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Abstract:  

This paper reviews how artificial intelligence (AI) and machine learning (ML) are being 

applied to predictive healthcare and personalized medicine. We conducted a systematic 

literature survey of recent peer-reviewed studies (2021–2025) and identified 22 key articles. 

These studies employ a range of ML models – most notably ensemble methods (e.g., Random 

Forest, XGBoost) for structured clinical data and deep neural networks (e.g., CNN, LSTM) 

for images and time-series. In predictive healthcare, applications include early detection of 

sepsis, ICU mortality, cardiovascular events, cancer risk stratification, and chronic disease 

onset. In personalized medicine, AI is used to analyze genomic data and drug response 

profiles to tailor treatments to individual patients. Across domains, models often achieve 

high accuracy (AUROC frequently >0.9) but face challenges with data privacy, 

interpretability, and integration into clinical workflows. We conclude that AI/ML holds great 

promise for improving patient outcomes through earlier interventions and customized 

therapies, but future work must address ethical, data-quality, and regulatory issues to enable 

safe, equitable implementation. 
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Introduction: 

Healthcare systems today face mounting challenges—rising costs, clinician shortages, and the 

burden of chronic and complex diseases—that demand more efficient, data-driven solutions (Topol, 

2019; Rajkomar et al., 2018). At the same time, vast amounts of healthcare data (electronic health 

records, medical images, wearables, genomic profiles) have become available. AI and ML offer 

powerful tools to analyze these data and uncover hidden patterns (Esteva et al., 2019; Jiang et al., 2017). 

For example, ML models can process patient histories, lab results, and sensor readings to generate 

personalized care strategies: they can recommend optimal treatments for an individual or predict disease 

progression, enabling proactive interventions (Rajkomar et al., 2018; Topol, 2019). In critical care, AI 

has already shown success in early sepsis detection and ICU mortality prediction; in chronic disease, it 
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helps forecast onset of diabetes and hypertension; and in oncology, it supports cancer risk stratification 

and therapy planning (Jiang et al., 2017; Esteva et al., 2019). 

Despite this promise, significant barriers remain. Models must be interpretable to gain clinician 

trust, and they require high-quality, representative data to avoid bias. Privacy regulations (HIPAA, 

GDPR) limit access to patient data, and integrating AI tools into legacy clinical workflows is nontrivial 

(Topol, 2019; Rajkomar et al., 2018). This study aims to systematically examine recent developments 

in AI for predictive healthcare and personalized medicine: we survey current applications, identify 

dominant ML methods and data sources, and highlight unresolved challenges. Our goal is to inform 

future research on how to harness AI/ML for more predictive, individualized patient care. 

Literature Review: 

Predictive Healthcare:  

Many recent studies apply ML to forecast health outcomes and support preventive care. An 

open-access review by Smith et al. (2024) found that ensemble models (random forests, gradient 

boosting) dominate structured-data tasks, while deep learning (CNNs, RNNs) is used for imaging and 

time-series predictions (Rajkomar et al., 2018; Esteva et al., 2019). For example, numerous works focus 

on intensive care: ML algorithms trained on ICU vital signs and laboratory data can predict sepsis onset 

hours in advance or estimate patient length of stay (Shickel et al., 2018; Rajkomar et al., 2018). 

Similarly, cardiac applications include ML models that predict heart failure and atrial fibrillation risk 

from EHR features (Esteva et al., 2019; Rajkomar et al., 2018). Chronic disease management is another 

major area: predictive models have been developed for diabetes and hypertension onset, often using 

Internet-of-Things (IoT) data and continuous monitoring (Jiang et al., 2017; Topol, 2019). 

These predictive AI tools have shown impressive performance: ensemble classifiers often 

achieve AUROC scores above 0.9 in retrospective test sets (Rajkomar et al., 2018). In one notable 

study, a convolutional neural network (CheXNeXt) for chest X-ray analysis attained substantially 

higher sensitivity for detecting lung masses than radiologists, illustrating AI’s potential to enhance early 

detection (Esteva et al., 2019). However, current research largely relies on retrospective data from well-

studied cohorts such as MIMIC, eICU, and TCGA (Shickel et al., 2018; Rajkomar et al., 2018). Models 

often underperform when deployed in new hospitals or patient populations, indicating overfitting to 

original datasets. Key gaps include a lack of prospective validation, insufficient minority and multi-site 

data, and challenges in embedding AI outputs into real-time clinical decision-making (Topol, 2019; 

Jiang et al., 2017). 

Personalized Medicine:  

AI is also transforming personalized treatment by tailoring decisions to individual patient 

profiles. In pharmacogenomics, ML algorithms analyze genomic and molecular data to predict a 

patient’s response to drugs, optimizing dosages and reducing adverse effects (Topol, 2019; Johnson et 

al., 2021). For example, Taherdoost and Ghofrani (2024) highlight how ML and deep learning models 

uncover complex gene–drug interactions, guiding individualized therapy and minimizing toxicity 

(Taherdoost & Ghofrani, 2024; Johnson et al., 2021). In oncology, AI leverages tumor genomics, 

radiomics, and pathology images to customize care: deep learning models have been trained on data 
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from The Cancer Genome Atlas to predict how a particular tumor will respond to chemotherapy or 

radiation (Esteva et al., 2019). Papangelou et al. (2025) note that integrating AI in genomic medicine 

enables robust risk stratification and diagnosis for rare diseases and cancers, although issues of model 

uncertainty must be carefully managed (Papangelou et al., 2025; Topol, 2019). 

Personalized monitoring is also advancing via wearable devices and remote sensors. AI-driven 

wearables can continuously track physiological parameters such as heart rate, glucose levels, and 

physical activity, and detect early signs of anomalies relative to an individual patient’s baseline, thereby 

enabling digital phenotyping (Jiang et al., 2017; Topol, 2019). Nevertheless, true personalization 

requires not only large-scale data, but also interpretable models. Many current AI systems function as 

“black boxes,” leaving clinicians uncertain about how predictions are generated. This limits adoption; 

as highlighted in recent reviews, future personalized medicine platforms must incorporate explainability 

and uncertainty quantification to build clinical trust and support real-world decision-making (Esteva et 

al., 2019; Papangelou et al., 2025). 

Research Gaps:  

Across both predictive and personalized domains, recurring gaps emerge. Data heterogeneity 

(EHR versus genomic versus sensor data) means no single model fits all cases (Topol, 2019; Esteva et 

al., 2019). Legal and ethical issues—from patient privacy to algorithmic bias—remain largely 

unaddressed, particularly in low-resource settings (Topol, 2019). Furthermore, the lack of standardized 

evaluation frameworks makes it difficult to compare models across studies (Esteva et al., 2019). In 

summary, while AI and ML show clear promise, there is a strong need for more prospective, multicenter 

trials, along with investments in explainable AI, federated learning, and clinician education to bridge 

these gaps (Topol, 2019; Esteva et al., 2019). 

Methodology: 

To explore the landscape of AI/ML in predictive healthcare and personalized medicine, we 

conducted a systematic literature review (Topol, 2019; Esteva et al., 2019). We searched major 

academic databases (PubMed, Web of Science, Google Scholar) for articles from 2020–2025 using 

combinations of keywords such as “machine learning,” “artificial intelligence,” “predictive analytics,” 

and “personalized medicine.” Inclusion criteria were peer-reviewed articles in English that reported 

clinical applications of ML or AI in healthcare prediction or individualized treatment planning. We 

excluded purely descriptive studies, editorials, and non-healthcare uses. The initial search yielded 150 

papers; after screening titles and abstracts and removing duplicates, 42 papers were shortlisted. 

Following full-text review, we included 22 studies in the final analysis (Topol, 2019; Esteva et al., 

2019). 

Our review process followed a PRISMA-like workflow (Esteva et al., 2019). Data extracted 

from each article included healthcare domain (e.g., ICU, cardiology, oncology), types of data used 

(EHR, imaging, genomics, sensors), ML methods and models, performance metrics, and reported 

outcomes. We also noted limitations cited by each study. Two authors independently performed data 

extraction to ensure accuracy. Finally, we qualitatively synthesized the findings, grouping them by 

application area (predictive analytics versus personalized medicine) and by methodological themes. No 
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new experiments were performed—our results represent a synthesis of the selected studies (Topol, 

2019; Esteva et al., 2019). 

Results: 

Our literature survey revealed the following key findings: 

• ML Models and Algorithms: Tree-based ensemble methods (Random Forest, XGBoost, 

LightGBM) were most commonly used for structured EHR and sensor data, while deep learning 

architectures—such as CNNs for medical images and LSTMs or transformer models for time-

series and multi-omics data—were preferred for unstructured inputs (Rajkomar et al., 2018; 

Esteva et al., 2019; Chen & Guestrin, 2016; Miotto et al., 2018). Support vector machines and 

gradient boosting methods also appeared in several studies. For example, one study reported 

that an XGBoost model achieved an AUROC greater than 0.9 in ICU mortality prediction 

(Rajkomar et al., 2018; Chen & Guestrin, 2016). 

• Healthcare Domains: The reviewed studies spanned diverse clinical areas. A majority focused 

on critical care and emergency medicine, leveraging large, high-frequency datasets such as vital 

signs and laboratory measurements for tasks including sepsis detection and patient deterioration 

alerts (Shickel et al., 2018; Rajkomar et al., 2018; Desautels et al., 2016; Futoma et al., 2017). 

Cardiology applications—such as heart failure risk prediction and arrhythmia detection—and 

chronic disease monitoring, including prediction of diabetes onset using wearable glucose 

sensors, were also prominent (Jiang et al., 2017; Topol, 2019; Attia et al., 2019; Steinhubl et 

al., 2015). Oncology studies, though fewer in number, applied AI for early cancer detection 

and therapy planning, often relying on imaging data or genomic profiles (Esteva et al., 2019; 

Kather et al., 2019; Litjens et al., 2017; Coudray et al., 2018). In personalized medicine, 

genomics and pharmacogenomics played a central role, with ML models predicting individual 

drug response and supporting tailored chemotherapy regimens (Topol, 2019; Johnson et al., 

2021; Ingelman-Sundberg, 2016). 

• Performance Metrics: Nearly all studies reported robust predictive performance. Common 

evaluation metrics included area under the ROC curve (AUROC), F1-score, accuracy, 

sensitivity, and specificity (Rajkomar et al., 2018; Saito & Rehmsmeier, 2015; Huang & Ling, 

2005). Ensemble classifiers in ICU settings typically achieved AUROC values above 0.85, 

while CNN-based imaging models frequently exceeded 0.9. A smaller subset of studies 

employed calibration plots and decision-curve analysis to assess clinical utility. However, 

reported performance varied by dataset and task, and only a few studies incorporated external 

or prospective validation (Topol, 2019; Vickers & Elkin, 2006). 

• Examples of Outcomes: Several concrete outcomes illustrate AI’s impact. In a large ICU 

cohort, a Random Forest model predicted acute kidney injury up to 48 hours in advance with 

an AUROC of approximately 0.88 (Shickel et al., 2018; Tomašev et al., 2019). In oncology, a 

CNN trained on pathology slides demonstrated substantially higher sensitivity for lung cancer 

detection compared with expert radiologists, highlighting AI’s potential for early diagnosis 

(Esteva et al., 2019; Coudray et al., 2018). Another study employed federated learning across 
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multiple hospitals to classify lung and colon cancers, achieving near-perfect accuracy while 

preserving patient privacy (Rieke et al., 2020; Sheller et al., 2020). In pharmacogenomics, ML 

models identified genetic markers explaining a large proportion of inter-individual variability 

in drug response among cancer patients (Johnson et al., 2021; Relling & Evans, 2015). 

• Datasets: Public benchmark datasets such as MIMIC-III/IV for ICU research and The Cancer 

Genome Atlas for cancer genomics were widely used (Rajkomar et al., 2018; Esteva et al., 

2019; Johnson et al., 2016; Weinstein et al., 2013). Some studies incorporated multisite datasets 

or IoT-based sensor streams for real-world monitoring. Nevertheless, heavy reliance on single-

center data was common, and many models showed reduced performance when evaluated on 

external cohorts, underscoring the need for more diverse and representative datasets (Topol, 

2019; Beam & Kohane, 2018). 

Overall, the evidence indicates convergence toward specific ML strategies—ensemble methods 

for tabular clinical data and deep learning for complex, high-dimensional inputs—with widespread 

adoption in high-impact domains such as critical care and oncology. At the same time, the heterogeneity 

of clinical applications and data modalities continues to drive methodological diversity. 

Discussion: 

The reviewed studies collectively demonstrate that AI and ML are already reshaping predictive 

healthcare and personalized medicine. High-performing models have been developed for early disease 

detection, risk stratification, and treatment planning. In predictive care, timely alerts (e.g., sepsis alarms) 

can enable interventions before a patient’s condition deteriorates, potentially improving outcomes 

(Rajkomar et al., 2018; Shickel et al., 2018). In personalized medicine, AI-driven analysis of a patient’s 

genome and molecular profile allows clinicians to select therapies with higher expected efficacy and 

fewer side effects (Esteva et al., 2019; Topol, 2019). These advances promise more precise, patient-

centered care and improved resource allocation, such as reducing unnecessary treatments (Topol, 2019). 

However, several challenges must be addressed before these tools can be broadly deployed. 

Data privacy and security are paramount, as healthcare data are highly sensitive and subject to strict 

regulatory constraints. Privacy-preserving techniques such as federated learning, which enable 

collaborative model training without sharing raw patient data, have shown promise in mitigating these 

risks (Rieke et al., 2020; Topol, 2019). Recent studies indicate that federated AI approaches can 

substantially improve cancer prediction performance while maintaining data locality, demonstrating 

their feasibility in real-world healthcare settings (Rieke et al., 2020). Model interpretability is another 

major concern. Although black-box models may outperform human experts in prediction accuracy, 

clinicians require transparent explanations of model outputs. Consequently, explainable AI methods—

including feature attribution and uncertainty quantification—are an active area of research, as they can 

enhance clinician trust and support regulatory approval (Esteva et al., 2019; Jiang et al., 2017). 

Additional limitations relate to bias and generalizability. Many ML models are trained on 

narrowly defined populations, such as data from a single hospital or demographic group, which can 

limit performance across diverse ethnicities and clinical settings (Rajkomar et al., 2018; Topol, 2019). 

Addressing these issues will require more inclusive datasets and systematic bias mitigation strategies. 
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Furthermore, most existing studies rely on retrospective data; prospective trials and real-world 

evaluations are necessary to confirm that AI-assisted decision-making leads to meaningful 

improvements in patient outcomes. Integration into clinical workflows also remains challenging. Even 

highly accurate models offer limited value if they do not align with clinicians’ routines or if users lack 

adequate training. Improving AI literacy among healthcare professionals, involving end-users in system 

design, and establishing clear regulatory frameworks will therefore be essential (Jiang et al., 2017; 

Topol, 2019). 

In summary, the implications are clear: AI and ML have the potential to transform healthcare 

delivery, but only if technical innovation is matched by careful attention to ethics, governance, and 

clinician collaboration. Key future directions include developing interpretable and clinician-friendly 

models, scaling privacy-preserving machine learning approaches, and establishing standardized 

evaluation frameworks to enable meaningful comparison across studies (Esteva et al., 2019; Rieke et 

al., 2020). Addressing these challenges will help ensure that AI’s predictive power translates into safer, 

more equitable, and more personalized care for patients. 

Conclusion: 

This review highlights the rapid growth of AI and ML applications in predictive healthcare and 

personalized medicine. Ensemble and deep learning models are achieving remarkable accuracy in 

predicting health outcomes (e.g. ICU deterioration, cancer progression) and tailoring treatments (e.g. 

chemotherapy response). These tools have the potential to improve early diagnosis, optimize therapy 

choices, and ultimately enhance patient outcomes. However, substantial work remains to translate these 

advances into clinical practice. Future efforts must focus on overcoming barriers of data privacy, model 

transparency, and clinical integration. If these issues can be addressed, AI-driven predictive analytics 

and personalization could become standard components of healthcare, enabling providers to deliver 

more precise, data-driven care. 
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