in controlling an inventory of physical goods are:  

When should the physical goods inventory be replenished?  

And at the beginning of each time interval, how many physical goods should be purchased or 

produced?  

A problem with the inventory involves making optimal decisions on the questions 

mentioned above. In other words, an inventory issue addresses a decision that minimizes the 

total average cost or maximizes the total average profit earned to satisfy the customer's 

requirements. Inventory is an ideal resource of economic value that needs to be maintained to 

meet current and future organizational needs. Inventory can be regarded as a necessary non-

earning asset that cannot be eliminated. It is called evil because it keeps ties with capital that 

can be used for alternative purposes and also increases the cost of carrying, but it is a 

necessary investment to achieve the feasible system of physical goods production, 

distribution, and marketing.  

Inventory can be classified as 

i) Physical resources such as raw material, semi-finished goods, spare part, finished 

goods, lubricants, etc. 

ii) Human resources such as unused manpower  

iii) Financial resources such as working capital etc.  

Inventory holdings are of a different type in the various organizations. For example, if 

the organization is of the type of manufacturer, it must have raw materials, semi-finished 

goods, finished goods, etc. If organizations are of the type of service industry such as banks, 

hospitals, airline firms, etc. A bank must have reserves of cash, tellers, etc. While the hospital 

must keep no beds, drug stock, etc.  Inventory is used to provide customer service in a timely 

manner and to ensure maximum sales, turnover and customer satisfaction. To maintain 

inventory a large proportion of capital money has to be invested in it. So balancing the 

benefit of inventory of resources and the cost of maintaining them is essential, so as to 

determine an optimal level of inventory of each resource, resulting in minimizing total 

inventory cost. Inventories such as the army, quantity of food, number of cattle, the quantity 

of gold and silver, etc. were considered centuries ago to measure a country's wealth and 

power such an inventory does not require scientific management. Currently, inventory is seen 

as a potential risk, not as wealth due to faster development and changes in commodity life. 

Total inventory investment is quite large, so it is of great importance to manufacturing and 

non-manufacturing organizations. Poor inventory control results in a high cost of production, 
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which can result in enormous losses, so inventory is now considered a measure of business 

failure. Therefore, a scientific technique known as inventory control is necessary for 

inventory management. Inventory helps us to control stocks at the lowest level possible, 

which means that the stock of an existing item is kept at a reasonable level, avoiding adding 

unnecessary items and removing items that are no longer in use. This helps us to minimize 

the cost of maintaining inventory.  

Three different approaches, check the inventory status,  

a) Regular review system, in which order is placed at regular intervals. 

b) A fixed order quantity system in which inventory is regularly monitored and when the 

inventory drops to a particular level, a fixed quantity replenishment order is placed. 

c) The optimal replenishment system combines a periodic review system with a minimum 

order quantity restriction, i.e. where No order will be placed to keep away from putting 

small orders when the calculated order quantity is less than predicted. Some costs are 

incurred for each order placed, such as administrative costs, transportation, inspection, 

etc. If large orders are frequently placed order costs and delivery costs are kept low but 

stock level and average value are high whereas when small orders are placed, orders 

and delivery costs are frequently increased but the average stock level is low so we 

have a tradeoff between these two options to minimize overall total cost however 

ordered quantity depends on demand pattern, price of items including discounts for 

larger order, lead time, and various costs, etc. 

 

1.3 Objectives of Inventory control: 

i. Maintain optimum stock of goods at a minimum cost, i.e. trade between loss due to the 

items non-availability and the cost of carrying the commodity. 

ii. To obtain an economy in buying, storing, producing and selling. 

iii. Maintaining a low level of total inventory investment in accordance with operational 

requirements.  

iv. Inventory should be considered a risky investment, i.e. Investment in some stock may 

yield higher returns for others and less. 

v. To obtain maximum efficiency by minimizing shortage, holding and replacement cost 

of inventory. 

vi. Maintain minimum levels of waste, surplus, scrap, obsolete and inactive items vii) To 

supply raw material, subassemblies, semi-finished goods, finished goods to their users 
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accordingly to their specifications at the right time and the right price. Improving 

profitability is an important function of inventory. Inventory helps in maintaining a 

balance between supply and demand, decoupling and safety stock. 

 

1.4 Merits and Demerits of Inventory: 

1.4.1 Merits of inventory: 

Inventory is a crucial part of the business. Inventory takes care of requirements till 

next arrival, probable delay in delivery and sudden increase in demand. The maintenance of 

the inventory is necessary because it is not possible to supply each item when it is necessary 

when it is very expensive. Inventory performs an important role for the following reasons: 

i. To receive the correct quantity of stock to ensure continuous and smooth production at 

the exact time of the requirement. 

ii. To get benefit from the price discount in ordering large quantities. 

iii. To provide satisfactory customer service by supplying most of the requirements without 

delay.  

iv. To carry reserve stocks to avoid stock outs.  

v. o take advantage of the economies of transport. 

vi. Stabilize production, especially for seasonal commodities. 

vii. Planning the overall operational strategy by decoupling successive stages in the chain 

of acquiring goods, manufacturing items, transportation to the wholesaler and finally 

serving the customer. 

viii. In order to keep up with the changing market, i.e. to provide a hedge against the future 

value and delivery uncertainties.  

ix. To make effective use of capital and storage space. 

 

1.4.2 Demerits of inventory: 

i. Holding large stock requires more capital, which leads to a high carrying cost.  

ii. Risk of deterioration and spoilage in the longer holding of stocks. 

iii. Due to obsolescence, excessive stock can lead to a loss.  

iv. Insurance cost and property taxes would be added to the cost of inventories. 
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1.5 Basic Concepts and Terminology: 

1.5.1 Factors affecting inventory: 

 The main aspects of the inventory are demand and associated costs. The different 

factors associated with these two factors are discussed below: 

i. Number of items:  

The number of items held in inventory influenced by limited floor space and budget  

ii. Number of stages of inventory:  

When parts are stored in more than one stage in a sequential manufacturing process it 

is called multistage inventory.  

iii. Availability of items:  

Sometimes supply may be affected badly due to the market conditions which in turn 

affect inventory position in an enterprise. 

iv. Government norms:  

The government has established certain policy standards for specific items such as 

imported items, explosive items, highly inflammable items, and essential items. 

 

1.5.2 Various inventory parameters used in inventory control:  

I. Various costs involved in inventory control system: 

i. Purchase cost or production cost:  

This is the cost which paid to the supplier for the commodity to be purchased or 

production cost if the manufacturer. This price fluctuates so the average cost is considered 

for planning purposes. This cost plays an important role when purchasing item has a discount 

for a large number of items 

ii. Procurement cost:  

These costs incurred when order is placed known as ordering cost or related to the 

initial preparation of the production system known as set up cost. This cost is corresponding 

to the orders placed. This cost includes salaries of the employee, tendering, paperwork, 

postage, transportation cost, inspection cost, processing payments, etc. This cost is per set up 

or per order.  

iii) Holding costs or carrying costs:  

The cost of holding items is related to this cost. This cost is commensurate with the 

number of items stored. In general, this cost ranges from 15-30 percent of the price of the 

commodity concerned and includes: 
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a) Storage and handling charges 

b) Interest or capital investment  

c) Insurance expenses  

d) Loss due to depreciation, spoilage, pilferage, deterioration, obsolescence  

e) Warehouse rent  

f) Cost of safety measures (This cost is represented as per unit of item held per unit of time).  

iv. Shortage cost:  

These are penalty costs incurred due to stock out. This can be on selling side 

(backorder cost or lost sale cost) and for manufacturer (backlog cost or non-backlogging 

cost).backorder cost or backlogging cost arises when customer wait till get supplies i.e. 

unfulfilled demand can be fulfilled later. Lost sale cost or no backlogging cost incurred when 

customers don't wait for supply and go to another option i.e. demand is not fulfilled. This 

cost includes the cost of production stoppage, overtime payment, expenditure on special 

order with a higher price, idle machine, loss of goodwill, loss of profitability, etc. 

v. Selling price:  

This cost includes revenue from the selling of commodities. This price may be a fix or 

variable depends on a quantity discount. 

vi. Cost of Operating the information processing system: 

Records of changes in stock levels can be updated either by hand or by computer. In 

case, when the inventory levels are not recorded daily, the opening cost is incurred to obtain 

in physical counts of inventories. These operating costs are usually fixed over a wide volume 

range of product. 

II. Demand:  

Demand refers to the amount of a commodity needed at a given time. Generally, it 

cannot be controlled directly and in many cases even indirectly also. It usually depends on 

the decision of people outside the organization. Demand can be categorized according to its 

size and pattern. Demand size refers to both the demand magnitude and the quantity 

dimension. It partly depends upon the stock level (initial or on hand), time, the selling price 

of the item and advertisement, etc.  Demand can be deterministic or probabilistic  

a) Deterministic demand: in this case, the quantity required is known with certainty over a 

subsequent period of time and can be expressed in terms of cost over equal periods of time. 

b) Probabilistic demand: This happens when the required quantities are not known for 

certain periods of time, but the pattern can be expressed through probabilistic distribution. 
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III. Lead time:  

Time between requisition for an item and its receipt. It can be deterministic or 

probabilistic. It includes four components 

 a) Administrative lead time 

 b) Supplier lead time 

 c) Transportation lead time  

d) Inspection lead time  

IV. Time horizon:  

This refers to the planning period during which inventory should be checked. It may 

be a period of finite or infinite. Inventory planning is usually carried out on an annual basis. 

V. Echelon:  

These are number of supply points.  

VI. Constraints:  

Constraints are the limitations imposed on the inventory system. Constraints may be 

imposed on the amount of investment, available space, the amount of inventory held, average 

inventory expenditure, number of orders, etc. These constraints may be fuzzy in nature i.e. 

data for constraints goals may be imprecise and vague. There may be also some chance 

constraints in the inventory system, i.e. the minimum probability of satisfying a constraint is 

specified or some parameters in the constraint(s) may be probabilistic. 

VII. Deterioration:  

It is defined as “decay, evaporation, obsolescence, and loss of unity or marginal value 

of a commodity that results in the decreasing usefulness from the original condition”. 

Vegetables, food grains, gasoline and semiconductor chips, etc. are examples of such 

commodities. 

VIII. Damageability:  

It is defined as “The damage when the items are broken or lose their utility due to the 

accumulated stress, bad handling, etc.”The quantity of damage triggered by stress varies 

relying on the stock size and the stress period. Examples of such commodities are items made 

from glass, china-clay, ceramic, mud, etc.  

IX. Perishable items:  

These are those, which have a finite lifetime (fixed or random). Fixed lifetime 

commodities like human blood and so on have a deterministic shelf-life while a random 

lifetime scenario assumes that a random variable is the useful life of each unit. The random 
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lifetime scenario is closely linked to an inventory that experiences continuous physical 

deterioration or decline.  

X. Salvage:  

Some items were partially spoiled or damaged during the shortage, i.e. some items 

lost their usefulness. In a developing country, however, it is usually observed that some of 

these are sold to a section of customers at a lower price (less than the purchase price), and 

this gives the management some revenue. This income is called the salvage value. 

XI. Fully back- logged / partially back- logged shortages:  

Sales or goodwill might also be lost through a delay or complete refusal to meet the 

demand in the course of the stock-out period. If the unfulfilled demand for the goods can be 

fully satisfied at a later date, then there will be a  fully backlogged shortages i.e. it is assumed 

that no customer back away during this period and the demand of all these waiting customers 

is met at the beginning of the next period. Again, it is generally found that some of the 

customers wait for the product and others return away during the stock-out period. When this 

happens, the phenomenon is called partially backlogged shortages. 

Among the above factors, major factors influence inventory are demand, economic 

parameters and deterioration. 

 

1.5.3 Types of inventory: 

i. Lot size inventory:  

The inventory must meet the average demand during successive replenishment. The 

quantity of such stock depends on the size of the lot of production, the economic quantity of 

shipments, limited storage space, lead time, cost carrying inventory, discounts on price 

quantities, etc. 

ii. Pipeline inventory:  

Inventory movement cannot be instantaneous, inventory rises as inventory items are 

shipped to remote centers and customers, from production centers such inventory is called as 

process inventory. It consists of actually working material and moving between the 

workplace centers. This inventory must be maintained without delay because the quantity of 

such inventory depends on the time required for shipments and the nature of demands when 

the supply is in transit. 
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iii. Buffer inventory:  

This type of inventory is designed with some probability distribution to protect 

against demand and lead time uncertainties. This inventory helps reduce unpredictable 

shortages that can result in a high cost of penalties. To avoid losses due to future 

uncertainties, this inventory is maintained as additional stock in regular stock. The level of 

such inventories is determined by the desired trade-off between demand and supply 

uncertainties protection and the level of security stock investment.This inventory provides 

protection against the following uncertainties: a) sales during the replenishment period 

exceeding the forecast. b) With regard to replenishment delay.  

iv. Seasonal inventory:  

This inventory is required for commodities on the market with a seasonal demand 

pattern and the production of which is not uniform (i.e. varies over time) such as fashion 

items, agricultural commodities, children's toys, etc. In these cases, the manufacturer will be 

dealt with maximum demand if the manufacturing facility is unable to meet the demand for a 

period of time. During the period of low demand, these inventories stored to meet peak 

demand. The quantity of such inventory is determined by balancing the holding and shortage 

cost of seasonal inventory. 

v. Decoupling Inventory: 

This inventory includes separating inventory within a manufacturing process so that 

the inventory associated with one stage of a manufacturing process does not slow down other 

parts of the process.This inventory deal with issues such as equipment breakdowns or uneven 

machine production rates affecting output because one part of the production line works at a 

different speed than another. 

This inventory serves the following purposes: 

a) Inventory is required to reduce dependency among successive operation stages  

b) One organization unit can schedule its operation independent of another for example 

steel making organization, steel melts production can be scheduled separately from 

rolling and forging.  

 

1.5.4 Inventory Classification Based on Service Utility: 

1.5.4.1 Manufacturing Inventory: 

 This refers to the inventory held by manufacturing firms this can be subdivided as 
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a) Production inventory: these are items which go to final commodity such as raw material, 

components, and sub-assemblies purchase from outside.  

b) Work in progress inventory: This includes all items at various stages in semi-finished 

form. 

c) Finished goods inventory: This included commodity for shipment to the user.  

d) Maintenance, Repair or operating inventory: Supplies consumed in the system of 

manufacturing, however not part of the end commodity or central to the output of the 

company.This inventory consists of consumables (e.g. cleaning, laboratory or office 

supplies), industrial equipment (e.g. compressors, pumps, valves) and components for plant 

protection (e.g. gaskets, lubricants and repair equipment) as well as computers, fittings, 

furniture, etc.)  

e) Miscellaneous Inventory: these are items not covered by the category mentioned above. 

This includes the outdated and unsalable commodity that arose from the office's main 

production, stationery, and other items. 

 

1.5.4.2 Non-Manufacturing Inventory: 

This inventory is necessary to provide an organization with economical and efficient 

operations. These are four types 

a) Lot size: this refers to a lot size purchase. This is used for 

i) Obtaining quantity discount  

ii) Reducing transport and receiving costs for example buying the bulk of oilseeds during 

the oilseed season would be cost-effective for the oil mill.  

b) Anticipation stock: This is required to meet predictable changes in demand or in the 

availability of raw material, for example Purchase of wheat in a wheat season for sales of 

seed preservation commodities throughout the year.  

c) Fluctuation stock: This is required to ensure ready supplies to the customer when their 

fluctuation in their demand.  

d) Risk stock: These are needed to prevent the risk of breakdown of production. 

 

1.5.5 Classification of inventory depending on its use: 

1.5.5.1 Direct Inventory: 

 Objects that play a direct role in the manufacturing and turn out to be an integral part of 

finished goods are called direct inventories.These were classified as follows: 
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a) Raw material: these are basic materials that have not been converted, but kept in stock for 

manufacturing use.  Examples are steel, copper, lead, tin, rubber, etc. these are required for 

the following purposes 

i) For economical bulk purchasing      

ii) To make it possible to change rates of production 

iii) To serve as buffer stock against delay in transportation    

iv) To cope with seasonal variations in supplies 

b) Work in process inventories: These are materials in the partially completed condition of 

manufacture. At the end of the first operation, raw materials become work in process and 

remain classification until they become the final commodity. Usually, the materials on 

conveyors, trucks, etc. are considered work in progress. These are provided for the following 

purposes 

i) Providing an economic lot of production 

ii) To enable a variety of commodities   

iii) To replace the waste 

iv) Keeping production uniform even during sales variations 

c) Finished goods inventories: These are final commodities ready for delivery to customers. 

Commodities usually leave work in progress, classification and enter the finished goods 

category at the end of the final inspection. 

 

1.5.5.2 Indirect inventories: 

These include items essentially required for manufacturing, but not becoming an 

integral part of finished goods. These are grouped as: 

a) Tools: These consist of  

i) Standard tools to be used on machines such as saws, drills, taps, milling cutters, etc. 

ii) Hand tools such as hammers, needles, spanners, etc.  

b) Supplies: These include materials required for the running of the plant or company 

commodities. Supplies may include: 

i) Welding, Soldering, and tinning material (such as electrodes, gas, welding rods, 

flux, etc.) 

ii) Shipping containers (such as bags, glass bottles, cardboard boxes, drum, etc.) 

iii) Oils and greases  

iv) Electric supplies  

v) Printed forms 
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c) Machinery spares: These are the material required in maintenance of machines, for 

example bearing, belts, oil seals, etc. 

 

1.6 Inventory modeling: 

 The intention of this research is to develop the operating inventory models that should 

be used with mathematical analysis to control the inventory system. Therefore, the task is to 

design a mathematical model of the real-life inventory system in various environments. 

However, such a mathematical model is based on various assumptions and approximations. 

The methodology for inventory modeling involves the following steps: 

a) The inventory situation is examined carefully and characteristics and assuming relating to 

a situation are listed. 

b) The total relevant cost equation is developed in narrative form as follows: 

Total annual cost=cost of item+ procurement cost+ stock carrying cost+ stock out cost 

c) Finally cost equation is optimized by finding optimum values for quantity to be 

replenished, reorder point and the total relevant cost. 

 

1.7 Environments for developing inventory models: 

 The parameters of the inventory, the objective goals are assumed to be deterministic 

and fixed in most existing inventory models. But in reality they are ambiguous, either random 

or imprecise. To tackle randomness stochastic environment is used. To handle impreciseness 

fuzzy environment is used. So In general, inventory control parameters are considered in the 

development of an inventory model in three environments such as deterministic, stochastic, 

fuzzy and fuzzy- stochastic environments. 

a) Deterministic (crisp) Environment:  

 Parameters of the inventory are considered known and constant in the deterministic 

environment. There is so much literature available in research journals and books on the 

deterministic inventory model. 

b) Fuzzy Environment: 

  In some situations parameters like demand, holding cost, set-up cost, purchasing 

price, storage area, production rate, etc. are vague and imprecise. Their values may vary 

within the ranges such cases are tackled by using a fuzzy environment.  
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1.8 Fuzzy Preliminaries: 

Definition: If X is a collection of objects denoted by x, then fuzzy set 𝐵  in X is a set of 

ordered pairs: 


B = {(x,μ (x)) | x X}
B

  

B
μ (x) is called the membership function or grade of membership of x in𝐵  that maps X to the 

membership space M. The membership function range is a subset of the non-negative real 

numbers with a finite supremum. 

The support of a fuzzy set𝐵 , denoted by S(𝐵 )given by 

  μ (x) > 0
B

S B = {x | }
 

 α-Level Set: 

 α-Level Set  denoted by Bα is given by B
B = {x X | μ (x) α}

α
  and  it is called „strong α 

-Level Set‟ if B = {x X | μ (x) > α}α B
  

 Complement: 

The membership function of the complement of a normalized fuzzy set𝐵 , cB
μ (x)  is defined 

by 

 c BB
μ (x) = 1- μ (x), x X  

 Cardinality: 

For a finite fuzzy set 𝐵 , the cardinality B is defined as 

B = μ (x)
Bx X




  

 Convexity: 

Let  𝐵  be a fuzzy set in X. Then it is convex if and only if for any 1 2
x ,x X , 

the membership function of 𝐵 satisfies the inequality 

   1 2 1 2B B B
μ (λx + (1 - λ)x ) Min(μ (x ),μ (x )) for 0 λ 1    

 Union: 

The membership function D
μ (x) of the union D = B C  is point wise defined by 

   D B C
μ (x) = max μ (x),μ (x) , x X

 

 Intersection: 
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The membership function μ (x)
C

of the union = B CE    is point wise defined by 

   E B C
μ (x) = min μ (x),μ (x) , x X

 

   In fuzzy set theory, there are different membership functions defined. Some of the 

membership functions like linear membership function, hyperbolic inverse membership 

function, exponential membership function and n
th

 parabolic membership function are used to 

develop fuzzy inventory models. 

 Fuzzy number and Membership functions: 

 Fuzzy number:  

A fuzzy number is a special case of a fuzzy set. Different concepts and properties of 

fuzzy numbers are encountered in the literature but they all agree on that a fuzzy number 

represents the conception of “a set of real numbers close to a “where B is the number being 

fuzzified.A fuzzy number is a fuzzy set in the universe of discourse X that is both convex and 

normal. 

Membership function:  

The fuzziness is well described by its membership function. Membership function 

represents the degree of reality in fuzzy set theory. Various membership functions are 

available to represent fuzziness of parameter in fuzzy set theory. Some of them are linear, 

hyperbolic inverse, exponential and n
th

 parabolic membership functions which are used to 

develop inventory models. Types of membership function 

 Linear Membership function: 

ci

ci

1 ;u>ci

ci-u
μ = 1- ;ci-P u cici ci 

P

0 ;u>ci-P

£ £

íïïïï æ öï ÷ç ÷çì ÷ç ÷çï è øïïïïî

 

-1
μ (α) = ci - (1 - α)Pci ci  

 Hyperbolic inverse Membership function 

For each fuzzy parameter A  the corresponding hyperbolic membership function is 

defined by 
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1-1
μ (u) = a tanh ((A(u) - b)c) +A

2  

The hyperbolic inverse membership function can be determined by asking the decision maker 

to specify the three points A(0), A(0.25) and A(0.5) within Amax and Amin. 

ci
ci

1
α -1-1 2μ (α) = b + tanhci

C aci

 
 
 
   

 Exponential Membership function 

1 ; u > ci

t(ci-u)/P tciq - q
μ (u) = ; ci - P u cici cit

(1 - q )

0 ; u > ci - Pci

 



  
  



 

where 0<q<1, t>0, i  =1,2.Let q=0.5 and t=1 then 

-1
μ (α) = ci - P log (0.5 + 0.5α)0.5ci ci  

 n
th

 Parabolic Membership function 

1 ; u > ci

n
ci - u

μ = 1 - ;ci - Pci u cici Pci

0 ; u > ci - Pci

 




 
   

  



 

1
-1 nμ (α) = ci - (1 - α) P
ci ci  

 

1.9 Methodologies: 

1.9.1 Theory of Fuzzy Non Linear Programming (FNLP):  

a) FNLP with fuzzy objective and fuzzy constraints 

Consider a model of the problem “maximize an function subject to constraints,” 

namely the “linear programming model” 

T
max z = d x

such that Bx c - - - -(1)
 

Where d and x are n-vectors, c is an m-vector and B is an m x nmatrix.  
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If objectives as well as constraints in above model are imprecise and vague then the 

Bellman and Zadeh approach is used. Fuzzy sets represent imprecise and vague goals as well 

as constraints then membership function of decision is then defined as follows 

Definition: Let  ( ), 1, 2,..., ,
ic

x i m x X   be membership functions of constraints defining 

the decision space and 𝜇𝑑𝑗 
 𝑥 , 𝑗 = 1,2, … . 𝑛, 𝑥 ∈ 𝑋.The membership functions of objective 

goals. A decisionis then defined by its membership function𝜇𝐸  𝑥 =  𝜇𝑑𝑗 
 𝑥 ∗ 𝜇𝑐𝑗 

 𝑥 , 𝑖 =

1,2, … . ,3, 𝑗 = 1,2, … , 𝑛  where * denotes an appropriate, possibly context dependent, 

“aggregator” (connective). 

Let M be the set of points x X  for which  ( )
E

x attains its maximum, if it exists. 

Then Mis called the maximizing decision. If  ( )
E

x has a unique maximum at xM, then the 

maximizing decision is a unique crisp decision that can be interpreted as an action belonging 

to all fuzzy sets representing either constraints or objectives with the highest possible degree 

of membership. (That could be quite low)  

Assume a situation as described in Definition 1, i.e. The decision maker's goal and constraints 

can be expressed as a fuzzy set. In such a situation a model (1) becomes 





T
d x z

Bx c - - - - - (2)



  

Here  denotes the fuzzified version of  and has "essentially less than or equal" 

linguistic interpretation. The objective function in (1) might have to be written as a 

minimizing goal in order to consider z as an upper bound. by following substitution model (2) 

becomes 

   d z
= H and = IcB  

Find X such that 

Hx I -- - (3)  

Each of the m + 1 rows of (3) will now be represented by a fuzzy set, the membership 

functions of which are𝜇𝑖(𝑥) which can be interpreted as the degree to which x satisfies 

inequality Hx I . Using Definition, the membership function of the fuzzy set “decision” of 

the model (3) is 



m+1
μ (x) = μ (x) - - - -(4)min iD

i=1
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Assuming the decision maker is not interested in a fuzzy set, but in a crisp set 

“optimal” solution x0, we could propose a "maximizing solution" to (4)which is the solution 

to the possibly nonlinear programming problem 

0

m+1
μ (x ) = μ (x)max minM i

x 0 i=1

 

Now we have to specify the membership functions𝜇𝑖(𝑥) .  

Using the simplest linear membership function increasing over the tolerance interval 

(di, di + pi) 

m+1 (Hx) - d
i i1max min

px 0 i=1 i

 
 
   

 

Where pi, aresubjectively chosen constants of admissible violations of the constraints 

and the objective function. 

Introducing one new variable α which corresponds essentially to  ( )
D

x in (4), then  

max α

s.t. (α -1)p + (Hx) d , i = 1, 2,...., m - - - -(5)
i i i

0 α 1



 

 

If the optimal solution to (5) exists, then (4) and (3) will have maximizing solution, 

assuming linear membership function.In general, it is possible to use any nonlinear 

membership function instead of linear membership function. 

b) FNLP with fuzzy objective, constraints and coefficients  

A crisp non-linear programming problem may be defined as follows: 

Minimize m (x,d )o 0

subject to

m (x,d ) c i = 1,2,3, - - -,mi i i

x 0





 

Where X=(X1,X2,…,Xn)
T
 is a variable vector. mo and mi are algebraic expressions in x 

with coefficients do and di respectively. After introducing fuzziness in crisp parameters, the 

problem in a fuzzy environment becomes  
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



d

d c

Minimize m (x, )0o

subject to

m (x, ) i = 1,2,3, - - -,mi ii

x 0









 

In fuzzy set theory the objective, coefficients and constraints are defined by their 

membership functions which may be linear or non-linear.  According to Bellman and Zadeh 

(1970) and following Carlsson and Krohonen (1986), problem is transformed to  

0
0

Maximize α

subject to

-1
g (x,μ (α))d

-1 -1
g (x,μ (α)) = μ (α) i = 1,2,3, - - -,mi d i

i

x 0

 

 where membership functions of fuzzy coefficients 

are 𝜇𝑑𝑖
(𝑥) and of fuzzy objective𝜇𝑑0

(𝑥)  and fuzzy constraints are 𝜇𝑖(𝑥),  (i=1,2,3,----m). 

Here 0<α<1 is an additional variable which is known as aspiration level. 

 

1.9.2 Theory of Intuitionistic fuzzy optimization: 

When the „β‟ degree of rejection (non-membership) is defined simultaneously with 

„α‟ the degree of acceptance (membership) and when both these degrees are not 

complementary to each other than IF sets can be used as a more general tool for describing 

uncertainty. It is possible to represent objectives and constraints by IF set i.e. by pairs of 

membership 𝜇𝑖(𝑥) and rejection 𝑣𝑖(𝑥)functions. Each of the m + 1 rows of (3) will now be 

represented by a intuitionistic  fuzzy set then the membership function of the fuzzy set 

“decision” of the model (3) is 

 

 

D D

D D

m+1
μ (x) = μ (x),μ (x) μ (x)min i i

i=1

m+1
v (x) = v (x), v (x) v (x)max i i

i=1





 

Different from Fuzzy Linear programming since Conjunction of intuitionistic fuzzy 

sets is defined as intersection of membership function and union of non-membership 

function. 
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Assuming that the decision maker is interested not in a fuzzy set but in a crisp 

“optimal” solution x0, we could suggest to him the “maximizing solution” to (4), which is the 

solution to the possibly nonlinear programming problem i.e. an IFO problem is formulated as 

to maximize the degree of acceptance of IF objective(s) and constraints and to minimize the 

degree of" rejection IF objectives and constraints. 

m+1

μ (x)minmax i
x 0 i=1

m+1

v (x)maxmin i
x 0 i=1

Subject to v (x) 0,
i

μ (x) v (x)
i i

μ (x) + v (x) 1
i i











 

Solving above problem is equivalent to solve 

max = α -β

s.t. μ (x) α
i

v (x) β
i

α β,β 0, α + β 1





  

 

If the optimal solution to above exists then it is the maximizing solution to the model 

(3), assuming intuitionistic fuzzy set 
 

 

1.10 Review of Literature for Crisp Inventory models: 

 Inventory models developed in crisp environment are called as crisp inventory 

models. While developing such models demand and deterioration are key factors. 

a) Literature Review for crisp according to Demand   

 A sufficient number of crisp inventory models are developed using different types of 

demands in literature. So many researchers have used different types of demands such as 

constant, price dependent, stock dependent, time dependent, exponential, ramp type etc. 

Generally, demand is assumed to be constant in traditional inventory models, but it rarely 

occurs in real life situations.Bhunia and Maiti (1997) built an inventory model with linear 

time-dependent demand in this regard.Inventory models with time-dependent demand and 

weibull distribution deterioration have been built by Wu (2002) and Sharma (2013). Pervin et 

al. (2018) provided optimal retailer‟s replenishment choices to decaying items along with 



 

 
INVENTORY MODELS WITH UNCERTAIN DATA 21 

 

 

time-dependent demand.Seema Sharma (2018) and NabenduSen (2018) also considered time 

dependent demand for construction of inventory models. 

 Lee et al. (2002), Sharma et al. (2012) and Krishnaraj (2012) developed inventory 

models with deterioration rate expressed using weibull distribution and power patterns 

demand.   

 With weibull distribution deterioration and quadratic demand, Ghosh et al. (2004) and 

Begum et al. (2010) built inventory model. 

 Chen and Ouyang (1999) have constructed EOQ Model with time dependent 

deterioration rate andramp type demand. Deng (2005), Jain et al. (2007) developed inventory 

model based on ramp type demand and expressed deterioration rate using three-parameter 

weibull distribution. Choudhury et al. (2015) proposed a ramp-type demand inventory model 

for decaying items. Poonam Mishra (2017) proposed an integrated inventory model with 

ramp type demand and capacity utilization dependent holding costs. Huang and Wang (2011) 

built an EOQ Model with verhulst‟s demand. 

Krishnaraj (2013) developed an inventory model with stock dependent demand and 

by usingweibull distribution for expressing deterioration. Choudhury et al. (2015) designed 

an inventory model with stock dependent demand for decaying items for two components and 

holding costs changes according to time. Mishra (2017) formulated stock dependent demand 

inventory model. 

Begum et al. (2010) built an EOQ model with weibull distribution deterioration and 

price-dependent demand.Xiaoyan et al. (2015) developed a price - dependent inventory 

model to optimize the quantity of liquidation and promotional unit price.Alfareset al. (2016) 

derived an inventory model based on price dependent demand, time dependent holding cost, 

and order size dependent purchase cost.Rastogi (2017) also used selling price dependent 

demand to develop inventory model for manufacturing process. Researchers like Sana(2008), 

Palanivel (2015), Geetha (2016)studied effect of price and advertisement dependent 

demandon inventory model. 

Chan et al. (1999) and Lee (2009) constructed inventory model for general time 

dependent demand in there paper they used exponentially increasing demand in example for 

illustration purpose. Exponential increasing demand is used by Mehta et al. (2003). They 

have formulated a lot-size inventory model with exponentially increasing demand by 

allowing complete backlogging for decaying items. Sarkar (2013) developed inventory model 

for manufacturing process with exponentially increasing demand. Also,Yadavet al. (2013) 

and Shukla et al. (2010) used similar demand. 
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b) Literature Review for crisp according to Deterioration Rate    

 Another important parameter for inventory management is deterioration. Initially, in 

classical inventory models it was assumed that shelf life of product is infinite and if 

deterioration rate low and slow then it was ignored. Deterioration is another important 

parameter of inventory management. Initially, in classical inventory models it was assumed 

that shelf life of product is infinite and if deterioration rate low and slow then it was ignored. 

It is assumed that the rate of deterioration is constant after some time, but researchers came to 

know that it affects inventory and plays important role for determining economic ordered 

quantity so various types of deterioration rates have been considered to construct inventory 

models.  

 An EOQ model for an inventory with exponential decay has been developed by Ghare 

and Schrader (1963), Misra (1975), Shah (1977) and Tadikamalla (1978) etc. It was later 

observed that the rate of deterioration changes with time, such cases addressed by time 

dependent deterioration rate. Some of the researchers such as have made use of weibull 

distribution for expressing time dependent deterioration rate. Covert and Philip (1973), 

Elsayed and Teresi (1983), Chakravarty and Balakrishnan(1997), Chakrabarty et al. 

(1998),Wu J. W. et al. (1999,2000),Chung et al. (2000),Wu K.S.(2001), Mondal et al. (2003) 

and Wang (2004) have made use of weibull distribution while Rao (2016) used  a generalized 

Pareto distribution to model time dependent deterioration rate. For more details regarding 

crisp inventory model one can refer books of Churchman et al. (1957), Arrow et 

al.(1958),Hadley and Whitin(1963) and Naddor (1966). 

 

1.11 Review of Literature for Fuzzy Inventory models: 

All the above models developed in crisp environment. But in real life situation crisp 

environment seen rarely, in general fuzzy environment occurs frequently. In this regard, Roy 

and Maiti (1995) developed inventory model in which storage space, cost coefficients and 

budgetary cost are represented by fuzzy numbers. Ishii and Konno (1998) developed fuzzy 

inventory models by introducing fuzziness in shortage cost.  Roy and  Maiti (1998) derived 

multi item inventory model for decaying items in which warehouse space, inventory costs 

and objectives of maximizing profit and minimizing waste cost are assumed to be vague and 

imprecise. Chiang Kao and Hsu (2002) developed inventory model with fuzzy demand.  

Mandal et al. (2005) developed model with cost parameter, objective function and constraints 

considered in fuzzy environment. Roy et al. (2008) considered inventory costs, storage area, 

and budget allocation to be fuzzy. Prasath and Seshaiah (2011) taken unit cost is in fuzzy 

environment and demand is function of unit cost.Kumar et al. (2015) obtained solution of 



 

 
INVENTORY MODELS WITH UNCERTAIN DATA 23 

 

 

fuzzy inventory model by signed distance method and centroid method. Hardik N. Soni 

(2015) built the inventory model that included fuzzy random demand, variable lead time with 

lost sales. Alok Kumar (2016) obtained EOQ model with fuzzy logic for new commodity and 

demand rate obey innovation diffusion process. Waliv and Umap (2018) used ramp type 

demand for construction of two-warehouse fuzzy inventory model. 

 

1.12 Review of Literature for Stochastic Inventory models: 

Inventory models built in stochastic environments are called as stochastic inventory 

models. The first stochastic model developed is now known as „News Boy Problem „obtained 

during World War II. Barankin and Denny (1960), Brown (1964) and Pierskalla (1969) 

studied Inventory models for perishable or decaying items subject to exogenous demands 

with stochastic horizon. Browne and Zipkin (1991) built inventory model, where demand rate 

at each instant is determined by an underlying stochastic process. Gallego et al. (1994) 

constructed inventory model with demand having compound Poisson distribution. Berman et 

al. (1999) developed stochastic inventory model. Miranda et al. (2004) derived EOQ model 

with stochastic demand. Ouyang et al. (2004) considered two models. While developing the 

first model it is considered that the distribution of lead time follows a normal distribution. 

The second model assumes itis distribution free. Recently Leiva et al. (2016) proposed 

inventory model with demand having Birnbaum–Saunders (BS) distribution. Chen et al. 

(2016) constructed dynamic stochastic inventory model. Gharaei et al. (2017) provided an 

inventory model with stochastic constraints for imperfect quality products. Mehdi et al. 

(2018) constructed multi sourcing inventory model with stochastic demand. Fawzat et al. 

(2018) developed dual warehouse channel warehouse inventory model with stochastic 

demand. 

 

1.13 Review of Literature for Fuzzy-Stochastic Inventory models: 

 To get closer to real life situation some researchers construct fuzzy stochastic 

inventory models. In this environment, very few models have been developed. Das et al. 

(2004) formulated fuzzy stochastic inventory model by considering demand and budget 

resources as random and available storage space, total expenditure as fuzzy. Panda et al. 

(2005) developed EOQ model in fuzzy random environment  by considering  unit purchasing 

cost, inventory cost and investments as random variable with normal distribution and total 

cost and constraints goals for storage area as fuzzy in nature Waliv and Umap (2017) 

developed a multi item profit maximization fuzzy stochastic inventory model. 
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 Chapter 2        Two Warehouse Fuzzy Inventory Model for Deteriorating Items 

 

2.1 Introduction:  

 Traditional inventory models for decaying items are made mainly for single storage 

facility with unlimited capacity. In previous chapter inventory models are constructed only 

for single warehouse system but in some situations two of more warehouses needed to hold 

inventory.In practice, retailers have to buy a large number of products owing to the following 

circumstances. 

i. An attractive price discount in bulk purchasing and to avoid high inflation rates 

ii. The costs of processing goods are greater than the other costs associated with the 

inventory 

iii. There is a very huge demand for items 

iv. Frequent procurement has few issues 

v. Maintaining a higher inventory of multiple products helps to make ample profit 

vi. The customer's goodwill is required to survive in an increasing environment of business 

competition. 

Due to limited capacity of the existing storage facility, large volumes of items cannot 

be accommodated. So additional storage requires with abundant space to hold a massive 

stock and excess items. Such additional storage is known as Rented Warehouse (RW) and 

existing owned warehouse is known as Own Warehouse (OW). Therefore study of two 

storage facility inventory models is important.  

So to minimize this extra cost, customer demand is satisfied by using items in RW 

and after RW get empty, items in OW are used. This type of model was introduced by 

Hartely (1976). Sarma (1983) developed an infinite rate inventory model for manufacturing 

process without shortages. Dave (1988) discussed finite and infinite replenishment rates, 

inventory models, correcting the Sarma's (1983) model errors and provided a complete 

solution. Further, Goswami and Chaudhuri (1992) regarded the inventory models with or 

without shortages for linearly rising time-dependent demand. Correcting and modifying the 

assumptions of Goswami and  Chaudhuri (1992), Bhunia and Maiti (1994) analyzed and 

graphically demonstrated the same inventory model with sensitivity analysis for changes in 

demand parameters on the best possible average cost and cycle duration.Maiti et al. (2007) 

investigated the performance of two storage facility for supply chain. Saha et al. (2012) 

formulated a two-storage facility model based on the idea that the sale takes place from OW 
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and that the items sold are continuously substituted by items stored in RW. Rented Storage 

facility located on the marketplace is named as OW and another Rented Storage facility 

located a short distance away from the marketplace is named as RW. Niraj Kumar (2013) 

developed a K-release rule inventory model for two storage facilities. All above mentioned 

models discussed the cases of non - decaying items.  

Some items perceive the natural phenomenon of decay.The researchers therefore, 

regarded the impact of decay on the item during the development of the inventory model. 

Decaying is defined as damage, spoilage, dryness, vaporization, etc. It leads to a reduction in 

the utility of the item. The rate of decay is commensurate with time and temperature.For 

different items, it may be different. Sarma (1987) presented a model with an infinite rate of 

replenishment and shortages, the decaying in both storage facilities. Also, Pakkala and 

Achary (1992) developed the two storage facility inventory models for decaying items with 

finite replenishment and shortages. In continuation, throughout the past few decades, a 

number of interesting research articles have been published for two warehouse inventory 

model with decaying  items. One could refer to works of Bhunia and Maiti (1998), Yang 

(2004, 2006, 2012), Zhou and Yang (2005), Lee (2006), Hsieh et al. (2008), Niu and Xie 

(2008), Ouyang et al. (2008),Chung et al. (2009),  Lee and Hsu (2009), Jaggi and Verma 

(2010), Liang and Zhou (2011), Saha et al. (2012), Zhong and Zhou (2013) for a thorough 

study. Valliathal and Uthayakumar (2013) proposed two-storage facility inventory model for 

decaying items with infinite time horizon and shortages. Rao et al. (2015) analyzed an EOQ 

model by considering effect of inflation and permissible delay in payments for decaying 

items.  

In classical inventory models, it was considered that parameters such as demand, 

holding cost, shortage cost, total floor space and total budget allocation for replenishment are 

known and constant. Inventory models developed using these assumptions are known as crisp 

or deterministic inventory models. Different algorithms were developed to solve inventory 

problems. Inventory parameters in the real-life scenario may be uncertain in non-stochastic 

sense.For example in the competitive market; the business with predefined fixed budget 

cannot be carried out always. A decision-maker (DM) may initially start with some fixed 

quantity, but DM is compelled to raise some more assets in order to satisfy the sudden rise in 

demand at a later point or to take benefit of the sudden drop in commodity prices.Therefore, 

in this case the budget allocation is imprecise similar may be the case to the storage area. DM 

often has vague goals such as „„profit should be larger than or equal to a certain value.”  In 
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such situations it is better to develop inventory models in fuzzy environment rather than crisp 

environment.To deal quantitatively with imprecise information in the decision-making 

process, Bellman and Zadeh (1970) first introduced the notation of fuzziness.Tanaka et al. 

(1974) applied fuzzy ideas to the issue of decision-making taking the goals as fuzzy goals 

over the α-cuts of a fuzzy constraint. Zimmermann (1978) introduced classic algorithms to 

solve the problem of fuzzy linear programming. Sommer (1981), Kacprzyk and Taniewski 

(1982) address the problem of incorporating fuzziness into the modeling an inventory control 

problems. Sommer (1981) applies fuzzy dynamic programming given by Bellman and Zadeh 

(1970). From a global perspective of top management, Kacprzyk and Staniewski (1982) 

regarded optimal company determination in a fuzzy environment with fuzzy constraints.In 

this manner so many researchers developed inventory models in fuzzy environment. 

Recently, Mondal and Maiti (2002) formulated fuzzy inventory models as fuzzy non-linear 

decision making issues and solved by Genetic algorithm method and FNLP method. 

Following Sakawa (1983, 1986), interactive fuzzy approach in general form was initiated for 

inventory control system by Dey et al. (2005). Rezaei and Davoodi (2005) explored fuzzy 

multi-item inventory model with restrictions on total cost of production, total storage space 

and number of orders. They had given solution under fuzzy objective of cost minimization by 

using Genetic algorithm. Dutta et al. (2005) proposed a single-period inventory model with 

demand as fuzzy random variable. Umap and Bajaj (2007) constructed multi item EOQ 

model for decaying item in fuzzy environment. In this model total cost, warehouse space, 

deterioration rate are considered to be vague and bothlinear and non-linear membership 

functions represent the vagueness of these parameters.Roy et al. (2008) built an economic 

ordered quantity model for decaying items in a fuzzy environment where inventory costs, 

storage space and budget are deemed to be vague and vagueness is represented by fuzzy 

numbers. Panda et al. (2009) developed two economic production quantity inventory models 

in fuzzy environments. The first model is designed with fuzzy goal and fuzzy storage area 

constraint and the second model with unit cost as fuzzy and possibility restriction on storage 

space. Bera et al. (2012) developed a model of inventory with a vague horizon of time. De 

and Sana (2013) built backorder economic ordered quantitymodel by considering decision 

variables in fuzzy environment. Above discussed inventory models developed in fuzzy 

environment for single warehouse facility. But as discussed earlier, to accommodate large 

volume of items two warehouse facility is needed. Following some researchers studied this 
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situation thoroughly and developed inventory models for two warehouse facility in fuzzy 

environment 

Maiti (2006) developed first multi-item fuzzy inventory model for two warehouse 

facilitywith purchase cost, investment amount and storehouse capacityare imprecise. Maiti 

(2007) constructed multi-item fuzzy two storage facilities inventory model with stock 

dependent demand. Maiti et al. (2007) addressed two warehouse multi - item inventory 

model with linearly time dependent demand under crisp, stochastic and fuzzy-stochastic 

environments. Roy (2007) proposed two storage facility inventory modelwith imprecise 

deterioration rate and stock dependent demand. Rong (2008) developed fuzzy two storage 

facility inventory model inventory policy for a decaying item with imprecise lead-time, 

partially/fully backlogged shortages and price dependent demand. Maiti (2008) formed multi-

item two storage facilities fuzzy inventory model with stock-dependent demand under 

inflation and time value of money. He considered purchase cost, budget and warehouse 

capacity are vague. Umap (2010) developed two storage facility fuzzy inventory models with 

holding cost and deterioration cost are considered as fuzzy. Singh (2011) built a two storage 

facility fuzzy inventory model under the circumstancesof acceptable delay in payments. Maiti 

(2011) described the possibility and necessity representations of fuzzy inequality restrictions 

and using this for a finite period of time multi-item two warehouse inventory model for 

manufacturing process with fuzzy restrictions has been formulated. Yadav (2012) formed 

multi-item two warehouse facility inventory modelwith stock dependent demand under 

inflation and time value of money for decaying items with purchase cost, budget and 

warehouse capacity are vague.Soni (2015) explores two-warehouse inventory model under 

conditionally acceptable delay in payment with fuzzy demand and deteriorationrate.  

In this chapter two warehouse inventory models have been developed with ramp type 

demand and constant demand. Inventory models developed in this chapter have objective of 

maximize profit. First inventory model is developed for instantaneous deteriorating items 

while second model is developed for non-instantaneous deteriorating items. Using Numerical 

examples models are illustrated and sensitivity analysis is provided. 

2.2 Some Fuzzy Inventory models for decaying items with two warehouse facility: 

2.2.1 Model I: Two warehouse fuzzy inventory model for instantaneous decaying items 

with Ramp type demand: 

Model discussed in this section is an attempt to study idea on the basis of the model 

developed and applied by Saha et al. (2012). The model is multi-item profit maximization 
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with ramp type demand under imprecise space and budget constraint with two storage 

facility. 

In this model, it is considered there are two warehouses, one is situated at market 

place named as W1 and other is little away from market place named as W2. Demand of the 

items is met using the inventory of W1 and which are filled up from W2 in continuous release 

pattern.  

2.2.1.1: Assumptions 

 Lead time is zero. 

 Replenishment rate is infinite but replenishment size is finite. 

 Shortages are not allowed. 

2.2.1.2:  Notations  

Qi: Maximum number of units stored in W1for i
th  

item 

Si: Maximum number of units stored in W2for i
th 

item. 

C1i: Holding costs per unit item, per unit time for W1for i
th 

item. 

C2i: Holding costs per unit item, per unit time for W2for i
th 

item. 

Cd1i: Decaying costs per unit item, per unit time for W1 

Cd2i: Decaying costs per unit item, per unit time for W2 

Q1i(t): On hand inventory at time t in W1for i
th 

item. 

Q2i(t): On hand inventory at time t in W2for i
th 

item. 

θ1i: Deterioration rate in W1 for i
th 

item. 

θ2i: Deterioration rate in W2 for i
th 

item. 

Ti: Total cycle length. 

Pi: Selling price per item for i
th 

item 

Ci: Purchasing price per item for i
th 

item. 

wi: Space required per item of  i
th 

item. 

W: Total Warehouse space available 

B: Total Budget Available for purchasing item 

(Wavy bar (~) represents the fuzzification of the parameters)  

 

2.2.1.3: Crisp Model  

Demand type: Ramp Type Demand 
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Demand Function: 

Do*t t μ
D(t) =

Do*μ t μ




  

Where Do and µ are constants. Here for time period (0,µ) demand is increasing 

function of time and for time period (µ,T) it remains constant. 

Let the differential equation describing state of inventory in Warehouse (W1) in time period 

(0,µi) is as follows 

dQ (t)1i + θ *Q (t) = -D *t,0 t μ - (1)11i i oi idt
 

 

And differential equation describing state of inventory in Warehouse (W1) in time 

period (µi,Ti) is as follows 

dQ (t)
1i + θ *Q (t) = -D *μ ,μ t T - (2)

11i i oi i idt i
 

 

Solving equation (1) by using condition Q1i (0) =Qi 

D -θ *tt 1 oi 1iQ (t) = -D * - + Q - *e ,0 t μ - (3)
1i oi i i2 2θ θ θ1i 1i 1i

   
    
  

     

Solving equation (2) by using condition Q1i (Ti) =0 

D *μ D *μ -θ *(T -t)oi i oi i 1 iQ (t) = - + *e ,μ t T - (4)
1i i iθ θ

1 1

 
   
 
   

At t=µi, Q1i remains same for equation (3) and (4)  

D D D *μ-θ *μ -θ *(T -μ )oi oi oi i1i i 1i i i+ Q - *e - *e = 0
i2 2 θθ θ 1i1i 1i

 
 
 
 

 

Let the differential equation describing state of inventory in Warehouse (W2) in time 

period (0,µi) is as follows 

dQ (t)
2i + θ *Q (t) = -D * t,0 t μ - (5)

22i i oi idt
 

 

And differential equation describing state of inventory in Warehouse (W2) in time 

period (µi,Ti) is as follows 

dQ (t)
2i + θ *Q (t) = -D *μ ,μ t t - (6)

22i i oi i i 1idt
   

Solving equation (5) by using condition Q2i(0) =Si 
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D -θ *tt 1 oi 2iQ (t) = -D * - + S - *e ,0 t μ - (7)
2i oi i i2 2θ θ θ2i 2i 2i

   
    
  

   
 

Solving equation (6) by using condition at t=µi, Q2i remains same for equation (5) and(6) 

θ *(μ -t)
2i iD *μ D *e D -θ *toi i oi oi 2iQ (t) = - + + S - *e ,μ t t - (8)

2i i i 1i2 2 2θ θ θ
2i 2i 2i

 
   
 
   

At t=t1i , Q2i(t)=0 and using series form of exponential term and ignoring second and 

higher terms  

1
t =
1i θ

2i  

Let total holding costs (HC) for W1 and W2 given by following equations 

T μ
i i

HC = C * Q (t)+ Q (t)
W 1i 1i 1iμ 01 i

 
  
 
   

θ *μ
1i i1- e2D *μ D *μ D D *μ *T

oi i oi i oi oi i i+ + Q - * -
i2 22*θ θ θθ θ1i 1i 1i1i 1i

HC = C *
W 1i

1

D *μ θ *(T -μ )oi i 1i i i+ * e -1
2θ

1i

   
    
    
   
   

   
 

      
   
  

 

t μ
1i i

HC = C * Q (t)+ Q (t)
W 2i 2i 2iμ 02 i

 
  
 
   

θ *μ
2i i1- e2 2D *μ D *μ D D *μ * t D *μ

oi i oi i oi oi i 1i oi i- + + S - * - +
i2 22*θ θ θ θθ θ2i 2i 2i 2i2i 2i

HC = C *
W 2i

2
-θ *μ -θ *t

2i i 2i 1iD Dθ *(μ -t ) e - eoi oi2i i 1i+ * 1- e + S - *
i3 2 θθ θ 2i2i 2i

   
   
   

  
  
 
 

    
      
         

     


 
 
 
 
 
 
 
 
  
 

Hence 

the inventory problem is described as follows
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(P - C )*(Q +S )
i i i i

t μ
1i in n

MaxPF(Q ) = PF(Q ) = -(C + C *θ )* Q (t)+ Q (t)
i i 2i d 2i 2i 2iμi=1 i=1 02i i

T μ
i i

-(C + C *θ )* Q (t)+ Q (t)
1i d 1i 1i 1iμ 01i i

such that

D D -θoi oi 1+ Q - *e
i2 2θ θ

1i 1i

 
 
 
 
 

 
 

     
 

  
 

  
   
  
  

 
 
 
 

D *μ*μ -θ *(T -μ )oi ii i 1i i i- *e = 0
θ
1i

1
t =
1i θ

2i

P *(Q +S ) B
i i i

w *(Q +S ) W
i i i




 

 

2.2.1.4  Fuzzy Model:  

 In above crisp model holding costs in both warehouses, Budget and warehouse space 

are considered to be vague and imprecise and there vagueness is represented by fuzzy 

numbers. Then the above crisp model converted into fuzzy model as follows 







n
maxPF = PF(Q )

ii=1

Subject to

P *(Q +S ) B
i i i

w *(Q +S ) W
i i i

D D D *μ-θ *μ -θ *(T -μ )oi oi oi i1i i 1i i i+ Q - *e - *e = 0
i2 2 θθ θ 1i1i 1i

1
t =
1i θ

2i

Q 0, i = 1,2,...., n
i







 
 
 
 



 

Let μ ,μ ,μ ,μ ,μc cPF W B 1i 2i
 be the linear membership functions represents PF, W, 

B, C1i, C2i respectively and are given by 
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0 PF Co - P
PF

Co - PF
μ = 1- Co - P PF Co

PF PFP
PF

1 PF Co

 



 





 

 

n
0 w *(Q +S ) W + P

Wi i ii=1
n

w *(Q +S ) - W
ni i ii=1μ = 1- W w *(Q +S ) W + P

W Wi i iP i=1W
n

1 w *(Q +S ) W
i i ii=1

 

 


 


 



 

0 p *(Q +S ) B + P
Bi i i

p *(Q +S ) - B
i i iμ = 1- B p *(Q +S ) B + P

B Bi i iP
B

1 p *(Q +S ) B
i i i

 



 


 

 

 

0 C C + P
C1i 01i

1i

C - C
1i 01iμ = 1- C C C + P

C C01i 1i 01iP1i 1iC
1i

1 C C
1i 01i

 




 


 


 0 C C + P
C2i 02i

2i

C - C
2i 02iμ = 1- C C C + P

C C02i 2i 02iP2i 2iC
02i

1 C C
2i 02i

 




 


 


 

Using fuzzy non-linear programming technique the solution of fuzzy inventory model 

is transformed to 
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Max = α

Subject to

Co -PF
1- α

P
PF

n
w *(Q +S ) - W

i i i
i=11- α

PW

P *(Q +S ) -B
i i i1- α

PB

D D D *μ-θ *μ -θ *(T -μ )oi oi oi i1i i 1i i i+ Q - *e - *e = 0
i2 2 θθ θ 1i1i 1i

1
t =
1i θ

2i
Q 0, i =1,2,....,n

i

 
 
 
 
 












 

Where

t μ
1i i

(P -C )*(Q +S ) -(C +(1-α)P +C *θ )* Q (t)+ Q (t) -
Ci i i i 2i d 2i 2i 2iμ2i 2i 0n i

PF =
T μi=1 i i

(C +(1-α)P + C *θ )* Q (t)+ Q (t)
C1i d 1i 1i 1iμ1i 1i 0i

  
  
  

  
  

  
  
  
     

 



 

 

 

2.2.1.5 Numerical Example:

 

a) Crisp Model: 

Input: 

11=12=0.4, 21=22=0.6, , P1= P2=10 Rs., C1=7 Rs., C2=6 Rs., S1=35, S2=30, T1=2, T2=2, 

Do1=100,Do2=110, B=2600Rs. ,W=250 Sq. Ft ,w1=0.80 Sq. Ft,w2=0.60 Sq. Ft,C11= C12 = 2.4 

Rs., C21= C21= 2.2 Rs., Cd11= Cd12 =1.1Rs.,Cd21= Cd22 =1Rs. 

Output: 

PF=1437.14 Rs., Q1= 79.53 , Q2=233.95,1=0.27yr. ,2=0.81yr., t11=1.66 yr., t12=1.66 yr. 
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b) Fuzzy Model  

Input: 

11=12=0.4, 21=22=0.6, P1= P2=10 Rs., C1=7 Rs., C2=6 Rs., S1=35, S2=30,  

T1=2 yr., T2=2 yr.,  Do1=100,Do2=110,B=2600Rs. ,W=250 Sq. Ft ,w1=0.80 Sq. Ft,w2=0.60 

Sq. Ft ,Co=1450,PPF=200, C11= 2.2,C12 = 2.4 Rs., C21= C21= 2.4 Rs., Cd11= Cd12 =1.1Rs.,Cd21= 

Cd22 =1Rs.,PW=20,PB=300 Rs,PC11=P C12=0.2 Rs. 

Output: 

α=0.95, PF=1440.69 Rs., Q1=80.37, Q2=234.36,1=0.27yr. ,2=0.81yr. , t11=1.66 yr., t12=1.66 

yr. 

2.2.1.6 Sensitivity Analysis: 

Table 2.1: Effect of change of values in θ1 

θ1 θ2 PF Q1 Q2 µ1 µ2 

0.2 0.6 2559.898 100.9087 205.4551 0.45 0.95 

0.3 0.6 1812.625 85.78668 225.6178 0.33 0.91 

0.4 0.6 1437.14 79.53 233.95 0.27 0.81 

 

Table 2.2: Effect of change of values in Doi 

D01 D02 PF Q1 Q2 µ1 µ2 

100 110 1437 79 233 0.2 0.8 

120 110 1430 81 232 0.2 0.8 

140 110 1455 87 224 0.2 0.8 

150 140 1464 90 220 0.2 0.8 

 

Table 2.3: Effect of change of values in Co  

C0 α PF Q1 Q2 µ1 µ2 

1450 0.9539965 1440.690 80.37390 234.3683 0.2751506 0.8173476 

1470 0.8735216 1444.409 81.29299 234.7713 0.2784672 0.8190959 

1490 0.7961596 1448.768 82.36566 235.2751 0.2823437 0.8212841 

1500 0.7573719 1450.931 82.90313 235.5282 0.2842883 0.8223844 
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Table 2.4: Effect of change of values in PPF 

C0 PPF α PF Q1 Q2 µ1 µ2 

1450 230 0.9584634 1440.347 80.29268 234.3276 0.2748577 0.8171716 

1450 250 0.9609881 1440.154 80.24677 234.3047 0.2746922 0.8170721 

1450 270 0.9632232 1439.982 80.20613 234.2844 0.2745456 0.8169841 

 

Table 2.5: Effect of change of values in W  

W PW α PF Q1 Q2 µ1 µ2 

220 20 0.4645146 1341.297 61.26196 221.7045 0.2071512 0.7634046 

230 20 0.6359257 1376.102 67.43640 225.8533 0.2289227 0.7808725 

240 20 0.7980883 1409.057 73.75453 230.0417 0.2513929 0.7987065 

250 20 0.9539965 1440.690 80.37390 234.3683 0.2751506 0.8173476 

 

Table 2.6: Effect of change of values in Pw  

W PW α PF Q1 Q2 µ1 µ2 

250 10 0.9466687 1439.205 80.04873 234.1572 0.2739782 0.8164329 

250 15 0.9506055 1440.003 80.22327 234.2705 0.2746074 0.8169239 

250 20 0.9539965 1440.690 80.37390 234.3683 0.2751506 0.8173476 

250 25 0.9569481 1441.287 80.50526 234.4535 0.2756243 0.8177171 

 

Table 2.7: Effect of change of values in C1i 

C1i α PF Q1 Q2 µ1 µ2 

2.2 0.8900503 1444.733 78.24399 239.3397 0.2674815 0.8390553 

2.3 0.9213129 1442.993 79.35173 236.8206 0.2714671 0.8280164 

2.4 0.9539965 1440.690 80.37390 234.3683 0.2751506 0.8173476 

2.5 0.9879975 1437.878 81.31606 231.9787 0.2785506 0.8070238 

 

Table 2.8: Effect of change of values in PC1i 

PC1i α PF Q1 Q2 µ1 µ2 

0.2 0.9539965 1440.690 80.37390 234.3683 0.2751506 0.8173476 

0.3 0.9554829 1440.575 80.41750 234.2606 0.2753078 0.8168809 

0.4 0.9568784 1440.466 80.45823 234.1598 0.2754547 0.8164440 

0.5 0.9581910 1440.364 80.49635 234.0652 0.2755922 0.8160343 
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2.2.1.7 General observations from sensitivity analysis: 

Table 2.1 shows the effect of deterioration rate, it shows as deterioration rate 

increases profit decreases significantly. Table 2.2 shows, as parameter of demand Doi 

increases, profit increases significantly. In table 2.3 it is observed that as a goal of profit C0 

increases, profit increases significantly but the level of satisfaction α decreases significantly. 

From table 2.4 it is seen that as the aspiration level of PF increases, profit decreases and level 

of satisfaction α increases. From table 2.5, it is pointed that as warehouse space increases, 

profit as well as the level of satisfaction α increases significantly. From table 2.6, it is 

observed that as aspiration level of W increases, profit as well as level of significance α 

increases significantly. Tables 2.7 and 2.8 showed that as holding cost and its aspiration level 

increases, profit decreases and level of satisfaction α increases significantly. 

2.2.2 Model II: Two warehouse fuzzy inventory model for non-instantaneous decaying 

items with constant demand:

 
This model is developed specially for non-instantaneous decaying items. Decaying or 

decaying is the most important aspect of the inventory replenishment policy models. In items 

such as fruits, vegetables, pharmaceuticals, volatile liquids and others deterioration is 

observed. Inventory models developed for such items considered that the deterioration of an 

item is starts from its arrival in inventory, but in practice it is seen that most of the 

commodities have a short maintenance period of fresh quality, during which there is almost 

no spoilage. This aspect was first introduced in the inventory model by Wu et al. (2006), 

Ouyang et al. (2006) and referred to as "non - instant deterioration." 

Here also for the same two warehousing situation, same assumptions and notations as 

in model 3.2.1 are considered to develop inventory model in fuzzy environment. Fuzzy 

parameters are represented by triangular fuzzy number and defuzzified by centroid method.  

2.2.2.1: Crisp Model  

Demand type: Constant Demand 

Demand Function: 

Demand = αi 

Here it is considered that for time interval (0,µi) product remains in fresh condition 

without deterioration and onward in time interval (µi,Ti) items get deteriorating. 

Let the differential equation describing state of inventory in Warehouse (W1) in time 

period (0,µi) is as follows 
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dQ (t)
1i = -α ,0 t μ - (1)

i idt
 

 

And the differential equation describing state of inventory in Warehouse (W1) in time period 

(µi,Ti) is as follows
 

dQ (t)
1i + θ *Q (t) = -α ,μ t T - (2)

11i i i i idt
 

 

 

Solving equation (1) by using condition Q1i (0) =Qi 

Q (t) = -α * t + Q ,0 t μ - (3)
1i i i i

 
 

Solving equation (2) by using condition Q1i (Ti) =0 

θ *(T -t)
1i iQ (t) = -α + α *e ,μ t T - (4)

1i i i i i
 

 

At t=µi; Q1i remains same for equation (3) and (4)  

θ *(T -μ )
1 i i-α *μ + Q + α - α *e = 0

i i i i i
 

Let the differential equation describing state of inventory in Warehouse (W2) in time period 

(0, µi) is as follows 

dQ (t)
2i = -α ,0 t μ - (5)

i idt
 

 

And the differential equation describing state of inventory in Warehouse (W2) in time period 

(µi,Ti) is as follows
 

dQ (t)
2i + θ *Q (t) = -α ,μ t t - (6)

22i i i i 1idt
 

 

Solving equation (5) by using condition Q2i(0) =Si 

Q (t) = -α * t +S ,0 t μ - (7)
2i i i i

   

Solving equation (6) by using condition at t=µi; Q2i remains same for equation (5) and (6)  

α α θ *(μ -t)i i 2i iQ (t) = - + +S - α *μ *e ,μ t t - (8)
2i i i i i 1iθ θ

2i 2i

 
 
 
 
   

Using t=t1i, Q2i=0 in above equation gives 

θ *S1 2i it = μ - *log 1+ -θ *μ
1i i 2i iθ α

2i i

   
   
   
     
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Using series form of log function and ignoring higher of θ2i  gives 

S
it = 2*μ -

1i i α
i  

Let total holding costs (HC) for W1 and W2 given by following equations 

T μ
i i

HC = C * Q (t)+ Q (t)
W 1i 1i 1iμ 01 i

 
  
 
   

2-α *μ + Q *μ - α *T + α *μ
i i i i i i i i

HC = C * α θ *(T -μ )W 1i i 1 i i1 + * e -1
θ
1

 
 
  
     

 

t μ
1i i

HC = C * Q (t)+ Q (t)
W 2i 2i 2iμ 02 i

 
  
 
 

 

2α *μ α *μ α * t
i i i i i 1i- + S *μ + - +

i i2 θ θ
2i 2i

HC = C *
W 2i

2 α θ *(μ -t )1 i 2i i 1i* + S - α *μ * 1- e
i i iθ θ

2i 2i

 
 
 
 
    
    

     

 

Hence crisp inventory model is described as follows 
 

2α *μ α *μ α * t
i i i i i 1i- +S *μ + -

i i2 θ θ
2i 2i

(P - C )*(Q +S ) - (C + C *θ )*
i i i i 2i d 2i

α2 θ *(μ -t )1 i 2i i 1i+ * +S - α *μ * 1- e
i i iθ θMaxPF = 2i 2i

2-α *μ + Q *μ - α *T + α *μ
i i i i i i i i

-(C + C *θ )* α θ *(T -μ )1i d 1i i 1i i i+ * e -11
θ
1i

 
 
 
 
    
    

     

 



n

i=1

such that

S
it = 2*μ -

1i i α
i

θ *(T -μ )
1 i i-α *μ + Q + α - α *e = 0

i i i i i

 
 
 
 
 
 
 
 
  
  
  
      
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2.2.2.2 Fuzzy Model:  

In the above developed crisp model, it is assumed that all the parameters are assumed 

to be fixed or could be predicted with certainty, but in practical situations, they will fluctuate 

little. Therefore parameters of model instead of assumed to be constant, are taken as fuzzy. 

 Here deterioration rate, holding costs in both warehouses, purchasing cost, µ are 

considered as fuzzy and are represented by triangular fuzzy numbers. Then the above crisp 

model converted into fuzzy model as follows 





 






 

 


 

 

  



 

(P - C )*(Q +S )
i i i i

2
α *μ α *μ α * t

i i i i i 1i- +S *μ + -
i2 θ θ

2i 2iMaxPF = -(C + C *θ )*
2i d 2i

2i α θ *(μ -t )1 ii 2i 1i+ * +S - α *μ * 1- e
i i iθ θ

2i 2i

2
-α *μ + Q *μ - α *T + α *μ

i i i i i i i i
-(C + C *θ )* α θ *(T -μ )1i d 1i i 1i i i1i + * e -

θ
1i

 
 
 
 
               

n

i=1

1

 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
  
  
  

   
        

 

 




 

Such that

S
it = 2*μ -

1i i α
i

θ *(T -μ )
1i ii-α *μ + Q + α - α *e = 0

i i i i i

 

Defuzzification by Centroid method: 

 In real life, it is very difficult to consider the deterioration rates to be constant in W1 

and W2 over a total time period Ti. Rather than considering deterioration rate as constant, it is 

easy to locate it in interval.  

Let deterioration rate in W1 is located in an interval (θ - Δ , θ + Δ )
1 1 1 2

 where  

and0 < Δ < θ Δ * Δ > 0
1 1 1 2

 

And deterioration rate in W2 is located in an interval (θ - Δ , θ + Δ )
2 3 2 4

 where 

and0 < Δ < θ Δ * Δ > 0
3 2 3 4

here Δ , Δ Δ , Δ
1 2, 3 4 will be decided by decision maker and 

θ ,θ
1 2

 are known numbers. 
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Therefore corresponding to the intervals (θ - Δ , θ + Δ )
1 1 1 2

 and (θ - Δ , θ + Δ )
2 3 2 4

  

we set the following fuzzy numbers. 

θ = (θ - Δ , θ , θ + Δ ), 0 < Δ < θ ,Δ * Δ > 01 1 1 1 1 2 1 1 1 2
  

θ = (θ - Δ , θ , θ + Δ ), 0 < Δ < θ ,Δ * Δ > 02 2 3 2 2 4 3 2 3 4
  

Then the Centroid of θ
1
 is,   

1
C(θ ) = θ + (Δ - Δ )1 1 2 1

3

  

where C(θ )1
 is the deterioration rate in fuzzy sense based on centroid. If∆1= ∆2 then the 

deterioration rate in the fuzzy sense is exactly the same as the crisp deterioration rate. 

Similarly holding costs of W1 and W2, purchasing cost, µi may fluctuate little in a period T. 

Suppose they lies in the intervals ( 1ic -5 i  , 1ic +6 i ) , ( 2ic -7 i  , 1ic +8 i ) , (ci-9 i  , ci+

10 i ), (µ -11i  , µ +12 i ) respectively. Similarly, corresponding to the above intervals we 

set the following fuzzy numbers.  

c
1i
 = (c1i-5i, c1i, c1i+6i),  0<5i<c1i   , 0 <5i6i 

c
2i

 = (c2i-7i, c2i, c2+8i),  0<7i<c2i   , 0 <7i8i 

c
i

 = (ci-9i, ci, ci+10i), 0<9i<ci   , 0 <9i10i 

μi
 = (µi-11, µi, µi-12), 0 <11<µi   , 0 <1112 

Then by centroid of c , c , c
1i 2i i
   , and µ are 

1
C(c ) = c + (Δ - Δ )1i 1i 6i 5i

3
  

1
C(c ) = c + (Δ - Δ )22i i 8i 7i

3


 

1
C(c ) = c + (Δ - Δ )i i 10i 9i

3
  

1
C(μ ) = μ + (Δ - Δ )i i 12i 11i

3

  

Then fuzzy profit is obtained by just replacing above centroids in fuzzy model. 
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2.2.2.3 Numerical Example: 

a) Crisp Model 

Input: 

P1=P2=10 Rs., C1=7 Rs., C2=10 Rs., c11=c12=2.2 Rs.,c21=c22=2.4 Rs., θ 11= θ 12=0.4, θ21= 

θ22=0.6, µ1=0.7, µ2=0.75,S1=35, S2=30, T1=T2=2 yr., α1=100, α2=110 

Output: 

Q1=138.20, Q2=153.85, PF=1609.56 Rs., t11=1.05 yr., t12=1.22 yr. 

b) Fuzzy Model 

Input: 

P1=P2=10 Rs., C1=7 Rs., C2=10 Rs., c11=c12=2.2 Rs.,c21=c22=2.4 Rs., θ 11= θ 12=0.4, θ21= 

θ22=0.6,µ1=0.7, µ2=0.75,S1=35, S2=30, T1=T2=2 yr., α1=100, α2=110, Δ1=0.05 

,Δ2=0.0,Δ3=0.05 ,Δ4=0.0,Δ51=Δ52=0.10, Δ61=Δ62=0.65,Δ71=Δ72=0.10,Δ81=Δ82=0.65, 

Δ91=Δ92=0.5,Δ101=2.5, Δ102=2.5,Δ111= Δ112=0.002,Δ121=Δ122=0.07 

Output: 

Q1=137.54, Q2=153.09, PF=1715.06 Rs., t11=1.004 yr., t12=1.18 yrs 

2.2.2.4: Sensitivity Analysis 

Δ7 Δ8 Δ5 Δ6 Δ3 Δ4 Δ1 Δ2 Δ9 Δ10 Δ11 Δ12 PF 

0.75 0.95 0.85 1 0.001 0.003 0.005 0.007 1 1.5 0.008 0.01 1563.686 

0.25 0.35 0.33 0.43 0.07 0.09 0.08 0.1 1.5 2 0.2 0.24 1546.906 

0.75 0.95 0.85 1 0.001 0.003 0.005 0.007 2 2.5 0.008 0.01 1563.686 

0.25 0.35 0.33 0.43 0.05 0.06 0.07 0.08 2 2.5 0.065 0.075 1559.681 

0.2 0.3 0.25 0.35 0.1 0.15 0.19 0.23 2 2.5 0.22 0.27 1538.913 

 

2.2.2.5 General observations from sensitivity analysis: 

It is observed from above table that as Δ5, Δ6, Δ7, Δ8 increases PF increases and as Δ1, 

Δ2, Δ3, Δ4, Δ9, Δ10, Δ11, Δ12 increases PF decreases.  

2.3 Conclusion: 

From numerical example it can be seen that as profit in case of non-instantaneous 

deterioration is more than in case of profit in case of instantaneous deterioration. 
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Chapter 3                     Multi-Item Fuzzy-Stochastic Inventory Model 

 

3.1 Introduction: 

 An inventory control policy deals with the nature of relative parameters such as 

deterioration rate, demand, holding cost, shortage cost etc. In classical inventory model it 

was considered that these parameters are of deterministic and fixed nature but in real life 

situations these parameters are not deterministic, they are either random or imprecise nature 

or combination of both. Chapter 2 and 3 deal with inventory models with imprecise nature of 

parameters. To go more closure to real life situation fuzzy- stochastic environment is more 

appropriate.   

 If history related to parameter is known then it is possible to model distribution of that 

parameter through probability distribution. In this case parameter can be considered as 

random, for such cases by using probability theory inventory models have been developed. 

These developed inventory models are known as stochastic inventory models. Karlin (1960) 

has developed a dynamic inventory model in which demand distributions can change from 

time to time. He also developed the critical number dependence as a function of stochastic 

ordering among distributions under different conditions. Kaplan (1970), with stochastic lead 

time, formed a dynamic inventory model. He developed a probability model for the arrival of 

outstanding orders in which orders are presumed not to cross in time and the number, size of 

outstanding orders are independent of the arrival probability. Jing-Sheng Ehrhardt (1984) 

studied inventory model under the hypothesis that replenishment orders do not cross in time 

with a stochastic lead time and for a given order, the lead time distribution is independent of 

the number and size of outstanding orders. Song (1994) analyzed basic continuous time, 

single item inventory model where demands form a poisson compound process and stochastic 

lead time.  Federgruen and Zipkin(1986) considers a single - item, periodic inventory model 

with uncertain demands by assuming stationary data and a discrete distribution of demand. 

Haringa (1999) identifies the best possible reduction in the lead time duration of procurement 

for stochastic inventory models in conjunction with optimal ordering decisions. The models 

are established with partial and complete information on the distribution of the lead time 

demand. Ben-Daya and Haringa (2004) consider stochastic demand with integrated 

production inventory issue with single buyer single seller and suppose that the lead time 

varies linearly with lot size. Diwakar et al. (2008) constructed a discrete time, randomly 

demanded retailer time model that proves that the structure optimal policy structure is not 
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affected by credit terms. Maiti (2009) developed an inventory model with probabilistic lead-

time, price - dependent demand and shortages. Glock (2012) concentrated on an integrated 

inventory model for a single client and single purchaser with variable lead time dependent on 

a lot size  and stochastic demand. Darwish et al. (2014) constructed inventory model to 

achieve the best possible lot size and reorder point by taking into account the safety stock 

corresponds to a safety factor multiplied by the standard deviation of the lead time demand 

and random demand. For various special cases where demand is presumed to be either 

exponential or uniform random variables, Zhu et al. (2015) studied a periodic review 

stochastic inventory model. Pal et al. (2016) built a production inventory system for decaying 

items with the manufacturing rate being a random variable and the unit cost of production 

depends on the size of the lot of production as well as the production rate. Pal et al. (2017) 

formulated stochastic inventory model to achieve minimum average expected cost and best 

possible production lot size. Mary Dillon (2017) proposed a two - stage stochastic 

programming model to define optimal periodic review policies for inventory management of 

red blood cells with a view to minimize operating costs, as well as blood shortage and 

wastage due to outdating, taking into account perishability and demand uncertainty. Durgam 

(2017) investigates an alternative way to react to demand, uncertainty in an integrated 

inventory model, namely the variation of the production rate. Konur (2017) studied an 

integrated inventory control and scheduling issue with economic and environmental 

considerations in a stochastic demand. Janssen (2018) developed stochastic multi-item 

inventory model includes total stock capacity constraints, a positive lead time, a periodic 

inventory control, a target customer service level for perishable items with a fixed lifetime 

under a non-stationary random demand. An integrated production-inventory model was 

formed by Das (2017) for a defective product in the business of a purchaser's and a producer's 

company. He regarded that beta distribution followed by the defective proportion of the 

product and further considered that the manufacturer offered the purchaser a defective ratio 

dependent stochastic credit period to compensate for the losses due to the defective product. 

Here the lead time follows a normal distribution. 

 In above discussed model it is assumed that the parameters are random and there 

probability distributions are known. If parameters are random but if there historical data is 

not known then randomness of parameter cannot modeled using probability distributions. 

Such problem is tackled by using fuzzy set theory. The inventory models with fuzzy 

parameters are known as fuzzy inventory models. Many researchers have been worked in this 
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area. Many researchers studied this research area and developed fuzzy inventory models in 

various situations. Sommer (1981) utilized Bellman and Zadeh (1970)'s fuzzy dynamic 

programming to an inventory problem. With fuzzy constraints, Kacprzyk and Staniewski 

(1982) looked at the best possible company determination from a global view of top 

management. Park (1987) examines EOQ model from the fuzzy set theoretic perspective. The 

cost of ordering and the cost of holding are represented by trapezoidal fuzzy numbers. In the 

planning of material requirements, Lee et al. (1990) introduce the use of fuzzy set theory for 

lot-sizing. Lee and Yao(1996) investigates a group of computing schemas for EOQ as fuzzy 

values, and the corresponding best possible stock quantity of the inventory with backorder. 

Petrovika et al. (1996) and VujoBevic (1996) given EOQ formula in the presence of 

imprecise parameters such as inventory costs, such as overage and shortage costs. In a fuzzy 

environment, Roy and Maiti (1995) solved the classic economic ordered quantity model by 

considering inventory costs as well as a storage area to be fuzzy.The model is solved through 

FNLP technique for inventory parameters using different kinds of membership functions. 

Fuzzy inventory model was formulated by Roy and Maiti (1997) with restricted storage 

capability and objective functionality as well as the storage area is depicted by a linear 

membership function. They solved model by FNLP and geometric programming techniques. 

Roy and Maiti (1998) developed stock dependent demand fuzzy inventory models for 

decaying items. Total average cost, storage space, inventory costs, purchase and sale prices 

are intended to be vague. Fuzzy linear membership function used to depict the vagueness of 

the total average cost and storage area while the triangular fuzzy number represents inventory 

costs and selling prices. Models were solved by the technique of FNLP. With multiple price 

breaks Lam and Wong (1996) solved the fuzzy model of Dolan R. J. (1978). They reported 

that the fuzzy model was more appealing than Dolan (1978)'s crisp model. Yao and Lee 

(1996, 1998) developed inventory models that considered demand, ordered quantity and 

quantity of production as vague. Umap (2013) has recently built a fuzzy inventory model for 

decaying items with holding cost and set up cost are viewed vague. Vagueness is depicted by 

a hyperbolic membership function. Umap and Bajaj (2014) constructed a fuzzy inventory 

model for decaying items with demand relying on selling price and advertising frequency in 

which trapezoidal fuzzy number is used to present parameters. Wasim et al. (2016) developed 

fuzzy inventory system for the decaying item with time-dependent demand. Sahoo et al. 

(2016) constructed a fuzzy inventory model in which rate of decay, demand, the cost of 

holding, the cost of the unit and salvage value is regarded to be trapezoidal fuzzy numbers. In 
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the cloudy fuzzy environment De et al. (2017) deals with the classic backorder economic 

order quantity inventory model. Shaikh et al. (2018) studied a fuzzy inventory model with 

acceptable delay in payments for a decaying item. Jain et al. (2018) obtained fuzzy inventory 

model with imperfect manufacturing process with all system costs in fuzzy environment. In 

previous chapter fuzzy inventory models have been discussed for two warehouse system. 

The inventory models developed in stochastic as well as in fuzzy environment are 

discussed above. But to go closer to real life situation combination of stochastic and fuzzy 

environment known as Fuzzy-stochastic environment is considered by some researchers. In 

this environment some parameters are considered imprecise and some are random such 

inventory model is known as Fuzzy-stochastic inventory model. The presence of a blended 

environment of fuzzy and stochastic in an inventory model is a sensitive phenomenon in real 

life and the interesting area is the mathematical realization it. Very few fuzzy - stochastic 

inventory models have been developed. Das et al. (2004) developed a multi-item fuzzy-

stochastic stock model in which demand and budget resources are deemed to be random and 

available storage space as well as total expenditure is imprecise. Randomness and 

impreciseness are expressed by using normal distribution and linear membership function 

respectively. The Das et al. (2004) model was extended by Panda and Kar (2005) by 

considering price as random variable. Das and Maiti (2011) developed an inventory model 

for manufacturing process by taking into account one restriction in a fuzzy environment and 

another in both a fuzzy and stochastic environment. Janna et al. (2014) developed an 

inventory model by presuming the time horizon in a stochastic environment and rate of 

deterioration as well as budget in a fuzzy environment. Recently Naserabadi (2014) depicted 

lead time and inflation rate through the triangular membership function and weibull 

distribution deterioration rate. In present model extension of chance constrained 

programming to fuzzy environment has been investigated through an inventory model.  

In this chapter an inventory model is developed in stochastic, fuzzy and fuzzy-

stochastic environments by considering stock dependent demand. In stochastic inventory 

model purchasing cost and investment goal are expressed as random variable with normal 

distribution. The stochastic inventory model has been formulated as a stochastic nonlinear 

programming problem and then reduced to equivalent crisp model using chance constraint 

programming (CCP) technique. Using FNLP and IFO techniques crisp problem is solved. In 

fuzzy model holding cost and budget are considered as imprecise. Impreciseness is expressed 

through linear membership function. In Fuzzy-stochastic model, purchasing cost and 
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investment goal are expressed as random variable with normal distribution and profit as well 

as available storage space is assumed to be imprecise and vague. Impreciseness is expressed 

through linear membership function. The fuzzy-stochastic inventory problem is first 

converted to an equivalent fuzzy problem and then to equivalent crisp problem using linear 

membership functions. FNLP and IFO techniques are used to solve crisp problem. Using 

Numerical examples models are illustrated and sensitivity analysis is provided. 

3.2 Fuzzy-Stochastic Inventory model for decaying items with stock dependent demand: 

 Here, inventory model for decaying items with stock dependent demand is developed 

in stochastic, fuzzy and fuzzy-stochastic environment. 

3.2.1 Assumptions: 

 Replenishment is instantaneous, 

 Lead time is zero 

 Selling price is known and constant 

 Shortages are not allowed. 

3.2.2 Notations: 

Ci: Purchasing cost per unit of i
th 

item 

Pi: Selling price per unit of i
th 

item 

Qi: Initial stock level of i
th 

item 

i: Decaying rate of i
th 

item 

Di(t) : Demand rate of per unit of i
th 

item = ai+bi*Qi(t) 

Qi(t) : Inventory level at time t of i
th 

item 

C1i: Holding cost per unit of i
th 

item 

Cdi: Decaying cost per unit of i
th 

item 

T : Time Period for each cycle of i
th 

item 

wi :space required per item of  i
th 

item. 

W: Available Storage space 

B: Total Budget Available for purchasing item 

( „~‟ represents the fuzzification of the parameters and „^‟represents randomization of 

parameter) 
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3.2.3 Figure: 

 

The initial stock level is Q at time t = 0, then inventory level reduces prominently due 

to demand and partly due to deterioration. At time t = ti, the stock reaches to zero level. 

3.2.4 Crisp Model:  

Let the differential equation describing the state of inventory in the interval (0, ti)   is 

given by 

dQ (t)
i + θ * t *Q (t) = -(a + b *Q (t)),0 t t - (1)

i i i i i idt
   

Solving above differential equation using boundary condition Qi(0)=Qi 

2θ *t
i- +b *t

3 2 i2θ * t b * t
i iQ (t) = -a t + + + Qi *e ,0 t t - (2)

i i i6 2

 
 
 
 
  
 

  
    
   

    

The above equation can be simplified using series form of exponential term and 

ignoring second and higher terms as follows 

3 2 22*θ *t b *t θ *t
i i iQ (t) = -a t - - + Qi 1- - b *t ,0 t t - (2)

i i i i6 2 2

    
      
     

    

 

Using boundary condition Qi(ti)=0  

2 3 2b *t θ *t θ *t
i i i i i i-a t - - + Qi 1- - b *t = 0- (3)

i i i i2 3 2

    
    
     

      

Holding cost over the time period (0 , ti) is given by , 

t 2 3 4 3 2t b * t θ * t θ * t b * ti i i i i i i i i iC * Q (t)dt = C * -a - - + Qi t - -
1i i 1i i i2 6 12 6 20

    
          

    

 

Total deterioration cost is given by  
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t 3 4 5 2 4 3t b *t θ *t t θ * t b *ti i i i i i i i i i iC * t *θ *Q (t)dt = C *θ * -a - - + Qi - -
di i i i di i i 3 8 15 2 8 30

    
          

    

Then the total profit becomes

 t t
i in

PF = (P - C )*Q - C Q (t)dt + C *θ t *Q (t)dt
i i i 1i i di i i ii=1 0 0

  

2 3 4 3 2t b * t θ * t θ * t b * t
i i i i i i i i i(P - C )*Q - C * -a - - + Qi t - -

i i i 1i i i2 6 12 6 2
n

PF =
3 4 5 2 4 3i=1 t b * t θ * t t θ * t b * t

i i i i i i i i i i-C *θ * -a - - + Qi - -
di i i 3 8 15 2 8 3

     
     
      
     

  
     
     
      

     

 

Hence the problem is to maximize profit subject to limitations on investment and storage 

area. That is 

max PF

Subject to

n
w *Q W

i ii=1

n
C *Q B

i ii=1

2 3
b *t θ *t

i i i i-a t - -
i i 2 3

=0
2

θ *t
i i+Qi 1- -b *t

i i2

Q 0, i=1,2,....,n
i

£å

£å

³

æ öé ù÷ç ÷ç ê ú÷ç ÷ê úç ÷ç ÷ê úç ÷ë ûç ÷÷ç ÷ç é ù ÷ç ÷ç ê ú ÷ç ÷ê úç ÷ç ÷ê ú ÷çè øë û
 

 

3.2.5 Stochastic Model:  

 In above crisp model parameters are considered to be known and fix. Here it is 

considered that Ci‟s and investment are random in nature and there randomness is expressed 

using normal distribution. Then model in 4.2.3 becomes 
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¶max PF

Subject to

n
w * Q W

i ii=1

n
C * Q B

i ii=1

2 3
b * t θ * t

i i i i-a t - -
i i 2 3

= 0
2

θ * t
i i+Qi 1- - b * t

i i2

Q 0, i = 1, 2, ...., n
i

£å

£å

³

æ öé ù÷ç ÷ê úç ÷ç ÷ê úç ÷ç ÷ê úç ë û÷ç ÷÷ç ÷é ùç ÷ç ê ú ÷ç ÷ç ê ú ÷ç ÷÷ç ê úè øë û

$

 

 The stochastic inventory model has been formulated as a stochastic nonlinear 

programming problem and then reduced to equivalent crisp model using chance constraint 

programming (CCP) technique. Then by using the technique of FNLP and IFO crisp problem 

is solved. 

3.2.5.1 Stochastic Non-Linear Programming (SNLP) methodology:  

General optimization problem is to find X which minimizes 

Min k (X)
0

Subject to

m (X) d (j =1,2,....m)
j j

and X 0





 

When both objective and constraints are of stochastic nature then above problem 

become stochastic non-linear programming problem with objective and constraints as: 

Min k (X)
0

Subject to

P(k 0) p (j =1,2,....m)
j j

and X 0

where k = m (X)-d
j j j

There X = (Y ,Y ,.....,Y ) is the vector of  N random variables 
N1 2

and it includes the decision variables X ,X ,.....,X
N1 2

 

  

The problem stated above can be converted into an equivalent deterministic (crisp) 

non-linear programming problem using chance constraint programming technique as follows: 

The objective function k0(X) can be expanded about the mean values 
i

Y  of random 

variables Yi as 
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 
δk

N 0k (X) = k (Y) + Y -Y + higher order derivative terms
i=10 0 i iδY

i X=Y

 
 
  
 

  

If the standard deviation σYi of random variate Yi are small, k0(X) can be 

approximated by the first two terms as 

 
δk

N 0k (X) = k (Y) + Y -Y ρ(X)
i=10 0 i iδY

i X=Y

 
 
  
 

  

If all Yi(i=1,2,…., N ) follow normal distribution, then k0(X ), which is linear 

function of X , also follows normal distribution. The mean and variance of ρ(X ) are given by 

2
δk

N2 20ρ = ρ(Y) = k (Y) and σ = σρ i=1 Y0 δY
ii X=Y

 
 
  
 

  

Here all Yi‟s are independent. 

As some variables and parameters of the constraints are random in nature, the 

constraints will be probabilistic and one would like to have the probability of realizing kj<0 

must be greater than or equal to specified probability, say, pj i.e. 

P(k 0) p
j j

0
i.e. K dk p ---- - (*)- j j j

 

 

 

Where Kj is the probability density function of the random variable kj(X) whose 

range is assumed to be −∞ to ∞.The constraint function kj(X ) can be expanded around the 

vector of mean values of the random variables X as 

 
δk

jNk = k (Y) + Y -Y
i=1j j i iδY

i X=Y

 
 
 
 
 

  

One can get the mean value and the standard deviation of kj as follows: 

2
δk

jN2 2k = k (Y) and σ = σ
i=1 Yj k δY

ij i X=Y

 
 
 
 
 

  

By introducing the new variable 

k -k
j j

Θj = N(0,1) (j =1,2,.....,n)
σ

k
j

 
 
 
 
 
 

  



 

 
INVENTORY MODELS WITH UNCERTAIN DATA 51 

 

 

Equation (*) can be written as 

k
j-σ 2Θk jj -1 2e dΘ p

j j2π -



 

If φj(x) is the cumulative distribution function of the standard normal distribution 

evaluated at x and if sj denotes the value of the standard normal variate at which 

φj(sj) = 1 − pj then 

s 2tj -1 21-p = e dt
j -2π

-s2 2t tj- -1 12 2i.e. p = e dt = e dt
j s -2π 2π

j





 



 

Therefore  

k

k

k
j-σ 2Θ -sk 2j tj j- -1 12 2e dΘ e dt

j2π 2π- -

j
so - = -s

jσ
j

k -s σ 0
j j k

j

1/2
2

δk
jN 2k -s σ 0

i=1j Yj δY
ii X=Y

 
  
  
  
   

 

 
 





 

Hence, the stochastic programming problem is reduced to multi-objective 

deterministic non-linear programming problem with objectives and constraints as follows 

min ρ

min σρ

subject to

1/2
2

δk
jN 2k -s σ 0--- - - (**)

i=1j Yj δY
ii X=Y

 
  
  
  
   

 


 

Using above methodology model in 4.2.3 becomes crisp multi-objective inventory 

problem with maximizing expected profit and minimizing variance of profit as follows  
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2 3 4 3 2t b * t θ * t θ * t b * t
i i i i i i i i i(P - C )*Q - C * -a - - + Qi t - -ii i 1i i i2 6 12 6 2

Max E =
PF 3 4 5 2 4 3t b * t θ * t t θ * t b * t

i i i i i i i i i i-C *θ * -a - - + Qi - -
di i i 3 8 15 2 8 3

     
     
     

         
 
     

     
     
          

 

n

i=1

n 2 2Min V = σ *Q
PF Ci i

i=1








 

 

Subject to

n
w *Q W

i i
i=1

1/2
n n 2 2 2C *Q - B -1.96* σ *Q + σ 0i Bi Ci i

i=1 i=1

2 3 2b * t θ * t θ * t
i i i i i i-a t - - + Qi 1- - b * t = 0

i i i i2 3 2

 
 
 

    
    
    
        



 
  

To solve above crisp multi-objective non-linear programming problem generally two 

algorithms are used namely 

A) Fuzzy Nonlinear Programming Technique (FNLP) and  

B) Intuitionistic Fuzzy Optimization (IFO)  

A) Fuzzy Nonlinear Programming Technique (FNLP): 

This method is given by Zimmerman (1978). This algorithm has following steps 

Step a) Solve the multi goals as a single goal by only considering one goal and neglecting 

others. Get a solution for each goal. 

Step b) Determine the respective values for each goal for each solution acquired in the above 

step, gives a set of solutions. 

Step c) From set of solutions decide lower bound (Lk)and upper bounds (Uk) for k
th

 objective 

function. 

Step d) define the linear membership function µk(X), corresponding to the k
th 

objective  

1 Z < L
k k

U - Z
k kμ (Z ) = L Z U

k k k k kU - L
k k

0 Z > U
k k





 




 

According to Zimmermann, the equivalent crisp non-linear programming problem is 
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max α

subject to

U - Z
k k α, k = 1, 2

U - L
k k



 

 

B) Intuitionistic fuzzy optimization (IFO): 

This technique is introduced by Angelov (1997). This algorithm has following steps 

Step a) Solve the multi goals as a single goal by only considering one goal and neglecting 

others. Get a solution for each goal. 

Step b) Determine the respective values for each goal for each solution acquired in the above 

step, gives a set of solutions. 

Step c) From set of solutions decide lower bound (Lk) and upper bounds (Uk) for k
th

 objective 

function 

Step d) Define the membership function µk(X) as well as non-membership function vk(X) 

corresponding to the k
th

 objective lower bounds and upper bounds for non-membership 

functions are given by L
k
 and U

k
 where U

k
=Uk and L

k
>Lk (Since In case of minimization 

problem, the lower bound for non-membership function is always greater than that of the 

membership function that has been proved by S. Banerjee and T. K. Roy (2010)) 

k1 Z < U1 Z < L kk k
kU - Z Z - L

k kk k kμ (Z ) = L Z U v (Z ) = L Z U
k k k k k k k kk kU - L U - Lk k

k0 Z > U 0 Z < L
k k k


 
 
 

    
 
 
 



 

Following Angelov together with linear membership function and non-membership 

functions of an intuitionistic fuzzy optimization model problem can be written as 

max α - β

subject to

U - Z
k k α, k = 1, 2

U - L
k

k
Z - L

k β, k = 1, 2
k k

U - L

β 0, α > β, α + β < 1

k






 

By following FNLP, crisp multi-objective non-linear programming problem becomes 



 

 
INVENTORY MODELS WITH UNCERTAIN DATA 54 

 

 

 

max = α

Such that

E - L
PF 1 α

U - L
1 1

U - V )
PF2 α

U - L
2 2

n
w *Q W

i ii=1

1/2
n n 2 2 2C *Q - B-1.96* σ *Q + σ 0i

Bi Ci ii=1 i=1

2 3 2b *t θ *t θ *t
i i i i i i-a t - - + Qi 1- - b *t = 0

i i i i2 3 2

 
 
 
 

 
 
 
 

 
 
 

    
    
    
        







 

 

 

By following IFO, crisp multi-objective non-linear programming problem becomes 

 

max = α -β

Such that

E -L
PF 1 α

U -L
1 1

U -V )
PF2 α

U -L
2 2

1U -E
PF β

1 1U -L

2V -L
PF β
2 2U -L

n
w *Q W

i ii=1
1/2

n n 2 2 2C *Q -B-1.96* σ *Q +σ 0i
Bi Ci ii=1 i=1

2 3b *t θ *t θ
i i i i i-a t - - +Qi 1-

i i 2 3

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
  











 

2*t
i -b *t = 0

i i2

α β,α +β =1

  
  
  
    



 

3.2.6 Fuzzy Model:  

Here it is considered that holding cost and budget are imprecise and vague in nature, hence 

they are represented by fuzzy numbers. Hence model in 4.2.3 converted to fuzzy model as 

follows 
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 



n
maxPF = PF(Q )

ii=1

Subject to

n
w *Q W

i ii=1
n

C *Q B
i ii=1

2 3 2b * t θ * t θ * t
i i i i i i-a t - - + Qi 1- - b * t = 0

i i i i2 3 2

Q 0, i = 1,2,...., n
i







    
    
     

    



 

Let impreciseness of holding cost and budget is expressed using linear membership 

function then above fuzzy model converted into crisp problem using FNLP as 







 

Max = α

Subject to

Co - PF
1- α

P
PF

n
w *Q W

i ii=1
n

C *Q - B
i ii=11- α
P
B

2 3 2b * t θ * t θ * t
i i i i i i-a t - - + Qi 1- - b * t = 0

i i i i2 3 2

Q 0, i = 1, 2,...., n
i

2 3 4t b * t θ * t
i i i i i(P - C )*Q - C + 1-β *P * -a - -

Ci i i 1i i 2 61i

where PF =









    
    
     

    



 
 
 

3 2θ * t b * t
i i i i+ Qi t - -

i12 6 2

3 4 5n t b * t θ * t
i i i i i-a - -

i 3 8 15i=1

-C *θ *
di i 2 4 3t θ * t b * t

i i i i i+Qi - -
2 8 3

     
     
      
     
 

   
   
   

   
           

   

 

3.2.7 Fuzzy-Stochastic Model:  

Here, Ci‟s and investment are considered to be random and there randomness is 

expressed using normal distribution. Hence Storage area becomes fuzzy and its fuzziness 

represented by linear membership function, then model 4.2.3 converted into fuzzy-stochastic 

model as follows
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

 

n
maxPF = PF(Q )

i
i=1

Subject to

n
w *Q W

i i
i=1
n

C *Q Bi i
i=1

Q 0, i =1,2,....,n
i









 

 

Using SNLP the above model becomes 

 

2 3 4 3 2t b * t θ * t θ * t b * t
i i i i i i i i i(P - C )*Q - C * -a - - + Qi t - -ii i 1i i i2 6 12 6 2

3 4 5t b * t θ * t
i i i i iMax E = -a - -PF i 3 8 15

-C *θ *
di i 2 4 3t θ * t b * t

i i i i i+Qi - -
2 8 3

     
     
     

         


   
   
  
   
 

  
  
      

 

 

n

i=1

n 2 2Min V = σ *Q
PF Ci i

i=1

Subject to

n
w *Q - W

i i
i=11- α

P
W

1/2
n n 2 2 2C *Q - B -1.96* σ *Q + σ 0i Bi Ci i

i=1 i=1

2 3 2b * t θ * t θ * t
i i i i i i-a t - - + Qi 1- - b * t = 0

i i i i2 3 2









 
 
 
 
 
  



 
 
 

    
    
    
        









 

 

 

The above problem is converted to crisp problem by using FNLP method as follows  
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 

max α

Such that

E - L
PF 1 α

U - L
1 1

U - V )
PF2 α

U - L
2 2

n
w *Q - W

i ii=11- α
P
W

1/2
n n 2 2 2C *Q - B -1.96* σ *Q + σ 0i Bi Ci ii=1 i=1

2 3 2b * t θ * t θ * t
i i i i i i-a t - - + Qi 1- - b * t = 0

i i i i2 3 2

 
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 
 

 
  
 
 





 
  

 

    
    
     

    

 

Similarly using IFO method crisp problem obtained as follows 

 

max α -β

Such that

E - L
PF 1 α

U - L
1 1

U - V )
PF2 α

U - L
2 2

1U - E
PF β

1 1U - L

2V - L
PF β
2 2U - L

n
w *Q - W

i ii=11- α
P
W

1/2
n n 2 2 2C *Q - B -1.96* σ *Q + σ 0i Bi Ci ii=1 i=1

2 3b * t θ * t θ *
i i i i i-a t - - + Qi 1-

i i 2 3

 
  
 
 

 
  
 
 

 
  
 
 

 
  
 
 





 
  

 

 
 
 
 

2t
i - b * t = 0

i i2

α β,α +β = 1

  
  
   

  


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3.2.8 Numerical Example: 

a) Crisp Model 

Input:  

C1=7, C2=6.75 Rs. , P1= P2=10 Rs., C11= 2Rs.,C 12=2.2 Rs., a1=100, a2=110, b1=b2=0.5, 

B=850 Rs. , W=275 Sq. ft, w1=2 Sq. ft, w2=2.2 Sq. ft, θ1=0.05, θ2=0.06, Cd1= Cd2=5 Rs., 

T=1yr. 

Output:   

Q1=48.23, Q2=74.86, PF=323.54 Rs., t1= 0.44 yr., t2= 0.59 yr. 

b) Stochastic Model 

Input : 


1 (7,0.01)C N , 2

ˆ (6.75,0.015)C N ,  (850,100)B N , P1= P2=10 Rs., C11=2,C12=2.2 Rs., a1=100, 

a2=110, b1=b2=0.5, B=850 Rs., W=275 Sq. ft, w1=2Sq. ft, w2=2.2Sq. ft, θ1=0.05, θ2=0.06, 

Cd1= Cd2=5Sq. ft,Co =340 Rs.,
PFEP =50, Do =15,

PFVP =5,T=1yr. 

 Output: 

1. FNLP method: 

α=0.89, PFE =334.77Rs. , PFV =10.52Rs.  ,Q1=54.91,Q2=73.28,t1=0.47yr. , t2=0.55yr. 

2. IFO method:    

α=0.83,β=0.16, PFE =331.54Rs. , PFV =10.0 1 Rs.  ,Q1=66.20,Q2=61.34,t1=0.47yr. , t2=0.55r. 

 c) Fuzzy Model 

Input:  

C1=7, C2=6.75Rs. , P1= P2=10Rs. , C11= 2Rs.,C 12=2.2Rs., a1=100, a2=110, b1=b2=0.5, , 

W=275 Sq. ft, w1=2 Sq. ft, w2=2.2 Sq. ft, θ1=0.05, θ2=0.06, Cd1= Cd2=5Rs. , 

T=1yr.,B=850Rs. ,PB=130 

Output:   

FNLP method 

α=0.88,Q1=50.58, Q2=75.74, PF=330.86Rs., t1= 0.45 yr., t2= 0.59 yr. 

 

 

 

 

 

d) Fuzzy- Stochastic Model 
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Input:  


1 (7,0.01)C N , 2

ˆ (6.75,0.015)C N ,  (850,100)B N , P1= P2=10 Rs., C11= C12=2.2 Rs., a1=100, 

a2=110, b1=b2=0.5, B=850 Rs., W=275 Sq. ft, w1=2Sq. ft, w2=2.2Sq. ft, θ1=0.05, θ2=0.06, 

Cd1= Cd2=7Sq. ft,Co =337.94,
PFEP =40, Do =10.3093,

PFVP =2, WP =20,T=1yr. 

Output: 

1. FNLP method: 

α=0.86, PFE =335.17Rs. , PFV =10.72Rs.  ,Q1=51.73,Q2=76.67,t1=0.45yr. , t2=0.58yr. 

2. IFO method:    

α=0.75,β=0.25, PFE =335.17Rs. , PFV =10.72Rs.  ,Q1=54.92,Q2=73.29,t1=0.47yr. , t2=0.56yr. 

3.2.9: Sensitivity analysis 

 Stochastic Model 

 

Table 3.1: Effect of Change of values in mean of C1 

Average 

value of C1 
α β Q1 t1 Q2 t2 EPF VPF 

5 
0.96  89.17 0.70 40.05 0.33 502.21 10.18 

0.91 0.09 83.33 0.66 37.47 0.31 472.92 9.95 

6.5 
0.88  87.59 0.69 45.37 0.37 378.33 10.37 

0.88 0.12 75.27 0.61 50.12 0.40 360.50 10.46 

7 
0.80  54.92 0.47 73.29 0.56 334.77 10.52 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

 

Table 3.2: Effect of Change of values in var of C1 

Variation 

of C1 
α β Q1 t1 Q2 t2 EPF VPF 

0.01 
0.90  54.92 0.47 73.29 0.56 334.77 10.52 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

0.013 
0.73  72.14 0.59 54.09 0.43 326.37 10.56 

0.72 0.28 62.52 0.53 65.25 0.51 332.92 10.71 

0.016 
0.64  65.71 0.55 57.73 0.46 322.07 10.91 

0.65 0.35 58.89 0.50 66.97 0.52 329.20 11.08 

Table 3.3: Effect of Change of values in Mean of C2 
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Average 

value of C2 
α β Q1 t1 Q2 t2 EPF VPF 

6 
0.95  65.31 0.55 64.43 0.50 385.14 10.24 

0.91 0.09 61.08 0.52 59.95 0.47 362.65 10.62 

6.5 
0.93  63.47 0.53 66.77 0.51 355.07 10.35 

0.86 0.14 67.78 0.56 58.11 0.46 341.72 10.81 

6.75 
0.90  54.92 0.47 73.29 0.56 334.77 10.52 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

 

Table 3.4: Effect of Change of values in var of C2 

Variation 

of C2 
α β Q1 t1 Q2 t2 EPF VPF 

0.015 
0.90  54.92 0.47 73.29 0.56 334.77 10.52 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

0.018 
0.86  63.54 0.53 64.30 0.50 332.86 10.71 

0.71 0.29 63.54 0.53 64.30 0.50 332.86 10.71 

0.021 
0.81  69.23 0.57 58.36 0.46 330.71 10.93 

0.68 0.32 69.23 0.57 58.36 0.46 330.71 10.93 

 

Table 3.5: Effect of Change of values in mean of Budget 

Average value 

of Budget 
α β Q1 t1 Q2 t2 EPF VPF 

830 
0.78  46.54 0.41 79.11 0.59 328.84 10.75 

0.65 0.35 46.54 0.41 79.11 0.59 328.84 12.37 

850 
0.90  54.92 0.47 73.29 0.56 334.77 10.52 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

870 
0.95  68.31 0.57 62.16 0.49 337.72 10.23 

0.80 0.20 68.31 0.57 62.16 0.49 337.72 11.30 

 

 

 

Table 3.6: Effect of Change of values in Var of Budget 
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Variation 

of budget 
α β Q1 t1 Q2 t2 EPF VPF 

25 
0.87  51.35 0.45 76.25 0.57 333.43 10.66 

0.72 0.28 51.35 0.45 76.25 0.57 333.43 12.18 

50 
0.88  52.61 0.46 75.20 0.57 333.93 10.61 

0.73 0.27 52.61 0.46 75.20 0.57 333.93 12.10 

100 
0.90  54.92 0.47 73.29 0.56 334.77 10.52 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

 

Fuzzy Model: 

Table 3.7: Effect of Change of values in PB 

PB α Q1 t1 Q2 t2 PF 

70 0.82 50.53 0.45 75.39 0.59 329.96 

90 0.85 50.56 0.45 75.54 0.60 330.35 

110 0.87 50.57 0.45 75.66 0.60 330.64 

130 0.88 50.58 0.45 75.75 0.60 330.86 

 

Table 3.8: Effect of Change of values in B 

B α Q1 t1 Q2 t2 PF 

775 0.46 50.10 0.45 73.28 0.58 324.38 

800 0.60 50.29 0.45 74.09 0.59 326.59 

825 0.74 50.45 0.45 74.92 0.59 328.76 

850 0.88 50.58 0.45 75.75 0.60 330.86 

 

Fuzzy-Stochastic Model 

Table 3.9: Effect of Change of values in mean of C1 

Average 

value of C1 
α β Q1 t1 Q2 t2 EPF VPF 

5 
0.96  75.89 0.62 55.65 0.44 489.24 10.20 

0.82 0.18 75.10 0.61 55.07 0.44 484.75 10.09 

6.5 
0.96  75.89 0.62 55.65 0.44 375.42 10.20 

0.82 0.18 75.10 0.61 55.07 0.44 372.10 10.09 

7 
0.86  51.73 0.45 76.67 0.58 335.17 10.72 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

 

Table 3.10: Effect of Change of values in var of C1 
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Variation 

of C1 
α β Q1 t1 Q2 t2 EPF VPF 

0.01 
0.86  51.73 0.45 76.67 0.58 335.17 10.72 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

0.013 
0.81  55.25 0.48 73.06 0.55 334.98 10.94 

0.71 0.29 61.49 0.52 66.46 0.51 333.53 10.74 

0.016 
0.74  58.91 0.50 69.12 0.53 334.09 11.28 

0.64 0.36 58.43 0.50 68.56 0.53 331.83 11.19 

 

Table 3.11: Effect of Change of values in Mean of C2 

Average 

value of C2 
α β Q1 t1 Q2 t2 EPF VPF 

6 
0.96  75.89 0.62 55.65 0.44 379.21 10.20 

0.82 0.18 75.10 0.61 55.07 0.44 375.85 10.09 

6.5 
0.93  63.91 0.54 66.29 0.51 354.76 10.33 

0.81 0.19 69.65 0.58 59.98 0.47 350.35 10.12 

6.75 
0.86  51.73 0.45 76.67 0.58 335.17 10.72 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

 

Table 3.12: Effect of Change of values in var of C2 

Variation 

of C2 
α β Q1 t1 Q2 t2 EPF VPF 

0.015 
0.86  51.73 0.45 76.67 0.58 335.17 10.72 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

0.018 
0.78  54.38 0.49 70.84 0.54 334.65 11.10 

0.70 0.30 62.09 0.52 65.83 0.51 333.36 10.80 

0.021 
0.72  61.92 0.52 66.14 0.51 333.71 11.41 

0.65 0.35 66.07 0.55 61.73 0.48 332.15 11.12 

 

 

 

Table 3.13: Effect of Change of values in mean of Budget 
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Average value 

of Budget 
α β Q1 t1 Q2 t2 EPF VPF 

830 
0.73  39.03 0.35 87.05 0.64 328.20 11.35 

0.65 0.35 44.09 0.39 81.70 0.61 328.77 10.93 

850 
0.86  51.73 0.45 76.67 0.58 335.17 10.72 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

870 
0.94  66.74 0.56 63.82 0.50 338.36 10.28 

0.80 0.20 68.31 0.57 62.16 0.49 337.72 10.23 

 

Table 3.14: Effect of Change of values in Var of Budget 

Variation 

of budget 
α β Q1 t1 Q2 t2 EPF VPF 

25 
0.83  48.21 0.42 79.58 0.59 333.62 10.87 

0.72 0.28 51.35 0.45 76.25 0.57 333.43 10.66 

50 
0.84  49.44 0.43 78.57 0.59 334.19 10.82 

0.73 0.27 52.61 0.46 75.20 0.57 333.93 10.61 

100 
0.86  51.73 0.45 76.67 0.58 335.17 10.72 

0.75 0.25 54.92 0.47 73.29 0.56 334.77 10.52 

 

 

3.2.10 Conclusion:  

 From table 3.7 and 3.8 it is observed that as goal and aspiration level of  budget 

increases level of satisfaction α and PF increases. Table 3.1,3.3, 3.9 and 3.11, it is seen that as 

average of purchase cost increases level of satisfaction α, average value of PF decreases and 

variance of PF increase. Table 3.2, 3.4, 3.10 and 3.12 shows that as variance of purchase cost 

increases, level of satisfaction α, average value of PF decreases and variance of PF increases. 

Table 3.5, 3.6, 3.13 and 3.14 shows that as average and variance of budget increases, level of 

satisfaction α, average value of PF increases and variance of PF decreases. Especially from 

numerical example it is noted that Fuzzy-stochastic model gives more accurate profit values 

than stochastic, fuzzy and crisp models. 

 

Chapter 4                 Multi-objective Multi-Item Fuzzy and  
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                                   Fuzzy-stochastic Inventory Models 

 

4.1: Introduction 

 Decision making is an important part of daily life. It ranges from individual to 

largest groups. Decision making problems includes simple as well as complex problem. In 

previous chapters inventory models are developed for single objective but in some situations 

decision maker came across multiple objectives. Complex problems may be multi-objective 

problems. Multi-objective problem includes several statements such as maximizing some 

objectives and minimizing remaining objectives. Multi-objective decision making problem 

address decision makers desired state of system. Three levels of goal setting used in multi-

objective decision problem, these levels are a) maximizing all objectives b) minimizing all 

objectives c) minimizing some objectives and maximizing others.Multi-objective decision 

making is used in various fields. Haimes et al. (1979) considered a planning model of water 

and land resources for Maumee River Basin. Candler and Norton (1977) used multilevel 

programming in their technical report. Nagata (1995) explored production and transportation 

problems of multiple products and factories as multi-objective problem.  

Inventory in real life problem meets more than one goal. These goals can be to 

maximize profit, minimize the cost of waste and minimize the cost of shortages. To 

accomplish them concurrently, multi-objective inventory problem engaged above 

objectivesimultaneously. Such problems are modeled as decision-making problems with 

various objectives. Most of the time these goals contradict one another. In general, from a set 

of feasible alternatives, the decision maker (DM) chooses a compromise solution.Studying 

multi-objective inventory models is therefore essential. Till now many researchers studied 

these models in crisp and imprecise environment.  

Regarding multi-objective crisp inventory, Mandal and maiti (1998) developed multi-

item, multi-objective inventory model under space and budget restriction with stock 

dependent demand. They considered selling price as well as holding cost dependent on 

purchasing price. Model is solved using FNLP technique. Mahapatra and Maiti (2005) 

proposed multi-item, multi-objective inventory model for manufacturing process with stock 

dependent demand. The model aimed at maximizing profit and minimizing the overall cost of 

manufacturing.Under restricted warehouse space and budget restriction, the model is 

invented. Using Fuzzy additive programming and FNLP, the model is solved. Mahapatra et 

al. (2005) formulated multi-objective and single-objective, inventory models for 
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stochastically decaying items, where demand is stock dependant and the selling price of 

commodities.For each item, profit maximization goals are developed individually with 

separate goals and the goal programming method used to achieve compromise solutions to 

the multi-objective inventory problem.They used different kinds of membership functions to 

represent goals, i.e. linear, quadratic, exponential, etc. Kar and Roy (2008) developed multi-

objective inventory model for manufacturing process in which production rate is function of 

unit cost. Objectives of paper were to maximize profit and minimize production cost as well 

as wastage cost and solution was obtained by using FNLP and Fuzzy goal programming 

technique. Wee and Lo (2009) constructed multi-objective inventory model by using fuzzy 

demand with shortages. An objective of paper was to maximize profit as well as return on 

inventory investment. Solution was obtained by using inverse weight FNLP and fuzzy 

additive goal programming method. Prasah and Seshaiah (2011) built multi-objective 

inventory model without shortages and with budget and warehouse space constraint. 

Objectives of paper were to minimize total expenditure of organization and reducing number 

of warehouse allocations. Model is illustrated numerically using FNLP. 

Often objectives, parameters of inventory model are imprecise. To tackle 

impreciseness fuzzy set theory is used. Faritha et al. (2010) built a multi-item, multi-objective 

fuzzy inventory model to maximize profit and minimize the cost of waste under budget and 

available space restrictions. They converted fuzzy inventory model to crisp model using 

fuzzy ranking method and crisp model is solved using FNLP. Chakrabortty et al. (2011) 

developed multi item multi-objective inventory model with exponential demand and 

considered carrying cost, shortage cost in fuzzy environment. Model is solved using IFO. 

Dash et al. (2013) constructed fuzzy multi item multi-objective inventory model. They 

converted fuzzy inventory model to crisp model using ranking method. Crisp model is solved 

using FNLP. Chakrabortty et al. (2013) developed an inventory model for manufacturing 

process with demand, carrying cost and shortage cost as vague. Model is solved using FNLP. 

Multi-objective inventory model based on stock dependent demand is constructed by Jadhav 

and Bajaj (2013) in fuzzy as well as crisp environment. Under the restricted budget and space 

constraint, the model is formed. The model aims to minimize the average total cost as well as 

the cost of wastage and maximize profit. Solution of model is obtained using different 

techniques such as FNLP, Weighted Fuzzy programming Technique, Weighted goal 

programming. Gholamian et al. (2015) developed supply chain model under uncertainty of 

demand and solved by multi-objective optimization method. The model is demonstrated 
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using a case study. Kumar and Debashish (2015) constructed fuzzy multi-item, multi-

objective inventory model under four constraints. The model is solved by using multi-

objective fuzzy goal programming. Asma et al. (2016) proposed fuzzy multi-item, multi-

objective inventory model based on stock dependent demand. They transformed the fuzzy 

inventory model to a crisp model using the fuzzy ranking technique and crisp model is solved 

using IFO. Khalifehzadeh et al. (2017) studied multi-objective production distribution system 

in presence of fuzzy parameters. The model is formulated and solved as a mixed integer 

programming model using the Ranking Genetic Algorithm (RGA) and Concessive Variable 

Neighborhood Search (CVNS). Garai et al. (2019) proposed fuzzy multi-objective multi-item 

inventory model.  

If some parameters are fuzzy and some are stochastic then multi-objective inventory 

problem is solved in mixed environment known as multi-objective Fuzzy-stochastic 

inventory model. Till now multi-item, multi-objective inventory models have not been 

developed in Fuzzy-stochastic environment.  

In this chapter two inventory models have been developed. The first inventory model 

is derived in fuzzy environment for deteriorating items with exponential demand. In this 

model it is considered that holding cost, deterioration cost and shortage cost are imprecise 

and there impreciseness is expressed using linear membership function. The second inventory 

model is constructed in fuzzy-stochastic environment for deteriorating items with demand 

function is dependent on price and advertisement. Here it is assumed that purchasing cost, 

shortage cost as well as budget are considered to be random in nature and there randomness is 

represented by normal distribution while storage space is considered to be imprecise and its 

impreciseness is expressed through linear membership function. By applying Stochastic non-

linear programming fuzzy stochastic inventory model is converted into multi-objective crisp 

model. The crisp versions of both models have been solved by using FNLP and IFO 

technique. 

4.2 Model I: Multi-objective Multi-item fuzzy inventory model with Exponential 

demand 

 Here inventory model is developed for decaying items with exponential demand in 

fuzzy environment. This model is gives compromise solution for two objectives. These two 

objectives are maximizing profit and minimizing shortage cost subject to budget and 

warehouse constraints. 

4.2.1 Assumptions: 
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 Replenishment is instantaneous. 

 Shortages are allowed. 

 Selling price is known and constant. 

4.2.2 Notations: 

iC : Purchasing cost per unit of i
th

 item 

iP : Selling price per unit ofi
th

 item 

iQ Initial stock level of i
th

 item 

i : Deterioration rate of i
th

 item 

( ) i ib t

iD t a e : Demand rate of per unit of i
th

 item 

( )iQ t : Inventory level at time t of i
th

 item 

1iC : Holding cost per unit ofi
th

 item 

diC : Decaying cost per unit of i
th

 item 

2iC : Shortage cost per unit of i
th

 item 

iw : Warehouse space required for i
th

 item 

T : Time period for each cycle 

W : Warehouse space available to store items 

B: Total Budget Available for purchasing item 

PF: Total Profit 

SC: Total Shortage Cost 

( „~‟ represents the fuzzification of the parameters and „^‟represents randomization of 

parameter) 

4.2.3 Figure:  
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The initial stock level is Q at time t = 0, then inventory level reduces prominently due 

to demand and partly due to deterioration. At time t = ti, the stock reaches to zero level, then 

shortages occurs and accumulate up to time t=T. 

4.2.4 Crisp model: 

 Let the differential equation describing state of inventory in time period (0, )it is as 

follows 

dQ (t) b t
i i+ θ Q (t) = -a e ,0 t t (1)

i i i idt
   

Solution of above differential equation using boundary condition 

(0)i iQ Q  

b t
i a -θ te i iQ (t) = -a + Q + e ,0 t t (2)

i i i ib + θ b + θ
i i i i

   
     
   

   

 

Using boundary condition ( ) 0i iQ t   in above equation    

b t
i i a -θ te i i i-a + Q + e = 0

i ib + θ b + θ
i i i i

   
   
   

     

using series form of exponential term and ignoring secondand higher terms 

Q (b +θ )1 i i it = ln 1+
i θ + b a

i i i

   
  
  

   

  

The differential equation describing the state of inventory in time period ( , )it T is given by 

following equation 

i

dQ (t) b t
i i= -a e , t t T (3)

i idt
   

Integrating both sides and solving using condition ( ) 0i iQ t   

i

b t b t
i i ia e a e

i iQ (t) = - + , t t T
i ib b

i i

   
   
   
      
   

   

Total Holding cost over the time period (0, )it is given by following equation 



 

 
INVENTORY MODELS WITH UNCERTAIN DATA 69 

 

 

t
a ab t θ ti 1i ii i i iC Q (t)dt = C 1- e + Q + 1- e

1i i 1i ib *(b + θ ) (b + θ) θ0 i i i i i i

        
                     

. 

Total shortage cost is given by following equation 

 
T

a ab t b T b ti i ii i i i i iC Q (t)dt = C - e - e T - t e
2i i 2i i i2 bt b ii i

  
      

    
   

 

Then the total profitis given by following equation 

t
in

PF = (P - C )Q - (C + C θ) Q (t)dt
i i i 1i di ii=1 0

 
  
 
 

. 

a b t
i i i1-e

b (b +θ)n i i i
PF = (P -C )Q -(C + C θ)

i i i 1i di ai=1 θ t1i i i+ Q + 1-e
i (b +θ) θ

i i i

    
            
     
               

 . 

Then the total shortage cost is given by following equation 

 
a ab t b T b tn i ii i i i i iSC = C - e - e T - t e

2i i i2 bi=1 b ii

  
         

    

Hence the inventory problem is maximizing profit as well as minimizing shortage cost 

subject to limitations on budget and storage area is given by

MaxPF

Min SC

Subject to

n
w Q W

i ii=1
n

C Q B - - - - - - - - - -(4)
i ii=1

Q (b + θ )1 i i it = ln 1+
i θ + b a

i i i

Q 0, i = 1, 2,...., n
i





   
  
     



 

4.2.5 Fuzzy model: 

 In above crisp model, holding cost, deterioration cost and shortage cost are assumed 

to be imprecise and there impreciseness is expressed using linear membership function. 
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Budget is also considered to be imprecise and its impreciseness expressed using quadratic 

membership function then above crisp  







n

i i

i=1

n

i i

i=1

i i i
i

i i i

i

MaxPF

Min SC

Subject to

w Q W

C Q B

Q (b + θ )1
t = ln 1+ (5)

θ + b a

Q 0, i = 1, 2,...., n





   
         

   







  

   

a b t
i i i1- e

b (b + θ)n i i i
where PF = (P - C )Q - (C + C θ)

i i i 1i dii=1 a θ t1i i i+ Q + 1- e
i (b + θ) θ

i i i

a ab t b T b t
i ii i i i i iSC = C - e - e T - t e

2i i i2 bb ii

    
    

       
     
              

  
        

 

n

i=1





 

Using FNLP method above model converted into crisp model as follows 

Max α

Such that

U -SC
1 α

U - L
1 1

PF - L
2 α

U - L
2 2

n
w *Q W

i ii=1

2n
B - C *Q

i ii=1 α
P
B

Q 0, i = 1,2,...., n
i

 
  
 
 

 
  
 
 



 
 

 
  
 


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Q *(b + θ )1 i i it = *ln 1+
i θ + b a

i i i

a b t
i i i1- e

b (b + θ)
i i i

PF = (P - C )Q - C - (1- α)p + C - (1- α)p θc Ci i i 1i di1i adi θ t1i i i+ Q + 1- e
i (b + θ) θ

i i i

   
  
     

    
    

                        
           

 

n

i=1

a ab t b T b tn i ii i i i i iSC = C - (1- α)p - e - e T - t e
C2i i i2 bi=1 b2i ii





 
 
 
 



  
             

  

(Where α is 

(Where α is satisfaction level) in step d) of FNLP method discussed in chapter IV under point 

4.2.5.1, exponential membership function is used instead of linear membership function, then 

above crisp model is converted into following model 
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Max α

Such that

U -SC
1-v

U -L
-v1 1e -e

α-v1-e

PF-L
2-w

U -L
-v2 2e -e

α-v1-e
n

w *Q W
i ii=1

2n
B- C *Q

i ii=1 α
P
B

Q 0, i =1,2,....,n
i

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 













Q *(b +θ )1 i i it = *ln 1+
i θ + b a

i i i

a b t
i i i1-e

b (b +θ)
i i i

PF = (P -C )Q - C - (1- α)p + C -(1-α)p θ
C Ci i i 1i di a θ t1i di 1i i i+ Q + 1-e

i (b +θ) θ
i i i

   
  
  

   

   
               

             
            

 

n

i=1

a ab t b T b tn i ii i i i i iSC = C -(1- α)p - e -e T - t e
C2i i i2 bi=1 b2i ii

 
 
 
 
 
 
 
 

  
                

  





 

(Where α is satisfaction level) 

In IFO method discussed in chapter IV under point 4.2.5.1, membership function is 

linear membership function and nonlinear membership function is quadratic membership 

function then fuzzy model is converted to following model  
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Max α -β

Subject to

U - Zr r α, (r =1,2)
U -Lr r

2rZ -Lr β, (r =1,2)r rU -L

n
w Q W

i ii=1
2n

B- C *Q
i ii=1 α

P
B

 
 
 
 

 
 
 
 
 
 











 

Q *(b +θ )1 i i it = *ln 1+
i θ + b a

i i i

a b t
i i i1-e +

b (b +θ)
i i i

PF = (P -C )Q - C -(1-α)p + C -(1-α)p θ
C Ci i i 1i di a θ t1i di 1i i iQ + 1-e

i (b +θ) θ
i i i

   
  
  

   

   
   
           
                         

 

n

i=1

a ab t b T b tn i ii i i i i iSC = C -(1-α)p - e -e T - t e
C2i i i2 bi=1 b2i ii

Q 0, i =1,2,..
i

β 0,α > β,α +β <1

 
 
 
 
 
 
 

 
 

  
     
            

  









 

(Where α is satisfaction level and β is non-satisfaction level ) 

In above crisp model exponential membership function is used instead of linear 

membership function then above crisp model converted to following model 
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Max α -β

Subject to

U -SC
1-v

U -L
-v1 1e -e

α-w1-e

PF-L
2-v

U -L
-v2 2e -e

α-w1-e

U -SC
1 β

U -L
1 1

PF-L
2 β

U -L
2 2

n
w Q W

i ii=1

 
 
 
 
 
  
 

 
 
 
 
 
  
 

 
 
 
 

 
 
 
 











 

2n
B- C *Q

i ii=1 α
P
B

Q *(b +θ )1 i i it = *ln 1+
i θ + b a

i i i

a ab t 1i ii iPF = (P -C )Q - C -(1-α)p + C -(1-α)p θ 1-e + Q +
C Ci i i 1i di ib (b +θ) (b +θ) θ

1i di i i i i i i

 
 
 
 
 
 

   
  
  

   

         
        
                  





 

θ tn
i i1-e

i=1

a ab t b T b tn i ii i i i i iSC = C -(1-α)p - e -e T - t e
C2i i i2 bi=1 b2i ii

Q 0, i =1,2,..
i

β 0,α > β,α +β <1

   
   
        

  
     
            

  









(Where α is satisfaction level and β is non-satisfaction level ) 

4.2.6 Numerical example: 

a) Crisp Model: 

Input: 

11 2 2 11 12 1 2 1 1 110 ., 7 ., 6.75 ., 2.2 ., 4 ., 0.05, 0.06, 100,d dRs C Rs Rs C C Rs C C RP s aP C         

2 1 2 1 2 21 2250, 0.25, 0.5 2 . , 2.2 . , 200 . , 650 ., 1 .a b b w Sq ft w Sq ft w Sq ft B Rs C C Rs        
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Output: 

Using LINGO Software, following results are obtained. 

1) By FNLP method: 

1 2 1 235.98258, 0.5360 .,0.7618, 58.15965, 0.60467 ,

225.6571

2 .

., 18.4467 ..

t yr t

PF Rs SC Rs

Q Q yr  



  

  

2) By IFO method:

 11 2 235.98258, 0.5360.7 082 ., 0.604672 .,

225.6571 ., 18.4467 .

6183, 0.17957, 58.15965,   



 



t yr t yr

PF Rs SC

Q

Rs

Q

 

b) Fuzzy Model: 

Input: 

11 2 2 11 12 1 11 2 110 ., 7 ., 6.75 ., 2.2 ., 4 ., 0.05, 0.06, 100d dRs C Rs Rs C C Rs C C RsP P aC           

2 1 2 1 2 21 2250, 0.25, 0.5 2 . , 2.2 . , 200 . , 650 , 1 .a b b w Sq ft w Sq ft w Sq ft B Rs C C Rs        

211 2 1 2 22
0.01, 50, 0.1.

h h d dC C C C C C Bp p p p p p p v       
 

Output: 

Using LINGO Software, following results are obtained. 

1) By FNLP method with Linear membership function 

11 2 240.0147, 0.5361 .,0 ,

232.6576 ., 1

.7030, 58.1643, 0.

7.020

66 .

3 ..

12Q Q yt yr t

PF Rs SC Rs

r  

 

 

 
2) By FNLP method with Exponential membership function 

11 2 239.9265, 0.5349 .,0 ,

229.9214 ., 1

.7372, 58.0180, 0.

7.115

66 .

3 ..

00Q Q yt yr t

PF Rs SC Rs

r  

 

   

3) By IFO method with Linear membership function and Quadratic nonlinear 

membership function 

11 2 247.6589, 0.4882 ., 0.60460.3680, 0.1354, 52.57 72 .,

234.5057 ., 17.5

87,

737 ..

t yr t yr

PF Rs S s

Q

C R

Q    



   4) By 

IFO method with exponential membership function and Quadratic 

 nonlinearmembership function 

11 2 227.6004, 0.6160.8678, 0.0160 7 ., 0.4810 .,

225.0254 ., 18.

, 67

2089

,

.

.7395 t yr t yr

PF Rs

Q Q

SC Rs

    



 
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4.2.7: Sensitivity analysis 

Table 4.1: Effect of Change of values in capital investment 

Capital 

Investment  
    

1Q  1t  2Q  2t  SC  PF  

630 FNLP with exponential membership function 0.571 
 

56.841 0.525 39.238 0.651 17.883 229.044 

650 FNLP with exponential membership function 0.737 
 

58.018 0.535 39.927 0.660 17.115 229.921 

670 FNLP with exponential membership function 0.997 
 

63.594 0.582 33.709 0.572 17.020 230.588 

690 FNLP with exponential membership function 0.998 
 

65.044 0.594 32.347 0.552 17.017 230.973 

630 FNLP with linear membership function 0.610 
 

56.703 0.524 39.155 0.649 17.974 228.663 

650 FNLP with linear membership function 0.703 
 

58.164 0.536 40.015 0.661 17.020 232.658 

670 FNLP with linear membership function 0.782 
 

59.628 0.549 40.879 0.673 16.092 236.599 

690 FNLP with linear membership function 0.814 
 

64.596 0.590 37.090 0.620 15.301 238.359 

630 IFO with exponential and quadratic membership function 0.767 0.050 65.431 0.597 29.057 0.503 18.371 224.423 

650 IFO with exponential and quadratic membership function 0.868 0.016 67.740 0.617 27.600 0.481 18.209 225.025 

670 IFO with exponential and quadratic membership function 0.891 0.011 67.792 0.617 27.635 0.482 18.172 225.179 

690 IFO with exponential and quadratic membership function 0.907 0.008 67.828 0.617 27.660 0.482 18.146 225.286 

630 IFO with linear and quadratic membership function 0.286 0.082 54.996 0.509 42.560 0.696 17.709 231.216 

650 IFO with linear and quadratic membership function 0.368 0.135 52.579 0.488 47.659 0.764 17.574 234.506 

670 IFO with linear and quadratic membership function 0.442 0.196 51.230 0.477 51.665 0.815 17.452 237.482 

690 IFO with linear and quadratic membership function 0.467 0.218 50.893 0.474 52.937 0.831 17.411 238.492 
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Table 4.2: Effect of Change of values in available warehouse space 

Warehous

e space  
    

1Q  1t  2Q  2t  SC  PF  

180 FNLP with exponential membership function 0.745 
 

62.481 0.573 30.751 0.529 18.764 223.061 

200 FNLP with exponential membership function 0.737 
 

58.018 0.535 39.927 0.660 17.115 229.921 

230 FNLP with exponential membership function 0.655 
 

58.357 0.538 40.131 0.663 16.896 233.184 

250 FNLP with exponential membership function 0.486 
 

58.939 0.543 40.484 0.668 16.522 234.771 

180 FNLP with linear membership function 0.872 
 

61.393 0.564 30.077 0.518 19.532 219.917 

200 FNLP with linear membership function 0.703 
 

58.164 0.536 40.015 0.661 17.020 232.658 

230 FNLP with linear membership function 0.504 
 

58.883 0.542 40.450 0.667 16.557 234.620 

250 FNLP with linear membership function 0.254 
 

59.600 0.548 40.888 0.673 16.102 236.565 

180 
IFO with exponential and quadratic membership 

function 
0.647 0.027 63.146 0.578 31.164 0.535 18.303 224.966 

200 
IFO with exponential and quadratic membership 

function 
0.868 0.016 67.740 0.617 27.600 0.481 18.209 225.025 

230 
IFO with exponential and quadratic membership 

function 
0.891 0.011 67.792 0.617 27.635 0.482 18.172 225.179 

250 
IFO with exponential and quadratic membership 

function 
0.907 0.008 67.828 0.617 27.660 0.482 18.146 225.286 

180 IFO with linear and quadratic membership function 0.257 0.066 56.227 0.520 40.495 0.668 17.756 230.067 

200 IFO with linear and quadratic membership function 0.368 0.135 52.579 0.488 47.659 0.764 17.574 234.506 

230 IFO with linear and quadratic membership function 0.299 0.089 51.913 0.483 48.664 0.777 17.688 234.695 

250 IFO with linear and quadratic membership function 0.251 0.063 51.493 0.479 49.307 0.785 17.766 234.806 



 

 
INVENTORY MODELS WITH UNCERTAIN DATA 78 

 

 

4.2.8 General observations from sensitivity analysis: 

 From Tables 4.1 and 4.2, it is observed that capital investment and available warehouse 

space increases the parameters such as PF, 1t , 2t , 1Q , 2Q increases and SC decreases. So, to 

reduce shortage cost and maximize profit decision maker has to increase capital investment and 

available warehouse space.Satisfaction levelα and non-satisfaction levelβ of decision maker 

changes with change in capital investment. It is also observed that IFO with membership 

function represented by linear and non-membership function by quadratic membership function 

maximizes profit as compared to IFO with membership function represented by exponential and 

non-membership function by quadratic membership function. FNLP with linear membership 

maximizes profit as compared to exponential membership function. FNLP works better than IFO 

in case of minimizing shortage cost. 

4.3 Model II: Multi-objective Multi-item Fuzzy-stochastic inventory model with Price and 

advertisement dependent demand 

 Here inventory model is developed for decaying items with price and advertisement 

dependent demand in Fuzzy-stochastic environment. This model is gives compromise solution 

for two objectives. These two objectives are maximizing profit and minimizing shortage cost 

subject to budget and warehouse constraints. 

4.3.1 Assumptions: 

 The scheduling period is constant and no lead-time. 

 Replenishment rate is infinite. 

 Selling price is known and constant. 

 Shortages are allowed  

4.3.2 Notations: 

 Ci: Purchasing cost per unit of i
th

 item 

 Pi: Selling price per unit of i
th

 item 

 Si :Initial stock level of i
th

 item 

 θi: Deterioration rate of i
th

 item 

 D= (ai-biPi) N
α
: Demand rate of per unit of i

th
 item 

 Qi(t): Inventory level at time t of i
th

 item 

 C1i: Holding cost per unit ofi
th

 item 

 Cdi: Decaying cost per unit of i
th

 item 

 C2i: Shortage cost per unit of i
th

 item 
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 wi: Warehouse space required for i
th

 item 

 T:Time period for each cycle 

 B : Capital investment available for purchasing all items 

 W: Warehouse space available to store items 

 PF: Total Profit 

 SC: Total Shortage cost 

 EPF: Total Expected Profit 

 VPF: Variability in Expected Profit 

 ESC: Total Expected Shortage cost 

 VSC: Variability in Expected Shortage cost 

 

4.3.3 Figure: 

 

The initial stock level is Q at time t = 0, then inventory level reduces prominently due to 

demand and partly due to deterioration. At time t = ti, the stock reaches to zero level,then 

shortages occur and accumulate to the level S1i at t=T. 

4.3.4 Crisp Model: 

Let the differential equation describing the state of inventory in the interval (0, 1t )   is given 

by, 

dQ (t) αi + θ Q (t) = -(a - b p )N 0 t t1i i i i i
dt

     (1) 

Solving above differential equation using boundary condition, (0)i iQ Q  

α α -θ t(a - b p )N Q θ +(a -b p )Ni i i i ii i i iQ (t) = - + e 0 t t1i
θ θii

 

 
 
  

 (2)  

Using boundary condition in above equation, 1( ) 0Q t   
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Q θ1 i it = log 1 +1 αθ (a - b p )Ni i i i

  
 
  

.     (3) 

And the differential equation describing the state of inventory in the interval ( 1t , T) is given by, 

1

dQ (t) αi = -(a - b p )Ni i idt
t t T               (4)                        

Integrating above equation on both sides and solving using condition, 1( ) 0Q t 
 

α α
Q (t) = -(a - b p )N t + (a - b p )N t t t T1 1i i i i i i i                                (5)  

Using boundary condition in above equation 1( ) iQ T S  

S θ1α α i iS = (a - b p )N T - (a - b p )N log 1 +1i i i i i i i αθ (a - b p )Ni i i i

  
 
  

(6) 

Total decaying cost is obtained as follows 

t1
θ Q (t)dti iC = Cd

0
D i 

α α -θ t(a - b p )N t S θ + (a - b p )N1i i i i i i i i 1iC = C θ - - e - 1D di i 2θ θi
i

  
   

        

        

(7) The total holding cost is as follows 

t1
C = C Q (t)dtH 1i i0

  

α α -θ t(a - b p )N t S θ + (a - b p )N1i i i i i i i i 1iC = C - - e - 1H 1i 2θ θi
i

  
   

        

 (8) 

 

Total shortage cost is as follows 

T
C = C - Q (t)dtp 2i i

t
1



 
 
  

 

 
α

(a - b p )N 2i i iC = C T - tp 12i
2

 
 
  

                        (9) 

and total advertisement cost is C = C (S - S )P NA ai i di i
 

Hence the total profit for i
th

 item becomes 
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PF = (P - C )*S - C - C - C - C
H D P Ai i i i

 

 
α α -θ t(a - b p )N t Q θ + (a - b p )N1i i i i i i i i 1iPF = (P - C ) - C + C θ - - e -1 i i i 1i di i 2θ θi

i

2
Q θi i- C S - p Niai iα

(a -b p )Ni i i

  
   

        

 
 
 
 

    (10) 

The above equation can be simplified using series form of exponential term and ignoring 

second and higher terms as follows 

 
2 2

Q Q θi iiPF = (P - C ) - C +C θ - C Q - P N1i di i i i i i ai iα α(a - b p )N (a -b p )Ni i i i i i

 
 
 
 

 

The total shortage cost for i
th

 item becomes  

2α
(a - b p )N Qi i i iSC = C T - i 2i α2 (a - b p )Ni i i

 
 
 
 
  

 
  
 

   (11) 

Hence the problem is to maximize profit and minimize shortage cost subject to 

limitations on investment and storage area 

n
Max PF = PFi

i=1

n
MinSC = SCi

i=1

subject  to

n
w Q Wi i

i=1

n
C Q Bi i

i=1

Q 0, i = 1, 2,3, - - -n.i










 

4.3.5 Fuzzy-stochastic inventory model:  

In above crisp model, purchasing cost, shortage cost as well as budget is considered to be 

random in nature and there randomness is represented by normal distribution while storage space 

is considered to be imprecise and its impreciseness is expressed through linear membership 

function then above crisp model becomes 
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







Max PF

Min SC

Subject to

n
- - - - - (12)w Q W

i ii=1
n

C S B
i ii=1

S 0, i =1,2,...., n
i





















 

   

 

*

where

2S
iPF = (P - C ) - C +C θ i i α1i di ii (a - b p )N

i i i

2α(a - b p )N S
i i i i-C T - α2i 2 (a - b p )N

i i i

2
S θi i

-C S - P N i αai i
(a -b p )Ni i i

2α(a - b p )N S
i i i iSC = C T - α2i 2 (a - b p )N

i i i

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 


 
 
   



 
 
 

n

i=1







  

 

Using SNLP the above model becomes 



 

Max EPF

Min VPF

Min ESC

Min VSC

Subject to
- - - - - (13)n

w Q W
i ii=1

1/2
n n 2 2 2C *S - B -1.96* σ *Q + σ 0i Bi ci ii=1 i=1

S 0, i = 1,2,...., n
i











 



      


 
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 

 

where

22 αS (a - b p )N S
i i i i i(P - C ) - C +C θ - C T -i α α1i di ii 2i 2(a - b p )N (a - b p )N

i i i i i in
EPF =

2i=1
S θi i

-C S - P .N iai iα
(a -b p )Ni i i

1/2
n 2 2VPF = σ *S

ci ii=1

(a - b p )
i i iESC = c2i

 
 
 
 
 
 
 
 

 
  
   

  
 

  
 
 
 
  

 
 

 

 
 
 

2αN Sn iT - α2 (a - b p )Ni=1 i i i

1/2
2α(a - b p )N Sn 2 i i i iVSC = σ T -c α2 (a - b p )N2ii=1 i i i

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
  
    

  
 

  
   
    

   
  

 

The above problem is converted to crisp problem by using FNLP method as follows 

Max α

Such that

EPF - L
1 α

U - L
1 1

U - VPF
2 α

U - L
2 2

U - ESC
3 α

U - L
3 3

U - VSC
4 α

U - L
4 4

 
  
 
 

 
  
 
 

 
  
 
 

 
  
 
 

 

 
1/2

n n 2 2 2C *Q - B -1.96* σ *Q + σ 0i Bi ci ii=1 i=1
n

W - w *Q
i ii=1 α

P
B

S 0, i = 1, 2,...., n
i

 
  

 

 
 

 
  
 


 

Similarly using IFO method crisp problem obtained as follows 
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Max α -β

Subject to

EPF- L
1 α

U - L
1 1

U - VPF
2 α

U - L
2 2

U - ESC
3 α

U - L
3 3

U - VSC
4 α

U - L
4 4

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 









 

1U -EPF
β

1 1U -L

2VPF-L
β

2 2U -L

3ESC-L
β

3 3U -L

4VSC-L
β

4 4U -L

1/2
n n 2 2 2C *Q -B-1.96* σ *Q + σ 0i

Bi ci ii=1 i=1
n

W - w *Q
i ii=1 α

P
B

Q 0, i =1,2,....,n
i

β 0,α > β,α +β <1

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

  
  
   

 
 
 
 
 
 









 









 

4.3.6 Numerical example:

 

a) Crisp Model  

Input: 

1 2 2 11 12 11 21 2 110 , 4 , 5 , 0.8 , 5 ., 0.00 3,.7 , 4 ., 100,d dP P C Rs RsRs C Rs Rs C C Rs C C Rs a          

2 1 2 1 2 21 2290, 0.5, 2 . , 1.2 . , 150 . , 2, 0.5, 1 , 450 , 1 ..a b b w Sq ft w Sq ft w Sq ft N T yr B Rs C C Rs           

Output: 

1) By FNLP method 

1 2 72.3660. 4, 314.41 ., 158.40 ..5817, 22.0419, PF R SCS S s Rs    

 2) By IFO method 
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1 2 75.820.475 , 302.87 ., 147.88 .9, 0.4759, 17.72 ., PF Rs SC RsS S      b) Fuzzy-

stochastic Model 

Input: 

1 2 11 2 11 12 1 210 ., 0.8 ., 5 ., 0.03, 10.7 ., . 00,4 ,d dRs C C Rs CP P Rs Rs C Rs a        

2 1 2 1 2 21 2290, 0.5, 2 . , 1.2 . , 150 . , 2, 0.5, 1 ., 1 ..a b b w Sq ft w Sq ft w Sq ft N T yr C C Rs          

1 2(4 .,0.01 .), (5 .,0.015 .), (450 .,50 .), 20 . .wC N Rs Rs C N Rs Rs B Rs Rs p Sq ft  
 

Output: 

1) By FNLP method

 
1 2 21.9985, 288.75 , 6.12 , 67.04 ,0.3195, 5 13.44.9 06 .9 3, EPF Rs VPF Rs ESC Rs VS sS C RS      

2) By IFO method 

1 2 30.78, 298.77 .,0.3 6.23 ., 63.48 ., 12.69 .076, 0.3076, 49.60, EPF Rs VPF Rs ESC Rs VSCS S Rs       

 

4.7 Sensitivity analysis: 

Table 4.3 Effect of change of values in capital investment: 

Capital 

Investment  
    

1Q  2Q  ESC  EPF  VSC  VPF  

280 FNLP 0.31 
 

59.50 14.35 70.93 277.82 14.19 6.20 

300 FNLP 0.32 
 

55.36 21.40 67.32 287.97 13.46 6.12 

330 FNLP 0.32 
 

55.00 22.00 67.04 288.75 13.41 6.12 

280 IFO 0.29 0.34 62.63 8.85 74.16 268.73 14.83 6.36 

300 IFO 0.32 0.32 58.22 16.56 69.73 281.18 13.95 6.16 

330 IFO 0.31 0.31 50.89 28.73 64.23 296.68 12.85 6.19 

 

Table 4.4:  Effect of change of values in available warehouse space 

Warehouse 

space  
    

1Q  2Q  ESC  EPF  VSC  VPF  

150 FNLP 0.32 
 

55.00 22.00 67.04 288.75 13.41 6.12 

180 FNLP 0.18 
 

66.00 26.40 57.30 363.36 11.46 7.35 

200 FNLP 0.09 
 

73.33 29.33 51.38 412.15 10.28 8.17 

150 IFO 0.31 0.31 49.61 30.78 63.49 298.78 12.70 6.23 

180 IFO 0.18 0.59 66.00 26.40 57.30 363.36 11.46 7.35 

200 IFO 0.09 0.79 73.33 29.33 51.38 412.15 10.28 8.17 
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4.3.8 General observations from sensitivity analysis:  

From Tables 4.3 and 4.4, it is observed that as capital investment and available 

warehouse space increases PF increases and SC decreases. So,to reduce shortage cost and 

maximize profit decision maker has to increase capital investment and available warehouse space. 

Satisfaction level and non-satisfaction level   of decision maker changes with change in capital 

investment. From numerical example it can be seen that Fuzzy-stochastic inventory model gives 

accurate profit as well as shortage cost output as compared to crisp model. Fuzzy-stochastic 

inventory models output gives expected value of i.e. on an average value that can be achieved for 

profit and shortage cost with their respective variations. Crisp model gives one value of profit but 

Fuzzy-stochastic model gives range of variation of profit with average value, so this model gives 

more insight when some parameters are stochastic and some are fuzzy. IFO works better than 

FNLP in case of minimizing shortage cost. 

 

4.4 Chapter Conclusion: 

Generally it can be seen that fuzzy and Fuzzy-stochastic inventory model gives more 

accurate solution as compared to crisp inventory model. These models are more realistic than 

crisp inventory model. These models handle randomness and uncertainties so study of these 

models is important. These techniques are appropriate to tackle inventory models in real life 

situations. 
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