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Abstract:  

The use of remote sensing methods for accurate and continuous monitoring of the Earth is 

increasing. Thus, various approaches are adopted for analyzing its data (imagery) for precise 

results. For example, one may analyze remotely sensed data collected at different scales or 

resolutions giving rise to the concept of multiscale remote sensing. Remotely sensed data can 

also be analyzed in multiple stages or iterations, which form the foundation of multistage 

remote sensing. This study aims to present an extensive review that summarizes multistage 

and multiscale remote sensing methods with special emphasis on Deep Learning applications. 

Of course, Deep Learning algorithms are influencing remote sensing image analysis. The 

evidence is in many existing articles some of which were reviewed in this study. Summarily, 

Deep Learning for multiscale and multistage techniques in remote sensing enhances the 

accuracy and efficiency of image analysis.  
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Introduction: 

Remote sensing provides an effective and rapid method for monitoring natural resources. It is 

characterized by the ability to acquire data in remote and inaccessible areas. The development of Earth 

Observation (EO) technology has enhanced remote sensing applications (Zhang & Shen, 2022). Also, 

recent advancements in remote sensing sensors and information transmission technologies have 

considerably improved the spatial resolution of remote sensing systems (Marin et al., 2015). However, 

many situations or analyses require the integration of multiple data from different or single remote 

sensing system(s) or the analysis of the imaeries at many stages. This has given rise to multi-image, 

which is a technique for generating images or information by combining multiple images. Of course, 

the images to be merged may be acquired from different sensors in the same area, at various points in 

time, or from different angles and viewpoints. 

With integrative processing of more images or information, it is possible to obtain information 

that is not available in a single data. Coarse-resolution sensors can be used to acquire regular temporal 

measurements. However, they lack the required spatial detail for resolving individual fields in some 

regions of the world (Graesser & Ramankutty, 2017). Regardless of this limitation, they are highly 
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effective in large-scale observations (Maus et al., 2016). Furthermore, higher-resolution sensors do not 

regularly acquire data, and they frequently lack spectral bands in key wavelengths such as the shortwave 

infrared or the red edge. Thus, modeling and aligning multiple image frames will allow information 

sharing between sequential frames. The implication is that the image resolution will be enhanced. 

Apparently, multi-image remote sensing techniques have been successfully used in disaster monitoring 

(Liu et al., 2022; Wang et al., 2022), land cover assessment (Lepcha et al., 2023; Malczewska & 

Wielgosz, 2024), and vegetation growth monitoring (Wang et al., 2023). 

The conventional method for exploiting remote sensing data depends on feature extraction 

and/or feature selection (Paheding et al., 2024). Unfortunately, extraction and selection of features are 

suboptimal in the context of broad representation of original data for certain applications. To be specific, 

their appropriateness can be reduced in the framework of big data. This is because remote sensing data 

vary in time, geo-location, atmospheric conditions, and imaging platform (Zhang et al., 2016; Zhu et 

al., 2017). Besides, the complex nature of remote sensing data makes its analysis a challenging task. 

Thus, a need arises for an effective method that could be used for the automatic extraction of relevant 

features from various remote sensing data (Paheding et al., 2024). Additionally, a dependable system 

for analysis is required (Adegun et al., 2023). In this regard, Deep Learning (DL) has proven its 

effectiveness (Yann er at., 2015). Of course, DL as emerged as a robust tool for remote sensing 

application. It revolutionized ow remote sensing data are analyzed and interpreted. Also, it can 

automatically learn complex features in remote sensing data. Ferchichi et al. (2022) revealed that many 

studies on the application of DL in multidisciplinary approaches including its utilization in remote 

sensing are in tew literature. It is noteworthy that the application of Deep Learning in remote sensing is 

mainly used in three aspects, namely surface classification, object detection and change detection. 

Fundamentals of Deep Learning 

 Deep Learning is a component of Machine Learning, which was developed for the purpose of 

solving a complex problem with a huge amount of data. Its concentration is mainly on the development 

of systems stimulated by the structural arrangement and functioning of the brain known as Artificial 

Neural Networks (ANN). Generally, the DL structure is characterised by multiple layers. With these 

numerous layers, it can automatically learn the abstract features from the raw data directly from which 

valuable representations can be determined (Rajagukguk et al., 2020). Data abstraction and extraction 

from the lower to higher layers are done through simple nonlinear modules.  

 By and large, Deep Learning has demonstrated potential for advances in various fields 

(Maduako et al., 2022). Now, enhanced algorithms and multilayer networks such as Convolution Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), DBN (Deep Belief Network) and many more 

have shown to be more effective than standard methods.  

Multiscale Remote Sensing  

Remote sensing object detection is extremely important (Chen et al., 2023) for natural disaster 

monitoring (Alkhatib et al., 2023), large-scale scene detection, and resource surveying. Studies have 

revealed how it is of great significance to human life and societal development (e.g. Masita et al., 2020). 

Also, remote sensing images are characterized by multiple scales (Cai et al., 2023), and complex 

backgrounds (Cai et al., 2022). Thus, it is often difficult to logically extract specific features from the 

high-resolution imageries that contain rich feature information. Furthermore, the image sensor 
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information is weak such that it gives rise to many difficulties and challenges in small target detection. 

Many studies have been conducted on network structure, training, data processing, and others to 

improve the detection performance of small targets. Yet, there is a gap in the performance of small-

target detection compared with that of large- and medium-target detection. 

Considering the case of optical remote sensing data that involves long distance, images are 

normally presented at a smaller scale (small targets). Therefore, they contain fewer pixels and feature 

information. Optical remote sensing data are characterized by several kinds of targets with large-scale 

variations. Thus, remote sensing analysts should ensure that small targets and multiscale are considered 

in the designed framework for a better detection accuracy. Many recent studies have suggested 

enhancing the accuracy of small and multi-scale targets in optical remote sensing data (e. g. Deng et 

al., 2018; Li et al., 2019; Li et al., 2020; Pham et al., 2020; Amazirh et al., 2024). These studies revealed 

the significance of multi-stage classifiers, multi-stage features quadratic fusion, and loss function 

weighting.  

Multistage Remote Sensing 

  Multistage or multilevel remote sensing method is concerned with the use of a remote sensing 

system to capture data at various levels. It involves a hierarchical classification, which detects some 

important classes in the first level and progressively differentiates different sub-classes within each 

main class (Dibs et al., 2017; Mao et al., 2020). The method of multistage mapping is examined to a 

lesser extent compared to the use of different elements in a single classification process. However, 

separating diverse land cover types into a sequence of sub-classes produces better results than direct 

classifications of all classes. For example, Kwong et al. (2022) facilitated the effective mapping of 

diverse habitats by integrating VHR satellite images, GIS databases, and post-classification rules. In 

the first stage, initial classification was performed on a 2m WorldView-2/3 image to map several classes 

with a variety of variables and classification methods. In the second and third stages, modification 

procedures were adopted with GIS data and spatial relationships to identify habitats to produce the final 

results.  

  Landsat imagery has proven to be effective in Forest Inventory and Analysis (FIA). 

Unfortunately, Landsat doesn't greatly reduce the required amount of field data. However, it is possible 

to get more detailed information that observes rapid changes in forest cover and conditions using high-

resolution data. Thus, a multistage statistical design can combine wall-to-wall Landsat data in the first 

stage, a sample of high-resolution imagery in the second stage, and conventional forest inventory and 

analysis in the third stage. It is also possible to improve the mapping results by using post-classification 

modification rules with thematic layers within a GIS (Thakkar et al., 2017). Examples of such layers 

are terrain, land use, geologic and climatic data. 

Progressive refinement is an important characteristic of multistage analysis in remote sensing 

(Liu et al., 2025). Through multiple stages, coarse-grained features can be analyzed as the first step 

followed by the progressive refinement of those features. Another significance of multistage remote 

sensing is its ability to solve the small target detection problem. The features of small targets can be 

enriched using multistage feature maps. Evidence in many studies demonstrates the effectiveness of the 

multistage method in remote sensing. For instance, Zhang & Shen (2022) improved the accuracy of 

target detection in optical remote sensing using the Multi-stage Feature Enhancement Pyramid 
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Network. Esmaiel et al. (2022) proposed multistage feature mining to enhance Ship-Radiated Noise 

(SRN) feature extraction in the detected passive sonar signal. This was based on Enhanced Variational 

Mode Decomposition (EVMD), Weighted Permutation Entropy (WPE), Local Tangent Space 

Alignment (LTSA), and Particle Swarm Optimization-Based Support Vector Machine (PSO-SVM). In 

another study, Zhou et al. (2024) combined three levels (including image, feature, and decision) in a 

multistage interaction network designed for effective change detection. Similarly, Xiaogang et al. 

(2024) presented a Multi-Stage Progressive Change Detection Network (MSP-CD), particularly for 

urban growth change detection. The approach integrated invariant detection, knowledge distillation, 

and a coarse-to-fine change detection structure. 

Deep Learning Application in Multiscale and Multistage Remote Sensing 

The extraction of multi-scale features has been based on conventional techniques such as dense 

sampling of windows (Yan et al., 2014), spatial pyramids, and their combination. With the improved 

DL models (Lei et al., 2021), different change detection techniques have emerged (Pan et al., 2022; 

Yan et al., 2023). Of course, the current level of deep neural networks results in high-level network 

design solutions for object detection (Ren et al., 2017; Law & Deng, 2020; Zhang & Shen, 2021). It is 

noteworthy tath Remote sensing data are characterized by delicate and intricate features, which pose 

difficulties in using traditional techniques for accurate data extraction (Almohsen, 2024; Liu et al., 

2025). However, DL algorithms differs from conventional machine learning algorithms and data mining 

because it can take very comprehensive representations of data from large datasets (Taye, 2023). It can 

also handle complex relationships and automate feature learning (Bengani, 2024). This has resulted in 

the recent shift of attention to Deep Learning among remote sensing analysts. The application of DL 

has recorded significant success in several remote sensing image analyses including land use and land 

cover classification, scene classification, and object detection (Chen et al., 2015; Romero et al., 2016; 

Marmanis et al., 2016; Kussul et al., 2017; Vetrivel et al., 2018). Some of the DL algorithms in 

multistage analysis are presented in Table 1. 

Table 1: Deep Learning in Multistage Analysis 

Method Application Authors 

Convolutional Neural 

Networks (CNNs) 

Feature extraction from remote 

sensing imagery 

Alshehhi et al., 2017; Bai et al., 2018; 

Li et al., 2018; Yi et al., 2019; Aryal 

and Neupane, 2023 

Recurrent Neural 

Networks (RNNs) 

Capturing temporal 

dependencies in  

multi-temporal data 

Ienco et al., 2017; Sharma, Liu, and 

Xiaojun, 2017; Ndikumana et al., 

2018; Mou et al., 2019; Grünig, et al., 

2021 

Transformers Capturing long-range 

dependencies and contextual 

information in remote sensing 

imagery 

He et al., 2020; Chen, Shi, Qi, 2021; 

Bazi et al., 2021; Yang et al., 2022; Ma 

et al., 2022; Boulila et al., 2024; 

Bolcek et al., 2025 

Generative Adversarial 

Networks (GANs) 

Image super-resolution and 

data augmentation 

Crivellari et al., 2023; Huang, and Cao, 

2023 
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Over the last few years, a strong interest has been raised in CNNs as a powerful machine-

learning tool. CNNs have been employed on multiple tasks such as object detection (Lin et al., 2017) 

and classification (He et al., 2016).  This is because they can autonomously extract highly representative 

features, overshadowing traditional learning approaches which are based on hand-crafted features. 

Wang et al. (2022) conducted a comprehensive investigation with a special emphasis on deep learning 

in multiscale agricultural remote and proximal sensing. They specifically focussed on the applications 

of CNN supervised learning, transfer learning, and few-shot learning in crop sensing at land, field, 

canopy, and leaf scales. It should be noted that Feature pyramids are usually constructed with CNN. 

This is due to the pooling and multi-convolution kernel operations that make them suitable for building 

deep multiscale representations (Jiao et al., 2021). Furthermore, there are two common methods for 

CNN-based multi-scale learning. The first technique uses external or preset architectures such as the 

multi-scale kernel (Szegedy et al., 2015; Zou & Cheng, 2021) and multi-scale inputs (Dollár & Zitnick, 

2014). In the second method, internal layers of the network including skip and dense connections are 

designed (Chen et al., 2017).  

Another model commonly utilized for supervised learning is the RNN, which was 

conventionally employed for discrete sequence analysis. However, advances in their architecture and 

training methods make them applicable to more complex tasks involving remote sensing data analysis 

(e.g. Lyu et al., 2016; Ho Tong Minh et al., 2018). 

Furthermore, the Generative Adversarial Networks (GANS) as presented in Goodfellow et al. 

(2014) are pervasive unsupervised Deep Learning algorithms. GANs have been effective in computer 

vision and image processing (Zhan et al., 2018) including remote sensing image processing 

applications. It comprises generative and discriminative networks. The generative network learns from 

a hidden space to a specific data distribution of interest. On the other hand, a discriminative network 

differentiates between the real and generated data. Both the generative and discriminative networks 

enhance different and disparate loss functions in a zero-zum game (Oliehoek et al., 2017).  

In recent times, there has been more interest in transformer-based architectures. Notably, the 

Vision Transformer (ViT) as shown in Dosovitskiy et al. (2020) has been particularly successful. When 

compared to CNN, the ViT balances the global and local features much better. Also, other efforts have 

been made for multi-scale feature learning including the multi-scale Deformable Attention and 

Multilevel Features Aggregation (MSDAM and MLFAM) network (Dong et al., 2022), and the Shunted 

Self-Attention (SSA) network (Ren et al., 2022).  

Conclusion: 

The applications of remote sensing in monitoring the Earth-related occurrences are increasing. 

Thus, there is need to improve the interpretation of remote sensing data. In that regard, many approaches 

have emerged including multistage and multiscale remote sensing methods. The multistage feature 

maps can enhance the features of small-scale targets. Models can also rely on more feature difference 

information for target classification. Furthermore, the methods to solve the multiscale target detection 

problem use multistage classifiers, multistage feature quadratic fusion, and loss function weighting. 

Although these methods can deal with the specificities of targets in sensing images, they can reduce 
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detection efficiency. Of course, the detection accuracy will not be sufficiently high as feature usage is 

insufficient. 

The existing and potential applications of Deep Learning was highlighted in this study. The 

main intention was to encourage increased interest and engagement among vision and remote sensing 

experts. This will inspire the use of Deep Learning models not only for multiscale and multistage remote 

sensing image analysis but also for broader applications in the remote sensing field. DL possesses 

significant advantages for processing time-series data such as the RNN, which was traditionally applied 

to a discrete sequence analysis. Also, CNNs have been successfully used in remote sensing image 

fusion. 
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