

**RESEARCH ARTICLE**

## **A STUDY OF AI-BASED ADAPTIVE LEARNING MODELS FOR PERSONALISED EDUCATION**

**Soly Zachariah**

Pillai College of Arts, Commerce & Science (Autonomous), New Panvel

Corresponding author E-mail: [solyz@mes.ac.in](mailto:solyz@mes.ac.in)

---

**DOI:** <https://doi.org/10.5281/zenodo.18102471>

---

**Abstract:**

This study explores the design, implementation, and impact of an AI-driven adaptive learning system aimed at delivering personalized education. The study uses artificial intelligence to analyze student performance, learning behaviour, and progress in real time to dynamically modify content difficulty, generate personalized learning paths, and provide instant feedback. Using insights from existing adaptive learning platforms, the research outlines a structured approach involving goal-setting, learner analysis, AI model training, pilot testing, and continuous refinement. Findings from referenced studies indicate that adaptive systems significantly improve student engagement, accessibility, and learning outcomes by tailoring content to individual needs. However, challenges such as data privacy risks, algorithmic bias, high implementation costs, and the need for teacher training remain critical barriers to large-scale adoption. This research highlights the potential of AI-driven adaptive learning to transform traditional education models while emphasizing the importance of ethical data practices and balanced human–AI collaboration. The study concludes that while adaptive learning systems offer substantial benefits, their long-term success depends on responsible implementation, ongoing evaluation, and equitable access.

**Keywords:** AI Driven Adaptive Learning, Personalized Education, AI Model Training, Human - AI Collaboration Must Address Ethical, Data-Quality, And Regulatory Issues To Enable Safe, Equitable Implementation.

---

**Introduction:**

An AI-driven adaptive learning system for personalized education is a technology that uses artificial intelligence to customize learning materials and experiences in real-time to meet the unique needs, pace, and progress of each individual student. It analyses a student's performance and behavior to dynamically adjust the difficulty of content, offer instant feedback, and create personalized learning paths to improve engagement and learning outcomes.

**Literature Review:**

Research in recent years highlights the rapid expansion of technology-enhanced learning, especially through AI-powered adaptive learning systems. The study by Marianus Dabingaya highlights how these platforms personalize results that have been shown to significantly improve student engagement, increase time spent on learning tasks, and support better academic performance in fields like mathematics.

The study conducted by Nandang Mustafa emphasizes traditional learning methods to have significant benefits when backed with the Artificial Learning (AL) model. The traditional teaching methods involve engagement and responsiveness by a skilled human teacher which can't be matched by the AI driven systems. AL model helps learners by personalizing learning patterns, prediction of student requirements and providing better understanding of subjects. However, as this technology continues to evolve, its role in reshaping personalized education is expected to grow even more prominent.

**Problem Statement:**

In the era of AI-powered adaptive learning systems, the educational environment is advancing, yet lacks data regarding their efficacy in raising student engagement and learning results in the field of mathematics. Additionally, there's not much study on how these platforms are designed, how the system can be implemented and scaled in order that it ensures ethical use and long-term effectiveness. Detailing of how the AL system should be approached is missing. Therefore, this research seeks to determine various ways to design, implement and approach the AL systems in order to maximize the best use of tech assistance for personalized learning not just for students but also how such platforms can be used by educators for optimum utilisation of the modern AL based systems.

**Discussions:****1. Key Characteristics of AL Models:**

AI-driven adaptive learning systems are designed to personalize education by continuously adjusting instructional content to meet each learner's needs. These systems modify the complexity and type of material in real time based on student performance, offering foundational support when a learner struggles and introducing advanced challenges when they excel. They also provide immediate feedback and customized hints, enabling students to correct mistakes quickly and strengthen understanding. By generating individualized learning paths that reflect each student's strengths, weaknesses, and learning style, adaptive systems ensure that lessons remain both relevant and appropriately challenging. Additionally, these platforms collect and analyze student interaction data, giving educators valuable insights into individual and group progress. Unlike traditional one-size-fits-all methods, adaptive learning technologies offer a flexible and efficient learning experience tailored to every user. Popular examples include Duolingo, which adjusts language tasks based on proficiency; DreamBox Learning, which adapts math lessons to a student's pace; SmartSparrow, which modifies content in real time; and Knewton, a platform that delivers personalized content and feedback to enhance learning outcomes.

## **2. Advantages and Disadvantages:**

AI-driven adaptive learning systems present a range of pedagogical and operational benefits that make them increasingly valuable in modern education. These systems generate personalized learning paths by adjusting content and pacing to match individual student needs and learning styles, while providing real-time feedback that enables learners to correct errors promptly and deepen conceptual understanding. Their ability to tailor content also increases student engagement and supports accessibility for diverse learners, including those with disabilities. For educators, such systems offer significant efficiencies by automating administrative tasks like grading and producing data-driven insights that help identify learning gaps and inform targeted interventions.

Despite these advantages, AI-driven adaptive learning systems pose several challenges. The extensive data collection they require raises concerns regarding student data privacy and security, and the algorithms used may introduce or reinforce biases, potentially creating inequitable learning experiences. Furthermore, excessive dependence on AI risks diminishing essential human elements in education, such as creativity, emotional support, and teacher–student interaction. Issues of equity and access also persist, as not all institutions or learners may have the technological resources to implement these systems effectively. Additionally, successful integration requires substantial teacher training, and the high cost of adoption and long-term maintenance remains a barrier for many educational institutions.

## **3. Approaching AI Based Personalized Learning Systems:**

To approach AI-driven adaptive learning systems, start by defining goals and understanding learner needs, then select a suitable platform and create adaptable content. Next, train AI models with data and set personalization parameters before conducting pilot testing. Finally, monitor performance, gather feedback, and plan for continuous improvement and scaling.

### **3.1. Planning and Design**

The planning and design phase of implementing an AI-driven adaptive learning system begins with clearly defining the goals of personalized learning to ensure they align with broader educational or organizational objectives. It is essential to thoroughly understand the learners by analyzing their needs, abilities, and learning styles, as this information forms the foundation for effective personalization. Selecting an appropriate AI platform is another key step, requiring careful evaluation of its ability to support the desired level of customization and seamless integration into existing systems. Additionally, educational content must be thoughtfully created or adapted to be dynamic, modular, and compatible with AI-driven adjustments, allowing the system to modify learning materials in real time based on student performance.

### **3.2. Implementation and Training**

In the implementation and training stage of an AI-driven adaptive learning system, the first step is to train the AI models using relevant data that reflects learner performance, behaviors, and learning goals. This data enables the algorithms to understand patterns and make accurate personalization decisions. Once the model is trained, personalization parameters must be set to guide how the system adjusts content, difficulty levels, and learning pace for individual students. These configurations ensure that the AI responds appropriately to diverse learner needs. Before full deployment, a small-scale pilot

test is conducted to evaluate the system's functionality, identify technical or instructional issues, and gather initial user feedback. This pilot phase is crucial for refining the system and ensuring it performs effectively in real-world learning environments.

### **3.3. Operation and Improvement**

In the operation and improvement phase, the AI-driven adaptive learning system is continuously monitored to track student progress, engagement, and overall performance. Data analytics are used to identify learning trends, strengths, and gaps that may require intervention. Feedback from both learners and instructors is gathered regularly to understand their experiences and pinpoint areas that need refinement. Based on this data and feedback, necessary adjustments are made to enhance the AI models, update learning content, and improve the user interface for a smoother learning experience. Throughout this process, ensuring strong data privacy and security remains essential to protect sensitive learner information and maintain trust in the system.

### **3.4. Scaling and Long-Term Strategy**

In the scaling and long-term strategy phase, the system is expanded to a larger audience after a successful pilot, ensuring that more learners can benefit from its adaptive capabilities. Clear communication with all stakeholders—such as students, parents, teachers, and administrators—is essential to keep them informed about how the system works and the advantages it offers. As the educational landscape and technology continue to evolve, it is important to remain flexible and ready to adapt the system to emerging tools, updated learning needs, and future improvements. This long-term approach ensures that the adaptive learning system stays effective, relevant, and sustainable over time.

## **4. Tech Assistance:**

Developing an AI-driven adaptive learning system requires a specialized technology stack and a clear development strategy. Technical assistance would involve expertise in machine learning, data analytics, robust backend architecture, and educational content design. To use an AI-driven adaptive learning system effectively, students should engage with the content, actively participate in assessments, and leverage the instant feedback and personalized support. Educators can use the system to set clear goals, identify individual needs, and track progress to provide targeted intervention and support.

### **4.1. For Students:**

The effective use of an AI-driven adaptive learning system begins with active engagement, as the system relies on their interactions to personalize the learning experience. Completing exercises, exploring content, and participating regularly enable the AI to understand individual needs more accurately. Students should also make full use of the instant feedback provided, which helps them quickly recognize mistakes and strengthen their understanding. When the system recommends additional resources such as videos or practice materials, students are encouraged to use them since these suggestions are tailored specifically to areas where improvement is needed. Asking questions through available chatbots or virtual assistants can provide immediate support when concepts become

challenging. Additionally, setting clear learning goals allows the AI to create a more focused and effective learning path that aligns with the student's personal objectives.

#### **4.2. For Educators:**

The effective use of an AI-driven adaptive learning system begins with setting clear learning objectives to ensure the system's content and activities align with intended educational goals. By leveraging AI analytics, teachers can identify individual learning gaps, performance patterns, and even social-emotional needs, enabling more informed instruction. Adaptive assessments generated by the AI allow difficulty levels to adjust based on student performance, providing a fair challenge while offering accurate insights into progress. Educators can use this data to provide targeted interventions for students who require additional support. Alongside the AI tools, teachers should encourage collaboration and maintain meaningful human interaction to enrich the learning experience. It is essential for educators to stay actively involved by consistently monitoring student engagement and progress, ensuring that the irreplaceable human elements of empathy, creativity, and mentorship remain central to the learning process.

#### **Research Gap:**

Although AI-driven adaptive learning systems offer personalized educational experiences, the existing study does not account for several crucial factors that significantly influence a student's ability to benefit from such technologies. The research overlooks the financial limitations that may restrict access to digital devices or stable internet, as well as social and cultural barriers that can affect students' interaction with AI-based platforms. Additionally, personal challenges such as motivation, emotional well-being, or differences in home learning environments are not considered, even though they play an important role in shaping learning outcomes. This gap highlights that effective personalization requires not only technological adaptation but also a deeper understanding of the broader contexts in which students learn.

#### **Conclusions:**

This study demonstrates how AI-driven adaptive learning systems have enormous potential to change education by providing individualised, dynamic, and data-driven learning opportunities. The results show that these technologies increase academic achievement, especially in mathematics instruction, by increasing student engagement, offering real-time feedback, and supporting individualised learning paths. Although the technology appears promising, its efficacy is impacted by a number of external issues that the study did not address, such as the financial, social, cultural, and personal difficulties faced by students, which may restrict equal access and the best possible usage of AI-based platforms. It is crucial for educators and policymakers to strike a balance between technology innovation and an awareness of the varied circumstances of learners as more institutions think about incorporating adaptive learning technologies.

In order to ensure that AI-powered personalised education becomes not only efficient and effective but also inclusive, moral, and invaluable for every student, long-term research that takes these larger elements into account is required.

**References:**

1. Alam, A. (2021). Possibilities and apprehensions in the landscape of artificial intelligence in education. *2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)*, 1–8. <https://doi.org/10.1109/ICCICA52458.2021.9697272>
2. Dabingaya, M. (2022). Analyzing the effectiveness of AI-powered adaptive learning platforms in mathematics education. *Interdisciplinary Journal Papier Human Review*, 3(1), 1–7. <https://doi.org/10.47667/ijphr.v3i1.226>
3. Hwang, G. J., & Tu, Y. F. (2021). Roles and research trends of artificial intelligence in mathematics education: A bibliometric mapping analysis and systematic review. *Mathematics*, 9(6), 584. <https://doi.org/10.3390/math9060584>
4. Mustafa, A. N. (2024). The future of mathematics education: Adaptive learning technologies and artificial intelligence. *International Journal of Science and Research Archive*, 12(1), 2594–2599. <https://doi.org/10.30574/ijsra.2024.12.1.1134>
5. Ocaña-Fernández, Y., Valenzuela-Fernández, L. A., & Garro-Aburto, L. L. (2019). Artificial intelligence and its implications in higher education. *Propósitos y Representaciones*, 7(2), 536–568. <http://dx.doi.org/10.20511/pyr2019.v7n2.274>
6. Saleem, S. (2024). AI in education: Personalized learning systems and their impact on student performance and engagement. *The Critical Review of Social Sciences Studies*, 3(1). <https://www.researchgate.net/publication/389491063 AI in Education Personalized Learning Systems and Their Impact on Student Performance and Engagement>