

RESEARCH ARTICLE

SYNTHESIS OF PYRIMIDONE AND THIOPYRIMIDONE DERIVATIVE

Sandip S. Patole

DOI: <https://doi.org/10.5281/zenodo.18171437>

Author affiliation:

Department of Chemistry,
S.S.V.P.S's Arts Commerce
and Science College
Shindkheda, Dist-Dhule
Maharashtra, India, 425406

E-mail:

patolesandip358@gmail.com

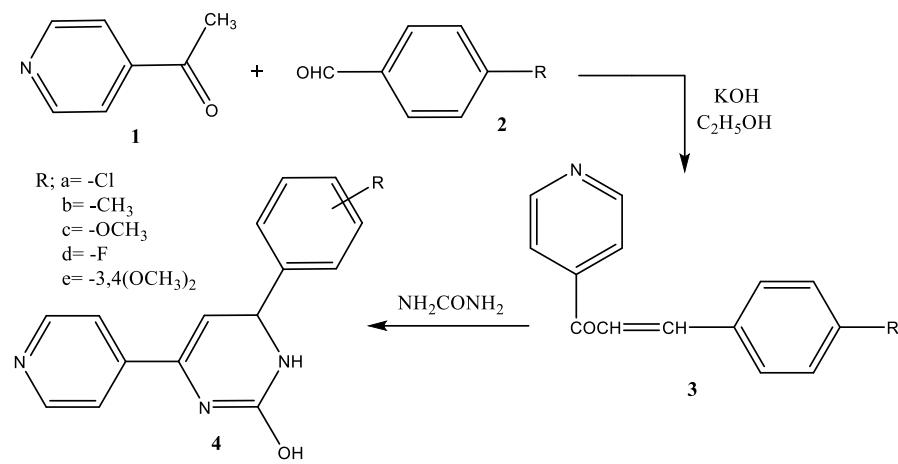
© Copyright: 2024 | This is
an open access article under
the terms of the Bhumi
Publishing, India

ABSTRACT:

In this study some important methods of synthesis of pyrimidine and thiopyrimidone have reviewed. The Six member heterocycles are an important class of heterocyclic compounds like thiopyrimidone which contains four carbon atoms and two nitrogen in their ring structure. The pyrimidone base i.e. Thymine, Cytosine, and Uracil are important building block of nucleic acid DNA and RNA such enormous naturally occurring structural entities make them valuable molecule in heterocyclic synthesis.

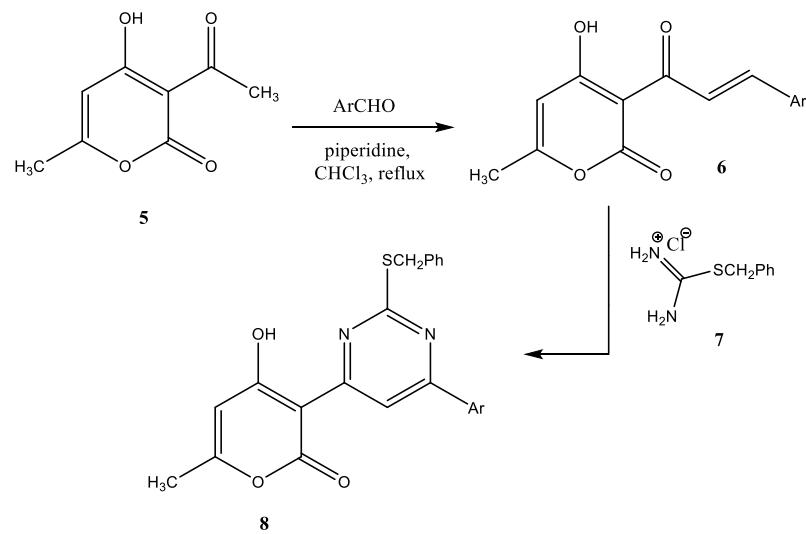
KEYWORDS: Pyrimidine, Thiopyrimidine, Urea, Thiourea, Chalcones.

INTRODUCTION:

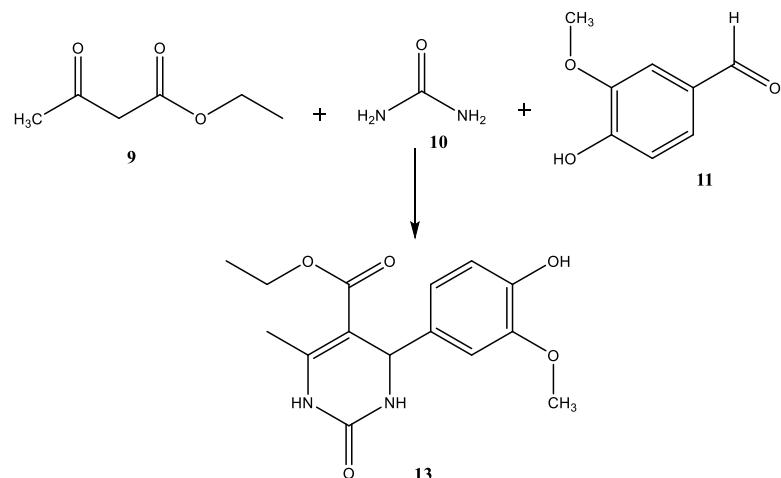

The pyrimidone or pyrimidine is one of the simple members of pyrimidone family. It is heterocyclic compounds which consist of four carbon atom and two nitrogen atoms in their cyclic ring structure. The pyrimidine was isolated between 1837 and 1864. Some important and well known biologically valuable compounds are Cytosine, Thymine, and Uracil. The Cytosine is very important nitrogenous base derived from pyrimidine which is present in nucleic acid. The pyrimidone molecule has Antitubercular activity [1-3], Antibacterial activity [4-5] some of its derivatives act as Antianginal drug [6] particularly used in the treatment of heart disease usually occurs due to not sufficient blood flow to heart. The compound containing pyrimidone functionality shows Antihypertensive effect [7] and Antiplatelet and Antithrombic activity [8] particularly used for preventing myocardial infarction and to reduce formation of blood clot [9].

The dihydropyrimidone was synthesized by Chemist Biginelli by using condensation reaction of 1, 3 dicarbonyl compound, benzaldehyde and urea this result in to pyrimidone derivative similarly pyrimidonethione have been synthesized by this method but thiourea is used in place of urea. The Six member heterocycles are an important class of heterocyclic compounds like thiopyrimidone which contains thio carbonyl group , four carbon atom and two nitrogen in their ring structure.

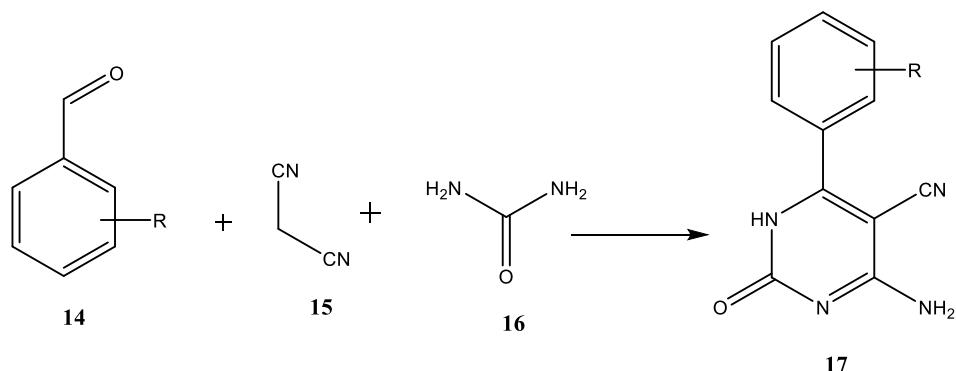
The compounds built-in thiopyrimidone nucleus served as Anti-histamine [10], antimalarial [11] Analgesic Antipyretic drug [12]. The important classes of pyrimidine derivatives are pyrimidine-thione


and its derivatives in these compounds the ring thiocarbonyl sulphur atom is serve as an interesting replacement for existing ring carbonyl oxygen atom of pyrimidone thus thiopyrimidone derivatives used in the preparation of Inhibitor of hepatitis C virus [13] and used for treatment of hepatitis. The thiopyrimidone have cytotoxic effect [14] and also act as chemotherapeutic agent and have remarkable antitumor activities used as anti-cancer [15-16]. Some synthetic methods of pyrimidine and thiopyrimidone are reviewed here in schemes.

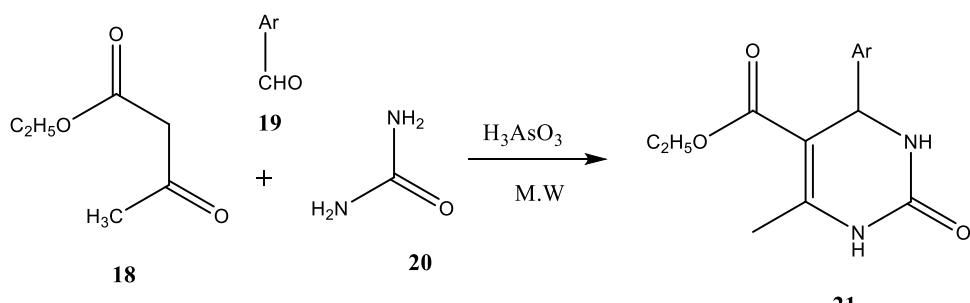
Monica Kachroo, Rakesh Panda *et al* [17] have been extensively studied and developed Method of synthesis of pyrimidine **4** by reaction of Pyridinyl ketone **1** substituted benzaldehyde **2** in presence of potassium hydroxide converted in to an intermediate chalcone **3** which on further treatment with urea afforded to di phenyl substituted pyrimidine **4** shown in (Scheme-1).


SCHEME 1

Navgeet Kaur, Ajay K Agarwal *et al* [18] extensively studied devised synthesis of benzylthiopyrimidin-4-yl-4- pyran-2-one **8** by reaction of precursor 3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one **5** with benzaldehyde in presence of piperidine as base resulted in to chalcone derivative **6** which on further reacted with 2-benzylisothiouronium chloride **7** resulting in to formation of compound **8** shown in (Scheme-2)

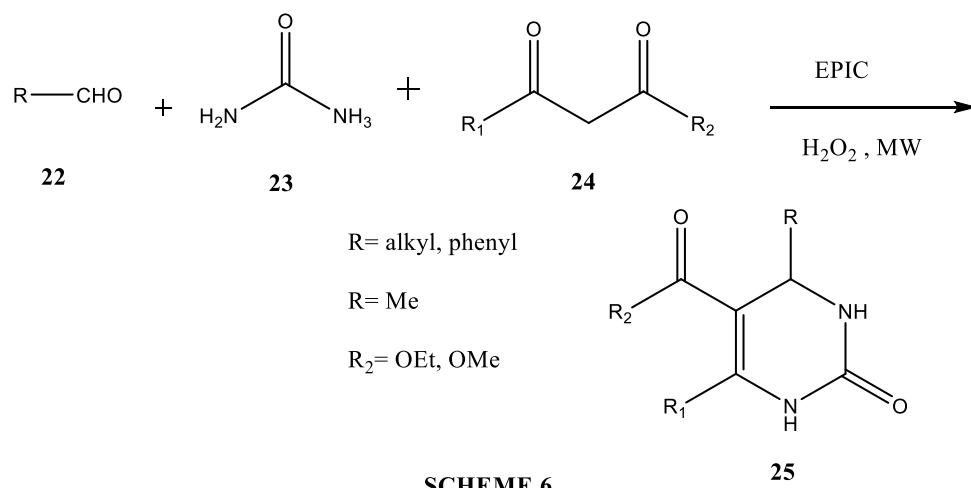

SCHEME 2

Kappe C O and Co-worker [19] carried out multi component synthesis of pyrimidone derivative by reaction of ethyl acetoacetate **9**, Urea **10** and 4-hydroxy-3-methoxy beanzaldehyde **11** converted in to pyrimidine derivative **12** shown in (Scheme-3)

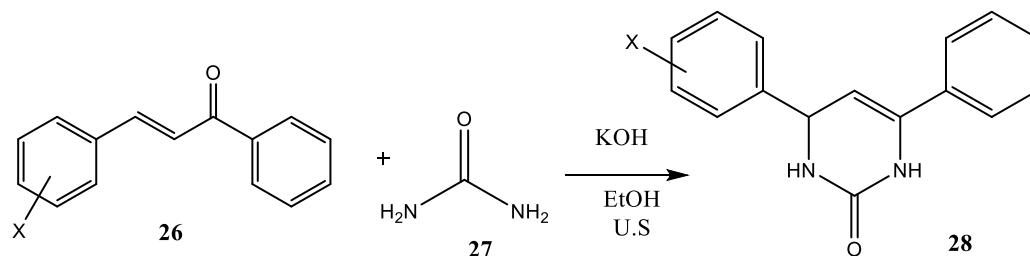

SCHEME 3

Dhongade SR, Divate V A, *et al*[20] attempted synthesis of phenyl substituted pyrimidine derivative by three component reaction of substituted benzaldehyde with **14**, Methylene dinitrile **15** and Urea **16** furnished in to compound **17** shown in (Scheme-4)

SCHEME 4

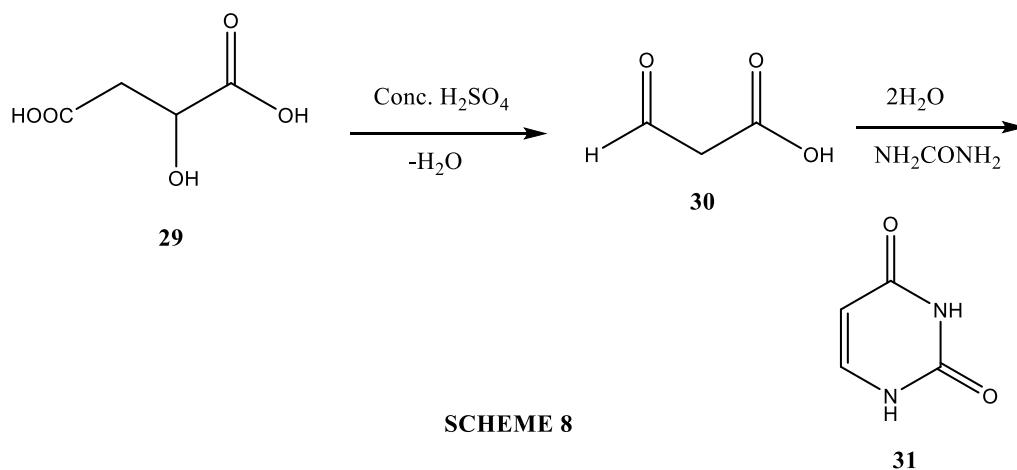

P A Patil, R P Bhole, *et al*[21] have developed new method of synthesis of pyrimidine derivative **21** by reaction of acetoacetic ester **18** benzaldehyde **19** and urea **20** in presence of arsenic acid upon microwave irradiation formation of compound **21** shown in (Scheme-5)

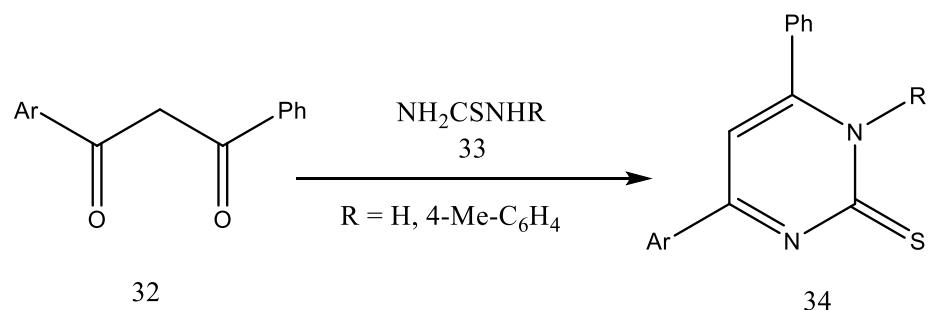
SCHEME 5


Makone Sangita Sanjay *et al* [22] have developed new synthetic protocol of synthesis of substituted pyrimidine derivative by multicomponent reaction of aldehyde **22** Urea **23** and dicarbonyl

compound 24 in presence of EPIC catalyst and irradiated with microwave afforded to compound **25** shown in (**Scheme-6**)

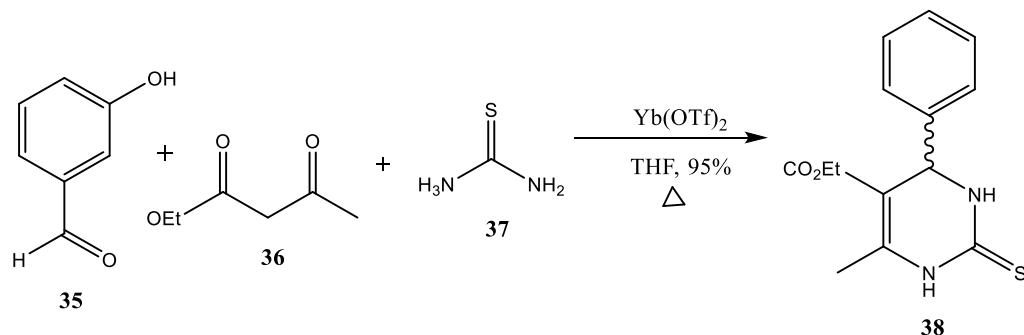
SCHEME 6


Javad Safaei-Ghomi, Mohammad Ali Ghasemzadeh *et al* [23] the ultra sound synthetic method has been developed for synthesis of phenyl substituted pyrimidine derivative. In protocol chalcone **26** and urea **27** have sonicated under ultrasound irradiation in presence of base KOH result in the formation of compound **28** shown in (**Scheme-7**)

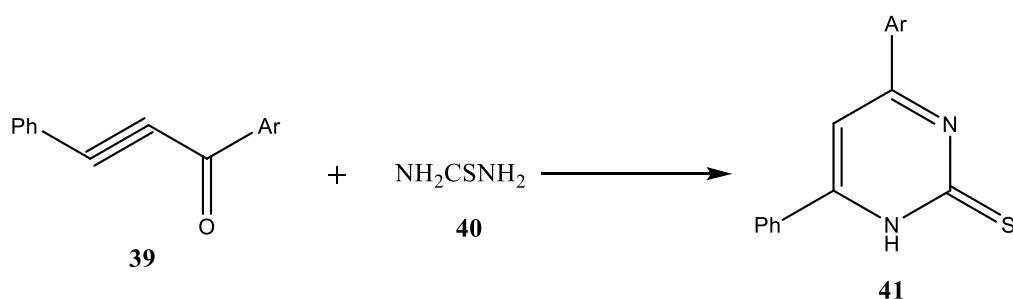

X=a=H, b=2-CH₃, c= 3-CH₃, d=4-CH₃, e=2-OCH₃, f=4-OCH₃, g=2,4-OCH₃, h=N(Me)₂

SCHEME 7

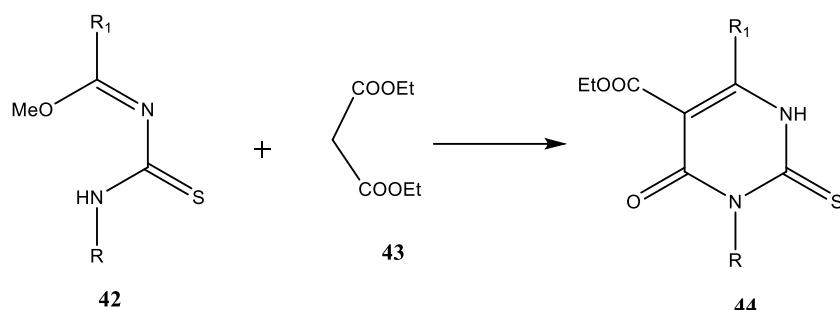
Method due to Rao N V, N Vaisalini *et al* [24] have developed synthesis of pyrimidine starting from precursor 3-hydroxy butanoic acid **29** which have been converted into compound **30** which have further condensed with urea afforded to pyrimidone **31** shown in (**Scheme-8**)



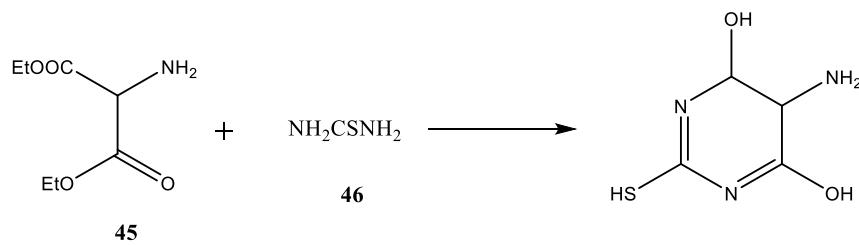
Method due to Utala P S, Raghuwanshi P S *et al* [25] have devised synthesis of N-substituted pyrimidone thione by reaction of dicarbonyl compound **32** with N-substituted thio urea **33** resulted in the formation of compound **34** shown in (Scheme-9)


SCHEME 9

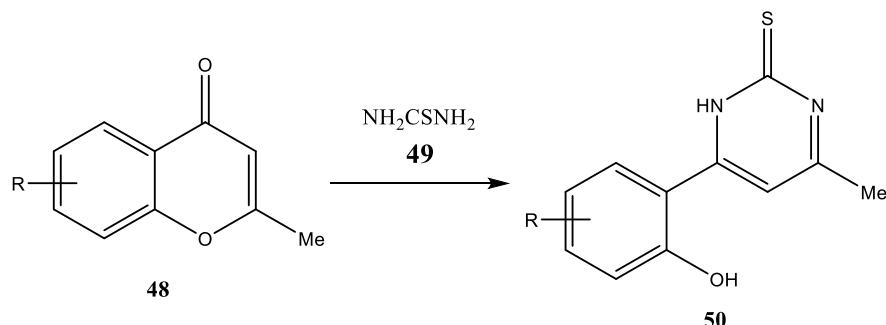
Method due to Dondoni A, Massi A, *et al* [26] designed synthesis of thiopyrimidone derivatives by three component reaction of Meta hydroxyl benzaldehyde **35** ethyl acetoacetate **36** and thiourea **37** in presence of Ytterbium(II) Triflate as a catalyst in THF as solvent resulted in the formation thiopyrimidone derivatives **38** shown in (**Scheme-10**)


SCHEME 10

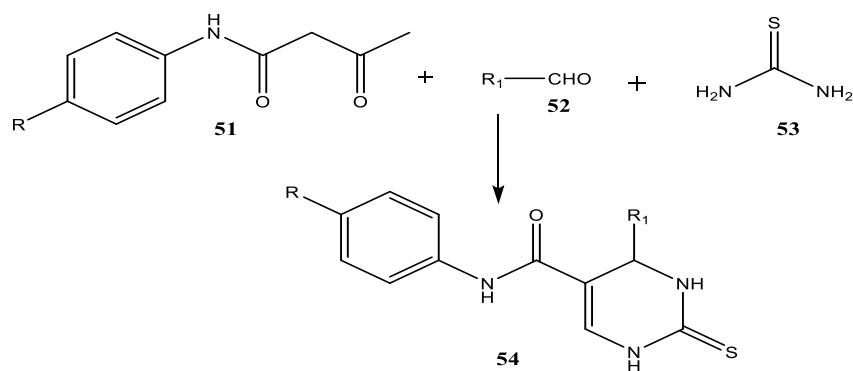
Cupta V S, Huennekens F M. *et al* [27] have developed simple method of synthesis of pyrimidinethione by reaction of alkyne ketone **39** with Thiourea **40** afforded to compound **41** shown in (Scheme-11)


SCHEME 11

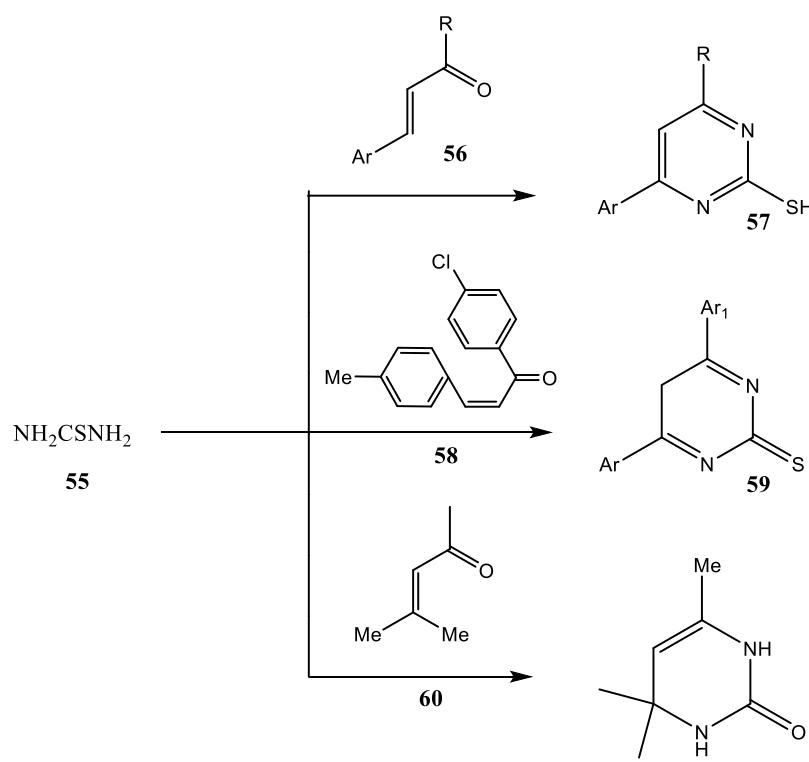
Krech J., Miguel Z A, et al [28] have developed new method of synthesis of pyrimidone thione derivative in this protocol substituted thio urea **42** on treatment with diester **43** coonverted in to compound **44** shown in (**Scheme-12**)


SCHEME 12

Coenen H H, Olsson R A *et al* [29] have devised synthesis by reaction of diethyl 2-aminomalonate **45** with thiourea **46** upon condensation furnished in to compound **47** shown in (Scheme-13)


SCHEME 13

Method due to Ibrahim S S *et al* [30] have developed method of synthesis from 2-methyl-4H-chromen-4-one **48** which on further treatment with thiourea **49** converted in to compound **50** shown in (Scheme-14)


SCHEME 14

K Venkatesan *et al* [31] have developed new method of synthesis of pyrimidine thione derivative by condensation of three component 3-oxo-N-phenylbutanamide **51** aldehyde **52** and thiourea **53** converted in to compound **54** shown in (Scheme-15)

SCHEME 15

Khalaf Z H, Yanni A S *et al* [32] have developed synthesis of various thioperimidone derivatives from thiourea is an important precursor. Thiourea on treatment with chalcone **56**, **58** and **60** converted in to pyrimidine thione derivative **57**, **59** and **60** respectively shown in (**Scheme-16**)

SCHEME 16

CONCLUSION:

This review throws light from starting of isolation of pyrimidone in 1873 to synthesis of pyrimidine derivative by Chemist Biginelli and then by various researchers has developed synthetic protocols. Which includes conventional non-conventional synthesis, microwave assisted synthesis and ultrasound assisted synthesis of pyrimidone and thiopyrimidone derivatives. Starting compounds like chalcone and dicarbonyl compounds simply undergoes ring closure reaction with reagents like urea and thiourea lead to formation of heterocyclic which resemble building block of biomolecule like DNA and RNA. The research on pyrimidone and thiopyrimidone has grater greater importance in pharmacy and modern drug development.

REFERENCES:

1. Elumalai, K., Karthikeyan, *et al.* (2013). Novel isoniazid cyclocondensed 1,2,3,4-tetrahydropyrimidine derivatives for treating infectious disease: A synthesis and in vitro biological evaluation. *Journal of Acute Disease*, 2(4), 316–321.
2. Patil, P. A., *et al.* (2009). Synthesis of 3,4-dihydropyrimidine-2(1H)-one derivatives using microwave for their biological screening. *International Journal of Chemical Technology Research*, 1(2), 373–384.
3. Chaudhari, P. K., Pandey, A., & Shah, V. H. (2010). Synthesis and biological studies of 1,2,3,4-tetrahydropyrimidine derivatives. *Oriental Journal of Chemistry*, 26(4), 1377.

4. Rao, N. S., *et al.* (2012). Synthesis and antibacterial activity of novel imidazo[1,2-a]pyrimidine and imidazo[1,2-a]pyridine chalcone derivatives. *Der Pharma Chemica*, 4(6), 2408–2415.
5. Nagaraj, A., & Reddy, C. S. (2008). Synthesis and biological study of novel bis-chalcones, bis-thiazines and bis-pyrimidines. *Journal of the Iranian Chemical Society*, 5(2), 262–267.
6. Lavilla, R. (2002). Recent developments in the chemistry of dihydropyridines. *Journal of the Chemical Society, Perkin Transactions 1*, 9, 1141–1156.
7. Atwal, K. S., *et al.* (1991). Dihydropyrimidine calcium channel blockers: 3. Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. *Journal of Medicinal Chemistry*, 34(2), 806–811.
8. Bruno, O., *et al.* (2004). Synthesis and pharmacological evaluation of 5H-benzopyrano[4,3-d]pyrimidines effective as antiplatelet/analgesic agents. *Bioorganic & Medicinal Chemistry*, 12(3), 553–561.
9. Lettino, M., *et al.* (2017). Antiplatelet and antithrombotic treatment for secondary prevention in ischaemic heart disease. *European Journal of Preventive Cardiology*, 24(3 Suppl.), 61–70.
10. Rahaman, S. A., *et al.* (2009). Synthesis and anti-histaminic activity of some novel pyrimidines. *Saudi Pharmaceutical Journal*, 17(3), 255–258.
11. Agarwal, A., *et al.* (2005). Synthesis of 4-pyrido-6-aryl-2-substituted amino pyrimidines as a new class of antimalarial agents. *Bioorganic & Medicinal Chemistry*, 13(22), 6226–6232.
12. Keri, R. S., *et al.* (2010). Analgesic, antipyretic and DNA cleavage studies of novel pyrimidine derivatives of coumarin moiety. *European Journal of Medicinal Chemistry*, 45, 2597–2605.
13. Sawant, R. L., *et al.* (2011). 3D-QSAR analysis of 5-cyano-6-aryl-2-thiouracil as inhibitors of hepatitis C viral NS5B RNA-dependent RNA polymerase. *Der Pharma Chemica*, 3(2), 88–95.
14. Ajitha, M., Rajnarayana, K., & Sarangapani, M. (2011). Synthesis and evaluation of new 3-substituted-[3,4-dihydropyrimidinones]-indolin-2-ones for analgesic activity. *International Research Journal of Pharmacy*, 2(7), 80–84.
15. Mohamed, M. S., Awad, S. M., & Ahmed, N. M. (2012). Anticancer activities of 6-aryl-5-cyano-2-thiouracil derivatives. *Pharma Research*, 6, 54–60.
16. Ivkovic, B. M., *et al.* (2013). Phenylpropiophenone derivatives as potential anticancer agents: Synthesis, biological evaluation and QSAR study. *European Journal of Medicinal Chemistry*, 63, 239–255.
17. Kachroo, M., Panda, R., & Yadav, Y. (2014). Synthesis and biological activities of some new pyrimidine derivatives from chalcones. *Der Pharma Chemica*, 6(2), 352–359.
18. Kaur, N., Aggarwal, A. K., Sharma, N., & Choudhary, B. (2012). Synthesis and in-vitro antimicrobial activity of pyrimidine derivatives. *International Journal of Pharmaceutical Sciences and Drug Research*, 4(3), 199–204.
19. Kappe, C. O. (2000). Recent advances in the Biginelli dihydropyrimidine synthesis: New tricks from an old dog. *Accounts of Chemical Research*, 33(12), 879–888.

20. Divate, V. A., Shetake, P., & Dhongade, S. R. (2013). An efficient microwave-assisted multicomponent synthesis of substituted pyrimidines as antineoplastic and alopecia agents. In National Conference on Drug Design and Discovery (pp. 4–8).
21. Patil, P. A., Bhole, R. P., Chikhale, R. V., & Bhusari, K. P. (2009). Synthesis of 3,4-dihydropyrimidine-2(1H)-one derivatives using microwave for biological screening. International Journal of Chemical Technology Research, 1(2), 373–384.
22. Sanjay, M. S., Yeshwantrao, B. L., & Nivruttirao, N. S. (2011). Simple one-pot synthesis of 3,4-dihydropyrimidin-2-ones under microwave irradiation using EPIC catalyst. Journal of Materials Science and Engineering A, 1(2A), 219.
23. Safaei-Ghom, J., & Ghasemzadeh, M. A. (2010). An efficient route to the synthesis of pyrimidine-2-ones under ultrasound irradiation. Digest Journal of Nanomaterials and Biostructures, 5(2).
24. Rao, N. V., *et al.* (2014). An overview on synthesis and biological activity of pyrimidines. Chemical Informer, 45(31), 14–22.
25. Abdel Megid, M., ElMahdy, K. M., & Rashad, A. E. (2013). Synthesis and application of pyrimidinethiones. Global Journal of Science Frontier Research, 13(7).
26. Dondoni, A., Massi, A., & Sabbatini, S. (2002). Improved synthesis and preparative scale resolution of racemic monastrol. Tetrahedron Letters, 43(34), 5913–5916.
27. Gupta, V. S., & Huennekens, F. M. (1967). Thymyl derivatives of tetrahydrofolate. Biochemistry, 6(7), 2168–2177.
28. Abdel Megid, M., ElMahdy, K. M., & Rashad, A. E. (2013). Synthesis and application of pyrimidinethiones. Global Journal of Science Frontier Research, 13(7).
29. Coenen, H. H., & Olsson, R. A. (2006). European Journal of Medicinal Chemistry, 47(7).
30. Ibrahim, S. S. (1996). Conversion of 2-methylchromones to pyrimidine derivatives. Biological Sciences-PJSIR, 39(9–12), 161–166.
31. Venkatesan, K., Satyanarayana, V. S. V., & Sivakumar, A. (2016). Synthesis of pyrimidine carboxamide derivatives catalyzed by uranyl nitrate hexahydrate with antibacterial and antioxidant studies. Bulletin of the Chemical Society of Ethiopia, 30(1), 119–128.
32. Khalaf, Z. H., Yanni, A. S., Abel-Hafez, A. A., & Khalaf, A. A. (1990). Journal of the Indian Chemical Society, 67, 821.