
Journal of Science Research International (JSRI)    ISSN: 2456 – 6365 

 

Vol. 11 (8) October 2025 18 
 

REVIEW ARTICLE 

 

FLUTTER: EMERGING TECHNOLOGY FOR CROSS-PLATFORM DEVELOPMENT  

Smita Ketan Hadawale 

Pillai College of Arts, Commerce and Science (Autonomous),  

New Panvel, M.S., India 

*Corresponding author E-mail: smitahadawale@mes.ac.in      
       

 DOI:  https://doi.org/10.5281/zenodo.17442350  
 

 

Abstract:  

Flutter, Google’s open-source UI toolkit, has emerged as a leading option for building cross-

platform applications (mobile, web, desktop, and embedded). This research paper provides 

a structured review of Flutter’s recent advancements — Impeller rendering engine, Dart 3 

(patterns, records, switch expressions), and WebAssembly (Wasm) support for the web — 

and analyzes their technical, economic, and educational impacts. By comparing Flutter with 

alternatives such as React Native and Kotlin Multiplatform, we examine performance, 

developer productivity, ecosystem maturity, and long-term viability. Identified limitations 

include WebAssembly’s early maturity, package compatibility, and large web binary sizes. 

A stepwise adoption roadmap is proposed for academic and industrial teams. 

Keywords: Flutter, Dart 3, Impeller, WebAssembly, Cross-Platform, Performance, UI, 

Ecosystem. 
 

 

1. Introduction: 

The app market demands consistent user experiences across Android, iOS, web, and desktop 

platforms without duplicating codebases. Flutter addresses this need with: 

• a high-performance rendering engine (Skia/Impeller), 

• a modern programming language (Dart 3), 

• unified tooling (hot reload, DevTools), 

• compilation to native targets or WebAssembly for the web. 

These innovations position Flutter as an “emerging” technology — rapidly evolving while 

steadily gaining maturity in both industry and academia. 

2. Problem Statement and Objectives: 

Problem:  

To what extent does Flutter, in 2025, provide a better balance of performance, productivity, and 

platform coverage than alternative cross-platform frameworks? 

Objectives: 

1. Highlight technical advancements (Impeller, Dart 3, Wasm) from 2024–2025. 

mailto:smitahadawale@mes.ac.in
https://doi.org/10.5281/zenodo.17442350


Journal of Science Research International (JSRI)    ISSN: 2456 – 6365 

 

Vol. 11 (8) October 2025 19 
 

2. Assess their impact on performance, developer experience, and maintainability. 

3. Identify current limitations and risks. 

4. Provide adoption recommendations. 

3. Methodology: 

• Literature Review: Flutter/Dart official documentation, release notes, and architectural 

overviews. 

• Comparative Analysis: Qualitative comparison with React Native (JavaScript/Bridge/JSI) 

and Kotlin Multiplatform (KMP). 

• Feasibility Scenarios: Conceptual case studies for startups, SMEs, and academic curricula. 

4. Recent Technological Landscape: 

4.1 Flutter Architecture 

Flutter renders UI using its own engine instead of relying on native views. The framework 

(widgets, layout, gestures) communicates directly with Skia, and increasingly with Impeller, a rendering 

runtime designed to eliminate shader compilation stutters during runtime. 

4.2 Impeller: New Rendering Engine 

Impeller precompiles a reduced set of shaders at engine build time, reducing runtime jank and 

improving frame predictability. Targeting Metal (iOS) and Vulkan/OpenGL (Android), it is optimized 

for modern GPUs and advanced graphical effects. Benefits include smoother animations, lower cold-

start latency, and readiness for GPU-intensive scenarios. 

4.3 Dart 3: Expressiveness and Safety 

Dart 3 introduces pattern matching, records (immutable multi-value returns), exhaustive switch 

expressions, and class modifiers. Combined with null-safety improvements and advanced type 

inference, these features enhance code readability and maintainability. 

4.4 Flutter Web and WebAssembly (Wasm) 

Flutter for the web offers multiple rendering modes: CanvasKit (WebGL/WebGPU) and, more 

recently, Wasm mode. The --wasm flag activates skwasm, leveraging WasmGC when available and 

falling back to CanvasKit otherwise. Benefits include faster load times and improved CPU performance 

with native garbage collection. Current limitations include incompatibility with packages relying on 

dart:html/JS interop and incomplete browser coverage. 

4.5 Tooling and Recent Releases 

Versions 3.22–3.24 strengthened the web pipeline, multi-view embedding, and Impeller 

stabilization. Flutter’s release cycle provides predictable updates and stable channels, reducing 

migration risks. 

5. Comparative Analysis: 

5.1 Performance and Rendering 

• Flutter (Impeller/Skia): Predictable frame times, proprietary rendering pipeline, low interop 

overhead. 

• React Native: Uses native views; JSI reduces bridge cost but maintains dual JS/native stacks. 



Journal of Science Research International (JSRI)    ISSN: 2456 – 6365 

 

Vol. 11 (8) October 2025 20 
 

• Kotlin Multiplatform: Shares business logic; UI remains platform-specific (Compose 

Multiplatform is maturing, but mobile UIs still require platform-specific work). 

5.2 Productivity/Developer Experience 

• Flutter: Cohesive widget system, fast hot reload, rich package ecosystem, moderate learning 

curve. 

• React Native: Leverages JavaScript/TypeScript familiarity; tooling depends on multiple 

versioned ecosystems. 

• KMP: Strong for shared logic; higher UI development effort across platforms. 

5.3 Web 

• Flutter: Wasm trajectory promising; CanvasKit provides universal fallback. 

• React Native: Web support via React Native Web; good for simple apps, but feature parity is 

limited. 

• KMP: Compose Web improving but not yet mainstream for complex apps. 

6. Limitations and Risks (2025): 

1. Wasm: Package incompatibility (JS interop), limited browser support for WasmGC. Hybrid 

strategy recommended. 

2. Web binary size: Requires optimization (tree-shaking, deferred loading, asset management). 

3. Platform-specific APIs: Dependent on plugins; package quality/maintenance must be audited. 

4. 3D/graphics: Flutter GPU and 3D support still evolving; not production-ready for advanced 

use cases. 

7. Adoption Scenarios: 

• Startup (B2C): Single Flutter codebase for mobile + web; deploy CanvasKit for stability, 

experiment with Wasm in beta. 

• SME (internal tools): Desktop (Windows/macOS) + tablet support; Flutter desktop viable with 

unified tooling. 

• University curriculum: Teach Dart 3 (patterns, records), Flutter architecture, and state 

management; lab projects on web (Wasm vs CanvasKit). 

8. Practical Recommendations: 

• Architecture: Separate presentation/state/domain; begin with simple state management 

(Provider/Riverpod), scale to Bloc for larger apps. 

• Performance: Enable Impeller, profile with DevTools, minimize over-rendering, cache 

images, test on entry-level devices. 

• Web: Start with CanvasKit; test --wasm for compatible browsers; monitor package 

compatibility. 

• Quality: Use CI/CD (Flutter test, golden tests), static analysis (flutter_lints), and package 

license checks. 

9. Future Outlook (12–24 months): 

• Wider adoption of WasmGC in mainstream browsers → faster startup and better runtime 

performance. 



Journal of Science Research International (JSRI)    ISSN: 2456 – 6365 

 

Vol. 11 (8) October 2025 21 
 

• Expansion of Impeller and GPU APIs to support 3D/advanced visuals in production. 

• Growing ecosystem maturity (iOS integration via SPM, multi-view web support, rendering 

optimizations). 

Conclusion: 

Flutter is solidifying its role as a comprehensive cross-platform solution. Its latest 

advancements — Impeller, Dart 3, and Wasm — address critical challenges in performance, code 

quality, and web support. Despite transitional limitations (especially Wasm maturity and package 

compatibility), Flutter in 2025 offers a strong balance of speed, UX consistency, and developer 

productivity for most 2D content-driven apps. 

References: 

1. Flutter. (2025). Impeller rendering engine. Flutter Documentation. 

 https://docs.flutter.dev/perf/impeller 

2. Flutter. (2025). Flutter architectural overview. Flutter Documentation.  

https://docs.flutter.dev/resources/architectural-overview 

3. Flutter. (2025, May 20). Flutter 3.24.0 release notes. Flutter Documentation.  

https://docs.flutter.dev/release/release-notes/release-notes-3.24.0 

4. Flutter. (2025). Web renderers: CanvasKit and SkWasm. Flutter Documentation.  

https://docs.flutter.dev/platform-integration/web/renderers 

5. Dart. (2025). What’s new in Dart 3. Dart Documentation. https://dart.dev/resources/whats-new 

6. Ryan, J., & Belanger, M. (2025, June 3). Dive into Dart’s patterns and records. Google Codelabs. 

https://codelabs.developers.google.com/codelabs/dart-patterns-records 

7. Bizzotto, A. (2023, May 19). What’s new in Dart 3: Introduction. Code With Andrea.  

https://codewithandrea.com/articles/whats-new-dart-3-introduction/ 

8. Vivek, K. (2024, December 25). Summarized Flutter in 2024 and what's new for 2025. DEV 

Community. https://dev.to/3lvv0w/summarized-flutter-in-2024-and-whats-new-for-2025-27gd 

9. Flutter. (2025, August 13). What’s new in the docs. Flutter Documentation.  

https://docs.flutter.dev/release/whats-new 

10. iFlair. (2025, July 24). Flutter 2025: Powerful updates for cross-platform success. iFlair Blog.  

https://www.iflair.com/whats-new-in-flutter-2025-features-updates-and-insights/ 

 

 

 

https://docs.flutter.dev/perf/impeller
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/release/release-notes/release-notes-3.24.0
https://docs.flutter.dev/platform-integration/web/renderers
https://dart.dev/resources/whats-new
https://codelabs.developers.google.com/codelabs/dart-patterns-records
https://codewithandrea.com/articles/whats-new-dart-3-introduction/
https://dev.to/3lvv0w/summarized-flutter-in-2024-and-whats-new-for-2025-27gd
https://docs.flutter.dev/release/whats-new
https://www.iflair.com/whats-new-in-flutter-2025-features-updates-and-insights/

