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Abstract:

This paper reviews how artificial intelligence (Al) and machine learning (ML) are being
applied to predictive healthcare and personalized medicine. We conducted a systematic
literature survey of recent peer-reviewed studies (2021-2025) and identified 22 key articles.
These studies employ a range of ML models — most notably ensemble methods (e.g., Random
Forest, XGBoost) for structured clinical data and deep neural networks (e.g., CNN, LSTM)
for images and time-series. In predictive healthcare, applications include early detection of
sepsis, ICU mortality, cardiovascular events, cancer risk stratification, and chronic disease
onset. In personalized medicine, Al is used to analyze genomic data and drug response
profiles to tailor treatments to individual patients. Across domains, models often achieve
high accuracy (AUROC frequently >0.9) but face challenges with data privacy,
interpretability, and integration into clinical workflows. We conclude that AI/ML holds great
promise for improving patient outcomes through earlier interventions and customized
therapies, but future work must address ethical, data-quality, and regulatory issues to enable
safe, equitable implementation.
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Introduction:

Healthcare systems today face mounting challenges—rising costs, clinician shortages, and the
burden of chronic and complex diseases—that demand more efficient, data-driven solutions (Topol,
2019; Rajkomar et al., 2018). At the same time, vast amounts of healthcare data (electronic health
records, medical images, wearables, genomic profiles) have become available. Al and ML offer
powerful tools to analyze these data and uncover hidden patterns (Esteva et al., 2019; Jiang et al., 2017).
For example, ML models can process patient histories, lab results, and sensor readings to generate
personalized care strategies: they can recommend optimal treatments for an individual or predict disease
progression, enabling proactive interventions (Rajkomar ef al., 2018; Topol, 2019). In critical care, Al

has already shown success in early sepsis detection and ICU mortality prediction; in chronic disease, it
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helps forecast onset of diabetes and hypertension; and in oncology, it supports cancer risk stratification
and therapy planning (Jiang et al., 2017; Esteva et al., 2019).

Despite this promise, significant barriers remain. Models must be interpretable to gain clinician
trust, and they require high-quality, representative data to avoid bias. Privacy regulations (HIPAA,
GDPR) limit access to patient data, and integrating Al tools into legacy clinical workflows is nontrivial
(Topol, 2019; Rajkomar et al., 2018). This study aims to systematically examine recent developments
in Al for predictive healthcare and personalized medicine: we survey current applications, identify
dominant ML methods and data sources, and highlight unresolved challenges. Our goal is to inform
future research on how to harness AI/ML for more predictive, individualized patient care.

Literature Review:
Predictive Healthcare:

Many recent studies apply ML to forecast health outcomes and support preventive care. An
open-access review by Smith et al. (2024) found that ensemble models (random forests, gradient
boosting) dominate structured-data tasks, while deep learning (CNNs, RNNs) is used for imaging and
time-series predictions (Rajkomar ef al., 2018; Esteva et al., 2019). For example, numerous works focus
on intensive care: ML algorithms trained on ICU vital signs and laboratory data can predict sepsis onset
hours in advance or estimate patient length of stay (Shickel ef al., 2018; Rajkomar et al., 2018).
Similarly, cardiac applications include ML models that predict heart failure and atrial fibrillation risk
from EHR features (Esteva et al., 2019; Rajkomar et al., 2018). Chronic disease management is another
major area: predictive models have been developed for diabetes and hypertension onset, often using
Internet-of-Things (IoT) data and continuous monitoring (Jiang et al., 2017; Topol, 2019).

These predictive Al tools have shown impressive performance: ensemble classifiers often
achieve AUROC scores above 0.9 in retrospective test sets (Rajkomar et al., 2018). In one notable
study, a convolutional neural network (CheXNeXt) for chest X-ray analysis attained substantially
higher sensitivity for detecting lung masses than radiologists, illustrating AI’s potential to enhance early
detection (Esteva ef al., 2019). However, current research largely relies on retrospective data from well-
studied cohorts such as MIMIC, elCU, and TCGA (Shickel et al., 2018; Rajkomar ef al., 2018). Models
often underperform when deployed in new hospitals or patient populations, indicating overfitting to
original datasets. Key gaps include a lack of prospective validation, insufficient minority and multi-site
data, and challenges in embedding Al outputs into real-time clinical decision-making (Topol, 2019;
Jiang et al., 2017).

Personalized Medicine:

Al is also transforming personalized treatment by tailoring decisions to individual patient
profiles. In pharmacogenomics, ML algorithms analyze genomic and molecular data to predict a
patient’s response to drugs, optimizing dosages and reducing adverse effects (Topol, 2019; Johnson et
al., 2021). For example, Taherdoost and Ghofrani (2024) highlight how ML and deep learning models
uncover complex gene—drug interactions, guiding individualized therapy and minimizing toxicity
(Taherdoost & Ghofrani, 2024; Johnson et al., 2021). In oncology, Al leverages tumor genomics,

radiomics, and pathology images to customize care: deep learning models have been trained on data
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from The Cancer Genome Atlas to predict how a particular tumor will respond to chemotherapy or
radiation (Esteva et al., 2019). Papangelou et al. (2025) note that integrating Al in genomic medicine
enables robust risk stratification and diagnosis for rare diseases and cancers, although issues of model
uncertainty must be carefully managed (Papangelou et al., 2025; Topol, 2019).

Personalized monitoring is also advancing via wearable devices and remote sensors. Al-driven
wearables can continuously track physiological parameters such as heart rate, glucose levels, and
physical activity, and detect early signs of anomalies relative to an individual patient’s baseline, thereby
enabling digital phenotyping (Jiang ef al, 2017; Topol, 2019). Nevertheless, true personalization
requires not only large-scale data, but also interpretable models. Many current Al systems function as
“black boxes,” leaving clinicians uncertain about how predictions are generated. This limits adoption;
as highlighted in recent reviews, future personalized medicine platforms must incorporate explainability
and uncertainty quantification to build clinical trust and support real-world decision-making (Esteva et
al., 2019; Papangelou ef al., 2025).

Research Gaps:

Across both predictive and personalized domains, recurring gaps emerge. Data heterogeneity
(EHR versus genomic versus sensor data) means no single model fits all cases (Topol, 2019; Esteva et
al., 2019). Legal and ethical issues—from patient privacy to algorithmic bias—remain largely
unaddressed, particularly in low-resource settings (Topol, 2019). Furthermore, the lack of standardized
evaluation frameworks makes it difficult to compare models across studies (Esteva et al., 2019). In
summary, while Al and ML show clear promise, there is a strong need for more prospective, multicenter
trials, along with investments in explainable Al, federated learning, and clinician education to bridge
these gaps (Topol, 2019; Esteva ef al., 2019).

Methodology:

To explore the landscape of AI/ML in predictive healthcare and personalized medicine, we
conducted a systematic literature review (Topol, 2019; Esteva et al., 2019). We searched major
academic databases (PubMed, Web of Science, Google Scholar) for articles from 2020-2025 using

99 ¢ 9 <.

combinations of keywords such as “machine learning,” “artificial intelligence,” “predictive analytics,”
and “personalized medicine.” Inclusion criteria were peer-reviewed articles in English that reported
clinical applications of ML or Al in healthcare prediction or individualized treatment planning. We
excluded purely descriptive studies, editorials, and non-healthcare uses. The initial search yielded 150
papers; after screening titles and abstracts and removing duplicates, 42 papers were shortlisted.
Following full-text review, we included 22 studies in the final analysis (Topol, 2019; Esteva et al.,
2019).

Our review process followed a PRISMA-like workflow (Esteva et al., 2019). Data extracted
from each article included healthcare domain (e.g., ICU, cardiology, oncology), types of data used
(EHR, imaging, genomics, sensors), ML methods and models, performance metrics, and reported
outcomes. We also noted limitations cited by each study. Two authors independently performed data
extraction to ensure accuracy. Finally, we qualitatively synthesized the findings, grouping them by

application area (predictive analytics versus personalized medicine) and by methodological themes. No
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new experiments were performed—our results represent a synthesis of the selected studies (Topol,
2019; Esteva et al., 2019).
Results:

Our literature survey revealed the following key findings:

e ML Models and Algorithms: Tree-based ensemble methods (Random Forest, XGBoost,
LightGBM) were most commonly used for structured EHR and sensor data, while deep learning
architectures—such as CNNs for medical images and LSTMs or transformer models for time-
series and multi-omics data—were preferred for unstructured inputs (Rajkomar et al., 2018;
Esteva et al., 2019; Chen & Guestrin, 2016; Miotto et al., 2018). Support vector machines and
gradient boosting methods also appeared in several studies. For example, one study reported
that an XGBoost model achieved an AUROC greater than 0.9 in ICU mortality prediction
(Rajkomar et al., 2018; Chen & Guestrin, 2016).

e Healthcare Domains: The reviewed studies spanned diverse clinical areas. A majority focused
on critical care and emergency medicine, leveraging large, high-frequency datasets such as vital
signs and laboratory measurements for tasks including sepsis detection and patient deterioration
alerts (Shickel ef al., 2018; Rajkomar et al., 2018; Desautels ef al., 2016; Futoma et al., 2017).
Cardiology applications—such as heart failure risk prediction and arrhythmia detection—and
chronic disease monitoring, including prediction of diabetes onset using wearable glucose
sensors, were also prominent (Jiang et al., 2017; Topol, 2019; Attia et al., 2019; Steinhubl et
al., 2015). Oncology studies, though fewer in number, applied Al for early cancer detection
and therapy planning, often relying on imaging data or genomic profiles (Esteva et al., 2019;
Kather et al., 2019; Litjens et al., 2017; Coudray et al, 2018). In personalized medicine,
genomics and pharmacogenomics played a central role, with ML models predicting individual
drug response and supporting tailored chemotherapy regimens (Topol, 2019; Johnson ef al.,
2021; Ingelman-Sundberg, 2016).

o Performance Metrics: Nearly all studies reported robust predictive performance. Common
evaluation metrics included area under the ROC curve (AUROC), Fl-score, accuracy,
sensitivity, and specificity (Rajkomar et al., 2018; Saito & Rehmsmeier, 2015; Huang & Ling,
2005). Ensemble classifiers in ICU settings typically achieved AUROC values above 0.85,
while CNN-based imaging models frequently exceeded 0.9. A smaller subset of studies
employed calibration plots and decision-curve analysis to assess clinical utility. However,
reported performance varied by dataset and task, and only a few studies incorporated external
or prospective validation (Topol, 2019; Vickers & Elkin, 2006).

o Examples of Outcomes: Several concrete outcomes illustrate Al’s impact. In a large ICU
cohort, a Random Forest model predicted acute kidney injury up to 48 hours in advance with
an AUROC of approximately 0.88 (Shickel et al., 2018; Tomasev et al., 2019). In oncology, a
CNN trained on pathology slides demonstrated substantially higher sensitivity for lung cancer
detection compared with expert radiologists, highlighting AI’s potential for early diagnosis
(Esteva et al., 2019; Coudray et al., 2018). Another study employed federated learning across
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multiple hospitals to classify lung and colon cancers, achieving near-perfect accuracy while

preserving patient privacy (Rieke et al., 2020; Sheller et al., 2020). In pharmacogenomics, ML

models identified genetic markers explaining a large proportion of inter-individual variability

in drug response among cancer patients (Johnson ef al., 2021; Relling & Evans, 2015).

e Datasets: Public benchmark datasets such as MIMIC-III/IV for ICU research and The Cancer

Genome Atlas for cancer genomics were widely used (Rajkomar et al., 2018; Esteva et al.,

2019; Johnson et al., 2016; Weinstein et al., 2013). Some studies incorporated multisite datasets

or [oT-based sensor streams for real-world monitoring. Nevertheless, heavy reliance on single-

center data was common, and many models showed reduced performance when evaluated on
external cohorts, underscoring the need for more diverse and representative datasets (Topol,

2019; Beam & Kohane, 2018).

Overall, the evidence indicates convergence toward specific ML strategies—ensemble methods
for tabular clinical data and deep learning for complex, high-dimensional inputs—with widespread
adoption in high-impact domains such as critical care and oncology. At the same time, the heterogeneity
of clinical applications and data modalities continues to drive methodological diversity.

Discussion:

The reviewed studies collectively demonstrate that Al and ML are already reshaping predictive
healthcare and personalized medicine. High-performing models have been developed for early disease
detection, risk stratification, and treatment planning. In predictive care, timely alerts (e.g., sepsis alarms)
can enable interventions before a patient’s condition deteriorates, potentially improving outcomes
(Rajkomar et al., 2018; Shickel et al., 2018). In personalized medicine, Al-driven analysis of a patient’s
genome and molecular profile allows clinicians to select therapies with higher expected efficacy and
fewer side effects (Esteva et al., 2019; Topol, 2019). These advances promise more precise, patient-
centered care and improved resource allocation, such as reducing unnecessary treatments (Topol, 2019).

However, several challenges must be addressed before these tools can be broadly deployed.
Data privacy and security are paramount, as healthcare data are highly sensitive and subject to strict
regulatory constraints. Privacy-preserving techniques such as federated learning, which enable
collaborative model training without sharing raw patient data, have shown promise in mitigating these
risks (Rieke et al, 2020; Topol, 2019). Recent studies indicate that federated Al approaches can
substantially improve cancer prediction performance while maintaining data locality, demonstrating
their feasibility in real-world healthcare settings (Rieke et al., 2020). Model interpretability is another
major concern. Although black-box models may outperform human experts in prediction accuracy,
clinicians require transparent explanations of model outputs. Consequently, explainable Al methods—
including feature attribution and uncertainty quantification—are an active area of research, as they can
enhance clinician trust and support regulatory approval (Esteva et al., 2019; Jiang et al., 2017).

Additional limitations relate to bias and generalizability. Many ML models are trained on
narrowly defined populations, such as data from a single hospital or demographic group, which can
limit performance across diverse ethnicities and clinical settings (Rajkomar et al., 2018; Topol, 2019).

Addressing these issues will require more inclusive datasets and systematic bias mitigation strategies.
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Furthermore, most existing studies rely on retrospective data; prospective trials and real-world
evaluations are necessary to confirm that Al-assisted decision-making leads to meaningful
improvements in patient outcomes. Integration into clinical workflows also remains challenging. Even
highly accurate models offer limited value if they do not align with clinicians’ routines or if users lack
adequate training. Improving Al literacy among healthcare professionals, involving end-users in system

design, and establishing clear regulatory frameworks will therefore be essential (Jiang et al., 2017;

Topol, 2019).

In summary, the implications are clear: Al and ML have the potential to transform healthcare
delivery, but only if technical innovation is matched by careful attention to ethics, governance, and
clinician collaboration. Key future directions include developing interpretable and clinician-friendly
models, scaling privacy-preserving machine learning approaches, and establishing standardized
evaluation frameworks to enable meaningful comparison across studies (Esteva et al., 2019; Rieke et
al., 2020). Addressing these challenges will help ensure that AI’s predictive power translates into safer,
more equitable, and more personalized care for patients.

Conclusion:

This review highlights the rapid growth of Al and ML applications in predictive healthcare and
personalized medicine. Ensemble and deep learning models are achieving remarkable accuracy in
predicting health outcomes (e.g. ICU deterioration, cancer progression) and tailoring treatments (e.g.
chemotherapy response). These tools have the potential to improve early diagnosis, optimize therapy
choices, and ultimately enhance patient outcomes. However, substantial work remains to translate these
advances into clinical practice. Future efforts must focus on overcoming barriers of data privacy, model
transparency, and clinical integration. If these issues can be addressed, Al-driven predictive analytics
and personalization could become standard components of healthcare, enabling providers to deliver
more precise, data-driven care.
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