Journal of Science Research International (JSRI) ISSN: 2456 - 6365

REVIEW ARTICLE

FLUTTER: EMERGING TECHNOLOGY FOR CROSS-PLATFORM DEVELOPMENT
Smita Ketan Hadawale

Pillai College of Arts, Commerce and Science (Autonomous),

New Panvel, M.S,, India

*Corresponding author E-mail: smitahadawale@mes.ac.in

DOI: https://doi.org/10.5281/zenodo.17442350

Abstract:

Flutter, Google’s open-source Ul toolkit, has emerged as a leading option for building cross-
platform applications (mobile, web, desktop, and embedded). This research paper provides
a structured review of Flutter’s recent advancements — Impeller rendering engine, Dart 3
(patterns, records, switch expressions), and WebAssembly (Wasm) support for the web —
and analyzes their technical, economic, and educational impacts. By comparing Flutter with
alternatives such as React Native and Kotlin Multiplatform, we examine performance,
developer productivity, ecosystem maturity, and long-term viability. Identified limitations
include WebAssembly’s early maturity, package compatibility, and large web binary sizes.
A stepwise adoption roadmap is proposed for academic and industrial teams.

Keywords: Flutter, Dart 3, Impeller, WebAssembly, Cross-Platform, Performance, Ul,
Ecosystem.

1. Introduction:
The app market demands consistent user experiences across Android, i0S, web, and desktop
platforms without duplicating codebases. Flutter addresses this need with:

¢ ahigh-performance rendering engine (Skia/Impeller),

e amodern programming language (Dart 3),

e unified tooling (hot reload, DevTools),

e compilation to native targets or WebAssembly for the web.
These innovations position Flutter as an “emerging” technology — rapidly evolving while
steadily gaining maturity in both industry and academia.

2. Problem Statement and Objectives:
Problem:
To what extent does Flutter, in 2025, provide a better balance of performance, productivity, and
platform coverage than alternative cross-platform frameworks?
Objectives:
1. Highlight technical advancements (Impeller, Dart 3, Wasm) from 2024-2025.

Vol. 11 (8) October 2025 18

mailto:smitahadawale@mes.ac.in
https://doi.org/10.5281/zenodo.17442350

Journal of Science Research International (JSRI) ISSN: 2456 - 6365

2. Assess their impact on performance, developer experience, and maintainability.
3. Identify current limitations and risks.
4. Provide adoption recommendations.
3. Methodology:
e Literature Review: Flutter/Dart official documentation, release notes, and architectural
overviews.
e Comparative Analysis: Qualitative comparison with React Native (JavaScript/Bridge/JSI)
and Kotlin Multiplatform (KMP).
o Feasibility Scenarios: Conceptual case studies for startups, SMEs, and academic curricula.
4. Recent Technological Landscape:
4.1 Flutter Architecture

Flutter renders Ul using its own engine instead of relying on native views. The framework
(widgets, layout, gestures) communicates directly with Skia, and increasingly with Impeller, a rendering
runtime designed to eliminate shader compilation stutters during runtime.

4.2 Impeller: New Rendering Engine

Impeller precompiles a reduced set of shaders at engine build time, reducing runtime jank and
improving frame predictability. Targeting Metal (iOS) and Vulkan/OpenGL (Android), it is optimized
for modern GPUs and advanced graphical effects. Benefits include smoother animations, lower cold-
start latency, and readiness for GPU-intensive scenarios.

4.3 Dart 3: Expressiveness and Safety

Dart 3 introduces pattern matching, records (immutable multi-value returns), exhaustive switch
expressions, and class modifiers. Combined with null-safety improvements and advanced type
inference, these features enhance code readability and maintainability.

4.4 Flutter Web and WebAssembly (Wasm)

Flutter for the web offers multiple rendering modes: CanvasKit (WebGL/WebGPU) and, more
recently, Wasm mode. The --wasm flag activates skwasm, leveraging WasmGC when available and
falling back to CanvasKit otherwise. Benefits include faster load times and improved CPU performance
with native garbage collection. Current limitations include incompatibility with packages relying on
dart:html/JS interop and incomplete browser coverage.

4.5 Tooling and Recent Releases

Versions 3.22-3.24 strengthened the web pipeline, multi-view embedding, and Impeller
stabilization. Flutter’s release cycle provides predictable updates and stable channels, reducing
migration risks.

5. Comparative Analysis:
5.1 Performance and Rendering
e Flutter (Impeller/Skia): Predictable frame times, proprietary rendering pipeline, low interop
overhead.

¢ React Native: Uses native views; JSI reduces bridge cost but maintains dual JS/native stacks.

Vol. 11 (8) October 2025 19

Journal of Science Research International (JSRI) ISSN: 2456 - 6365

¢ Kotlin Multiplatform: Shares business logic, Ul remains platform-specific (Compose
Multiplatform is maturing, but mobile Uls still require platform-specific work).
5.2 Productivity/Developer Experience
¢ Flutter: Cohesive widget system, fast hot reload, rich package ecosystem, moderate learning
curve.
o React Native: Leverages JavaScript/TypeScript familiarity; tooling depends on multiple
versioned ecosystems.
o KMP: Strong for shared logic; higher UI development effort across platforms.
5.3 Web
o Flutter: Wasm trajectory promising; CanvasKit provides universal fallback.
¢ React Native: Web support via React Native Web; good for simple apps, but feature parity is
limited.
e KMP: Compose Web improving but not yet mainstream for complex apps.
6. Limitations and Risks (2025):
1. Wasm: Package incompatibility (JS interop), limited browser support for WasmGC. Hybrid
strategy recommended.
Web binary size: Requires optimization (tree-shaking, deferred loading, asset management).
Platform-specific APIs: Dependent on plugins; package quality/maintenance must be audited.
3D/graphics: Flutter GPU and 3D support still evolving; not production-ready for advanced
use cases.
7. Adoption Scenarios:
e Startup (B2C): Single Flutter codebase for mobile + web; deploy CanvasKit for stability,
experiment with Wasm in beta.
¢ SME (internal tools): Desktop (Windows/macOS) + tablet support; Flutter desktop viable with
unified tooling.
e University curriculum: Teach Dart3 (patterns, records), Flutter architecture, and state
management; lab projects on web (Wasm vs CanvasKit).
8. Practical Recommendations:
e Architecture: Separate presentation/state/domain; begin with simple state management
(Provider/Riverpod), scale to Bloc for larger apps.
e Performance: Enable Impeller, profile with DevTools, minimize over-rendering, cache
images, test on entry-level devices.
e Web: Start with CanvasKit; test --wasm for compatible browsers; monitor package
compatibility.
¢ Quality: Use CI/CD (Flutter test, golden tests), static analysis (flutter lints), and package
license checks.
9. Future Outlook (12—24 months):
e Wider adoption of WasmGC in mainstream browsers — faster startup and better runtime

performance.

Vol. 11 (8) October 2025 20

Journal of Science Research International (JSRI) ISSN: 2456 - 6365

o Expansion of Impeller and GPU APIs to support 3D/advanced visuals in production.
e Growing ecosystem maturity (iOS integration via SPM, multi-view web support, rendering
optimizations).
Conclusion:

Flutter is solidifying its role as a comprehensive cross-platform solution. Its latest
advancements — Impeller, Dart 3, and Wasm — address critical challenges in performance, code
quality, and web support. Despite transitional limitations (especially Wasm maturity and package
compatibility), Flutter in 2025 offers a strong balance of speed, UX consistency, and developer
productivity for most 2D content-driven apps.

References:
1. Flutter. (2025). Impeller rendering engine. Flutter Documentation.
https://docs.flutter.dev/pert/impeller

2. Flutter. (2025). Flutter architectural overview. Flutter Documentation.
https://docs.flutter.dev/resources/architectural-overview

3. Flutter. (2025, May 20). Flutter 3.24.0 release notes. Flutter Documentation.

https://docs.flutter.dev/release/release-notes/release-notes-3.24.0
4, Flutter. (2025). Web renderers: CanvasKit and SkWasm. Flutter Documentation.

https://docs.flutter.dev/platform-integration/web/renderers

Dart. (2025). What’s new in Dart 3. Dart Documentation. https://dart.dev/resources/whats-new

6. Ryan,J., & Belanger, M. (2025, June 3). Dive into Dart’s patterns and records. Google Codelabs.
https://codelabs.developers.google.com/codelabs/dart-patterns-records

7. Bizzotto, A. (2023, May 19). What’s new in Dart 3: Introduction. Code With Andrea.
https://codewithandrea.com/articles/whats-new-dart-3-introduction/

8. Vivek, K. (2024, December 25). Summarized Flutter in 2024 and what's new for 2025. DEV
Community. https://dev.to/3lvvOw/summarized-flutter-in-2024-and-whats-new-for-2025-27gd

9. Flutter. (2025, August 13). What’s new in the docs. Flutter Documentation.

https://docs.flutter.dev/release/whats-new
10. iFlair. (2025, July 24). Flutter 2025: Powerful updates for cross-platform success. iFlair Blog.

https://www.iflair.com/whats-new-in-flutter-2025-features-updates-and-insights/

Vol. 11 (8) October 2025 21

https://docs.flutter.dev/perf/impeller
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/release/release-notes/release-notes-3.24.0
https://docs.flutter.dev/platform-integration/web/renderers
https://dart.dev/resources/whats-new
https://codelabs.developers.google.com/codelabs/dart-patterns-records
https://codewithandrea.com/articles/whats-new-dart-3-introduction/
https://dev.to/3lvv0w/summarized-flutter-in-2024-and-whats-new-for-2025-27gd
https://docs.flutter.dev/release/whats-new
https://www.iflair.com/whats-new-in-flutter-2025-features-updates-and-insights/

