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Abstract:

Numerous researchers have developed advanced deep learning algorithms achieving
outstanding performance in medical detection, classification, and diagnostic support. UNet
[2] is one of the most widely used deep learning models, specifically designed for
segmentation tasks [3]. Its architecture is tailored to deliver high accuracy, making it an
effective and reliable tool for image segmentation. Its encoder-decoder architecture with skip
connections allows it to capture both low-level and high-level features, making it highly
effective for precise image segmentation. However, due to its large number of parameters,
UNet can be computationally intensive, which makes model pruning—particularly structured
pruning [5]—a valuable approach to reduce model size and inference time while maintaining
segmentation performance. Simple Structure pruning can remove an entire channel/filter or
even layer based on some pruning ratio and rebuild a narrow model with the regular model
structure. Proposed experiment performs a comparison study of impact of structured pruning
with uniform rate of 20% and structured pruning with custom pruning rate on the proposed
UNet model designed and trained to detect infection regions with lung CT and corresponding
infection masks, obtained from COVID-19 dataset. The model acquired very good training
dice value 91% and testing dice impressive dice coefficient of 90%. The trained model is
then pruned to remove less important filters using a one-shot method based on L1 norm value.
The filters to prune is determined by calculating L1 norm [6] for all the layers. Two strategies
were used in pruning: 1) using uniform pruned ratio of 20% across all the layers removes
20% of filters with the lowest L1 norm and obtained training and testing dice value little
higher than original model of 92.63%, 91.04% respectively and 2) using custom pruning
ratio, defined by analyzing pruning impact on each layer in step 1. We observed that result is
improved with training dice of 93.43% and testing is 91.41%.

Keywords: UNet, COVID-19, Lung CT, CLACHE, Structured pruning, Custom Pruning,

dice coefficient, L1 norm.
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1. Introduction:

The worldwide healthcare sector was overrun by the COVID-19 [1] epidemic in 2019, which
increased demand for diagnostic instruments. Although Iung abnormalities were detected using imaging
techniques such as X-ray, CT, and ultrasound, the manual analysis process was time-consuming. It has
strongly raised the requirement of precise automated techniques that can be used for the lung
segmentation or lesion detection tasks efficiently.

Deep Learning (DL) were the most widely used models in medical imaging and demonstrated
remarkable performance in different tasks. The goal of DL models in lesion detection in medical imaging
is to locate and identify particular regions in an image that are clinically important. Identification of
ROIs accurately can help greatly in the early disease detection and planning of the treatment carefully.
UNet is a popular Convolutional Neural Networks (CNNs), a type of deep learning-based technique. It
has demonstrated remarkable efficiency in identifying and highlighting ROIs in lung CT scans
automatically, improving diagnostic precision and alleviating radiologists' time constraints. As
described in the work [2], it follows an encoder-decoder architecture, where the encoder (contracting
path) uses convolution and max-pooling layers to reduce the image size and extract important features.
The decoder (expanding path) then upsamples the features to restore the original image size and make
pixel-wise predictions. By connecting corresponding layers from the encoder to the decoder, U-Net
combines detailed low-level and high-level information for accurate segmentation results.

Even though UNet models outperformed in the medical and other areas, it is computationally
very costly because UNet uses many feature channels, especially in the upsampling path, which requires
a lot of memory and can be slow on large images or limited hardware. Therefore the speed of the entire
training process can be affected.

To resolve this issue researchers have introduced different model compression techniques such
as neural network pruning [9], low-rank factorizations of the weight matrices [10], quantization [11],
knowledge distillation [12], neural architecture search [13], and other techniques. A model pruning is a
most widely used technique for the model compression that can efficiently prune a DL model to reduce
the number of redundant parameters. Therefore this method can be efficiently used to reduce size,
computation time, memory, and other hardware requirements than an original DL model.

A model pruning is a technique of removing individual neurons/filters/channels/layers etc. from
the Neural network model thereby reducing size of the model and making it more compact. There are
different types of pruning: 1) unstructured pruning where weights of an individual neuron is removed
or set to zero based on some criteria for example: remove all neurons whose weight magnitude is close
to zero [14]. As a result, the model size may be reduced, but it may not yield actual performance
improvements on standard hardware. 2) Structured pruning removes /filters/channels or even a layer.
[15][16]. It can rebuild the model while preserving original model structure after pruning. This method
does not need special hardware or software while pruning the model. 3) Semi-structured pruning
removes small blocks of weights e.g., 2x2 or 4x4 groups, instead of individual weights.[17], more

flexibility than structured pruning. However, structured pruning is better than unstructured pruning

Vol. 11 (10) December 2025 128



Journal of Science Research International (JSRI) ISSN: 2456 - 6365

because most software frameworks and hardware require real neural network acceleration and
compression. The computation of sparse matrices cannot be accelerated.

Pruning process can be implemented as follows: 1) Prune before training the model [18] which
is a faster method. But it can affect model performance greatly because it is yet to start learning. 2) Prune
during training [19] of the model. With this method a model can achieve great accuracy but is a very
complex method. 3) Prune after training [20] where we can first train the full model, then prune,
followed by fine-tuning or retraining if needed. It is a very effective technique but costly as well.

While pruning the model there are different criteria available based on which pruning process
can be performed: 1) magnitude based pruning where a neuron with smallest absolute value of its
magnitude is considered as least important hence pruned. [21]. 2) L1/L2 norm [22] [23] where the
smallest value of absolute values of weights in a filter/Square root of sum of squares of weights is the
criteria for pruning. L1 norm preferred for structure pruning to remove individual filter/channel 3)
saliency/sensitivity based pruning [24] measures change in loss function if a weight is removed making
it data-dependent pruning and is computationally costly. 4) Loss change [25] using Taylor expansion
method, nut estimate the impact of pruning on loss is costly again.

The remainder of the manuscript is organized as follows: Section II discusses related work found
in the literature. Section III discusses the datasets and methods used to implement classification of the
COVID-19, Magnitude based pruning. Section IV provides discussion on the results obtained, and
Section V concludes the study with a discussion on the merits and limitations of the proposed approach
and future work directions.

2. Literature Survey:

In a variety of computer vision and medical imaging tasks, deep learning models have
demonstrated impressive performance. However, when implementing on edge devices or in real-time
applications, their high memory consumption and computational expense pose difficulties. To overcome
these obstacles, model compression strategies such as knowledge distillation, quantization, and pruning
have been put forth. The ability to preserve hardware efficiency by pruning entire filters, channels, or
layers rather than individual weights has made structured pruning stand out among the others.

This section of the presents a detailed literature review on structured pruning techniques in deep
learning, highlighting the evolution of methodologies, pruning criteria, optimization strategies, and their
applicability to convolutional neural networks (CNNs), including encoder-decoder architectures such as
UNet.

The work proposed by [26] implemented filter-level pruning method where value of L1 norm
of filter weights is used as an importance score for pruning. Filters with lower L1 norms are pruned,
leading to structured sparsity while maintaining accuracy. He et al. [27] have introduced a data-driven
approach where channels are pruned by minimizing the loss increase caused by their removal. Liu et al.
[28] used scaling factors (y) from batch normalization layers and applied L1 regularization to induce
sparsity. Filters with low y values were pruned, providing a simple yet effective structured pruning
strategy. Molchanov et al. [29] have referred a Taylor expansion-based criterion for estimating the

saliency of filters, focusing on first-order sensitivity to changes in the loss. Gao et al. [30] implemented
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a dynamic approach where channels are adaptively activated during inference using learnable gates.
This method improves runtime efficiency while preserving model capacity. The work done by Yu ef al.
[31] introduced a model that can adaptively adjust width (number of channels) at runtime. Though not
traditional pruning, it enables structural compression via shared weights. Luo et al. [32] have used output
feature map statistics to guide filter pruning, formulating the problem as a minimization of output
reconstruction error. Ye et al. [33] presented discriminative-aware pruning, which takes into account a
filter's significance for classification in addition to its norm, and questioned the L1/L2 norm
assumptions. He ef al. [34] Implemented reinforcement learning to automate the pruning policy search
for structured pruning, focusing on mobile and edge deployment. [35] provided a principled framework
for structured pruning using control theory to balance performance and efficiency. SCOP outperforms
heuristics like magnitude-based pruning.

Structured pruning has advanced significantly. Early works focused on simplicity and ease of
implementation and recent research emphasizes data-driven importance estimation and automation.
These pruning techniques are highly relevant for large architectures like UNet, where channel or block-
level redundancy can be substantial. Structured pruning ensures consistent acceleration, reduced
memory usage, and hardware compatibility—making it a practical and powerful tool in real-world deep
learning deployments.

The goal of the proposed work is 1) designs implemented as a base model which is then trained
on lung CT with lung mask to detect infection region using semantic segmentation method on the dataset
obtained from Kaggle [36].2) Apply structure pruning on trained model using uniform pruning rate
across all layers and different pruning rate for each layer L1 norm based criteria 3) compare and analyze
the impact of both pruning methods .

3. Research Methodology:

This proposed experiment identifies and locates infection regions in the lung CT data for
COVID-19 diagnosis with the help of the custom UNet deep learning framework. UNet is a good choice
for detecting anomalies connected to COVID-19 and separating lung and infection regions due to its
capacity to precisely depict complex structures.

3.1 Data Acquisition

Proposed word is performed on the dataset [36] available nii-formatted containing CT scans
with corresponding lung masks and infection masks of 20 patients. These scans of the left and right
lungs are obtained, labeled by radiologists manually and confirmed by experts. A patient who tests
negative for COVID-19 is indicated by the black mask. Sample CT slices with infection masks are ash

shown below in Figure 1

Figure 1: Sample images from the dataset
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3.2 Data Preprocessing

All the grayscale images are resized to 224x224x1, some masks with NaN values and some
duplicate slices are removed as part of data cleaning. All the CT image slices with their corresponding
infection masks are processed to enhance contrast with using the most popular CLACHE method [37]
that can significantly boost detection of ROI accuracy and cropping helps to remove unwanted portions
of the CT like bones and tissues therefore focusing only on required lung region. Since dataset size is
small 1613 slices, the conventional data augmentation techniques like flipping the original CT slice and
its matching original masks up-down and left-right to increase size of dataset by 2016 slices to solve the
overfitting problem during training of the DL model. The dataset is further divided into a training (70%)
testing set (30%).

3.4 Model implementation and pruning

The proposed pruning work is divided and implemented into phases as given below:

3.4.1 Define Custom U-Net Model for Lung Infection detection and training: A custom U-Net
model is implemented for detecting infection region in the lung CT slices with infection masks, from
COVID-19 cases, using the pixel-wise [38]segmentation method. UNET model architecture is
customized by incorporating batch normalization layers, dropout layers, attention gates, and increased
depth. The output layer is classifying the images using sigmoid activation function. The accuracy of
feature extraction and localization is enhanced by these changes in the model design, particularly for
tiny or dispersed infection areas.

The model is then trained carefully by using different hyper parameters as given below: epochs

= 50, batch_size = 16, Adam(learning rate = 0.00004) with learning scheduler to adjust learning rate
[39], BCE-Dice Loss (Binary Cross-Entropy + Dice Loss) [40] which is a popular loss function for
segmentation tasks, especially when using models like U-Net to monitor the performance of the model
on training and testing. The experiment successfully achieved an impressive dice value of 91% and
testing dice of 89%, with slight overfitting issue. Trained model is saved for further processing.
3.4 .2 Model Pruning using uniform structure pruning method: Load the trained model. Pruning
after training approach is used in this phase to prune Custom UNet model using one shot, L1 norm based
criteria with pruning percentage = 0.2 i.e. remove 20% of filters with lowest L1 norm. The L1 norm of
a weight vector is the sum of the absolute values of the weights. Formula: L1 norm=}ilwi|L1 norm=}i
[wil, It encourages sparsity by driving some weights to exactly zero.

L1 norm is most widely used for structured pruning to prune e.g., filter/channel. A filter with
small L1 norms has low overall activation, meaning they contribute less to the output feature map and
have less impact on the model's performance, will be pruned. Since backpropagation is not required and
one shot method [22] scores once and then prunes the network to a target prune ratio, computation cost
will be less while preserving important filters and eliminating the least active ones. Bar graph in Figure
2 depicts layer wise filters before and after pruning and Fig 2 and 3 depicts average L1 norm calculated
per layer.

Save and Fine tune the model to regain its performance because after pruning the model can

degrade performance of the model. We have achieved the best training dice coefficient of 92.63% and
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testing dice of 91.04 % after fine tuning with the same hyperparameter as in phase 3.4.1 after pruning

the custom UNnet model.

Layer-wise Filters Before and After Pruning
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Figure 2: Layer wise comparison of L.1 norm before and after pruning
Table 1 summarizes the impact of the uniform structure pruning rate on each layer of the trained
custom Unet model.

Table 1: Effect of Pruning on different layers in custom Unet model

Layer(s) Pruning Impact Reason
conv2d 9 Most affected (largest L1- | Redundant high-level feature filters removed
norm drop)

conv2d 8, conv2d 10 | Highly affected Mid-level layers optimized for efficiency

conv2d 6, conv2d 11 Moderately affected Some high-level feature extraction preserved

conv2d 1toconv2d 3 | Least affected Early layers crucial for texture and edge
detection

conv2d 16 to Least affected Excessive pruning of final layers can degrade

conv2d 18 accuracy

3.4.3 Model Pruning with custom pruning rate: The analysis in Table 1 shows that when pruning
proposed custom Unet model, uniform pruning rate is inappropriate. This analysis is used as a base
information and a suitable pruning rate is determined for each layer separately to apply custom pruning
on the UNet model trained in phase I. The proposed UNet model is therefore with variable rates as
follows:

pruning_rates = { "conv2d 9": 0.50, # Most affected (High pruning)

"conv2d 8": 0.40, "conv2d 10": 0.40, # Highly affected

"conv2d 6": 0.30, "conv2d 11": 0.30, # Moderately affected

"conv2d 1": 0.20, "conv2d 2": 0.20, "conv2d 3": 0.20, # Least affected (early layers)

"conv2d 16": 0.20, "conv2d 17": 0.20, "conv2d 18": 0.20 # Least affected (final layers)}

The graph in figure 3 demonstrated L1 norm for each layer before and after pruning with custom
pruning rate. Save and fine tune the pruned model with the same hyperparameters as in 3.4.1 and
obtained best dice of 93.29% in training and 91.41% while testing with little overfitting. Complete
experiment of segmentation model is implemented and tested on TensorFlow/Keras on google Colab

with GPU for optimizing for pixel-wise segmentation accuracy.
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Figure 3: Average L1 Norm per Layer before and after custom Pruning
4. Results and Discussion:

By eliminating unnecessary or insignificant weights and neurons, model pruning is a popular
method for lowering the size and complexity of DL models. The proposed experiment of defining a
custom UNet model for ROI infection detection in lung CT is planned in 3 phases as follows.

In Phase I Structure pruning is performed on a custom UNet model as a base which is trained
initially to recognize infection regions spread in lung CT with the help of lung infection mask. The
model training dice is 0.91% and testing is 90% which is very impressive.

In phase II, Pruning After Training approach used in this experiment to have better control on
the pruning process. Entire pruning is applied with uniform pruning rate of 20% for all the layers and
removed all those filters whose L1 norm value smallest as shown in Figure 4:
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Figure 4: Filters pruned in first and second layer in with uniform pruning rate

Pruned model is retained with fine tuning using the same hyperparameters as in phase I and it
was observed that performance of the model is improved with training dice of 92.63% and testing dice
0f 91.04%. Table 2 describing the impact of the uniform pruning across each layer on the custom UNet
model.

The proposed experiment demonstrates the impact of the uniform pruning rate across layer in
Custom UNet Model. Layer conv2d 9 is the most affected, which has the largest L1 norm that means
more filters had large weights, making them good candidates for pruning. The reduction in L1 norm

suggests that several filters were removed but not as aggressively as conv2d 9.
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The proposed experiment demonstrates the impact of the uniform pruning rate across layer in

Custom Unet Model. Layer conv2d 9 is the most affected, which has the largest L1 norm that means

more filters had large weights, making them good candidates for pruning. The reduction in L1 norm

suggests that several filters were removed but not as aggressively as conv2d 9.

Table 2: Impact of uniform pruning rate of 20% on each Layer

Layer Pruning Impact Observations from Graphs Conclusion
conv2d 9 Most affected Significant L1-norm reduction; | Successfully removed
(high drop) many low-impact filters redundant high-level

removed filters

conv2d 8, Highly affected Filters with low contribution to | Optimized mid-level

conv2d 10 (moderate drop) | mid-level feature extraction layers for efficiency
were pruned

conv2d 6, Moderately Some filters retained; moderate | Balanced pruning while

conv2d 11 affected L1-norm reduction preserving important

features

conv2d 1, Least affected Small L1-norm reduction; key | Preserved early feature

conv2d 2, edge and texture filters retained | extraction layers

conv2d 3

Middle layers (conv2d 6 to conv2d 12) contribute to high-level feature extraction and these
layers extract abstract patterns rather than simple edges, making some filters redundant. Therefore these
layers showed moderate pruning (~15-20% decrease). Structured pruning typically targets mid-network
layers since they tend to have redundant filters that contribute less to final predictions. Early layers
capture basic features (edges, textures), removing filters can degrade model performance. Also last
layers contribute to final feature representations therefore excessive pruning can affect final predictions.
As aresult, Minimal pruning in conv2d 1 to conv2d 3 and conv2d 16 to conv2d 18. The pruned model
is saved and fine-tuned to achieve reduction in the performance. The best dice value options are: training:
92.63% and testing: 91% with little overfitting problem which is little more than the model before
pruning. Structured pruning successfully reduced L1 norm values across most layers, especially in the
middle of the network. Filters in mid-network layers were pruned the most, potentially optimizing
computational efficiency.

Phase III: By analyzing impact of uniform pruning on Custom UNet model with uniform pruning rate
as described in the table 1, the experiment in Phase III is further performed to prune toe Custom Unet
model defined in Phase I, by carefully planning for the layer wise pruning rate.

The Pruned model is trained again with fine tuning using the same hyperparameters as in phase
I. The summary of the impact of the pruning on each layer is analyzed in table 3 and detailed analysis
of the number of filters removed in the pruning process layerwise with sample graph is depicted in figure
5.
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Figure 5: Filters pruned in first and second layer before and after custom Pruning

Table 3: Table 2: Impact of custom pruning rate on each Layer

Layer Group Pruning Explanation
Rate

conv2d to conv2d 2 10% Early layers detect basic visual patterns; aggressive pruning may
drastically reduce accuracy.

conv2d 3toconv2d 5 20% Slightly deeper layers with more filters; can tolerate moderate
pruning without major performance loss.

conv2d 6, conv2d 7 30% Deeper layers encode abstract patterns; moderate capacity
allows increased pruning to reduce model size.

conv2d 8§, conv2d 9, 40-50% | Bottleneck (U-Net center) layers are over-parameterized and

conv2d 10 least sensitive; tolerate heavy pruning well.

conv2d 11 30% Decoder start; benefits from pruning while maintaining balance
with skip-connection information.

conv2d 12 to 20% Output-refining decoder layers become more sensitive;

conv2d 14 moderate pruning preserves performance.

conv2d 15to 10% Final reconstruction layers require precision; light pruning

conv2d 18 avoids artifacts and poor localization.

All the models in the proposed experiment are implemented and tested using Tensor Flow/Keras

on google Colab with GPU for optimizing for pixel-wise segmentation accuracy. It was observed that

the result after custom pruning is increased by approximately by 1% in training and 0.41% for testing

which can be further enhanced by more careful fine tuning by eliminating little overfitting issues, with

results obtained are: dice coeff: 93.43% for training and testing dice coeff:91.41 % which is little more

than the original model. Detailed comparative result analysis of three proposed models is as shown in

table 4. Table 5 demonstrates comparison of the prediction of ROI for infection detection by the

proposed models in the lung CT both before and after pruning with dice value.

Table 4: Basic Deep Learning Architecture with its important features

dice value Training Testing Dice Coeff. Improvement
compared before
before pruning 91% 90% -
After uniform pruning 92.63% 91.04% | Improved by 1.28%
After uniform pruning 93.43% 91.41% | Improved by 1.03%
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Fine tuning the Custom UNet model after Pruning has slightly improved the model's performance
in terms of Dice Coefficient on both training and testing datasets, without significantly increasing the
inference time. This suggests that pruning can not only reduce the model size but also contribute to
regularizing it and therefore improving models generalization ability.

Table 5: Comparison of dice value before, after uniform pruning (20%), and after custom pruning

rate
+

Comparison of prediction of infection mask with dice value obtained from three different model

Before pruning After 20%Pruning After custom
Pruning

w 4

Figure 6: comparison of predicted mask before pruning, after uniform pruning rate of 20%,
after custom pruning rate
Conclusion:

Detection of infection region in the lung CT is a crucial step in the treatment of COVID-19
cases. It equips medical workers with vital knowledge for precise diagnosis, treatment coordination, and
patient care. The proposed Custom UNet model which is well trained to detect ROI with pruning using
uniform structured and custom structured pruning approach has demonstrated improvement in the
model’s performance, achieving training Dice coefficient of 91 to 91.63 and further 93.43% on testing
dice coefficient of from 90% to 91.04 then 91.41% respectively. Result may be further improved by
training for more epochs and more careful hyperparameters to eliminate slight overfitting. Structured
pruning effectively lowered L1 norm values, particularly in the network's middle layers. The L1 norm
was significantly reduced through structured pruning, with the most substantial impact observed in the
intermediate layers. Successful structured pruning led to a notable decrease in L1 norm values
throughout the network, most prominently in its central sections.

Limitations and Potential Challenges

Despite the promising lung segmentation results, implementation faced limitations. The limited

dataset size, primarily COVID-19 scans, potentially restricts generalization to diverse lung pathologies

and raises overfitting risks given the model's capacity. Data preprocessing, while helpful, introduced
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variability impacting cross-dataset consistency, and pruning could degrade performance without

meticulous fine-tuning, demanding extra epochs and hyperparameter optimization. Furthermore, the

Dice coefficient-centric evaluation might not fully capture all facets of model performance.
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