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Abstract: In order to handle uncertainty in supply chain networks that make decisions at 

multiple levels and with multiple objectives, this study introduces a fuzzy-based optimization 

method. To solve the multi-objective optimization problem under uncertainty, the suggested 

method integrates fuzzy set theory with mathematical programming. The uncertainty in 

demand, supply and transportation is represented using fuzzy numbers and the fuzzy 

optimization model is solved using a fuzzy programming algorithm. The results demonstrate 

the effectiveness of the proposed approach in optimizing uncertainty in multi-objective multi-

level decision-making supply chain networks. 
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Introduction: 

In today's global competition, various products 

must be produced according to customer's 

demand. There is also an increasing trend for 

high-quality products, and many firms prefer to 

outsource part of their needs. In today’s 

competitive market, enterprises and 

manufacturers, in addition to considering 

organization and internal resources, need to 

manage and control resources and related 

elements outside of the organization because they 

want to achieve a competitive advantage or 

advantages with the purpose of gaining more 

market share. Accordingly, activities such as 

supply and demand planning, material 

procurement, production and product planning, 

inventory control, distribution, delivery, and 

customer service executed at the company level. 

Controlling and coordinating all activities play an 

essential role in supply chain management. 

Supply chain management (SCM) is a 

phenomenon that does this in a way so that 

customers can receive fast and reliable services 

and quality products at reasonable expenses. In 

this regard, optimization of the supply chain has 

become a very important issue for many 

companies. Supply chain optimization is the 

application of processes and tools to ensure the 

optimal operation of a manufacturing and 

distribution supply chain. This includes the 

optimal placement of inventory within the supply 

chain and minimizing operating costs (including 

mailto:prchava83@gmail.com
https://doi.org/10.5281/zenodo.15088406


Journal of Science Research International (JSRI)    ISSN: 2456 – 6365 

 

Vol. 11 (1) 2025 66 
 

manufacturing costs, transportation costs, and 

distribution costs). Implementation of appropriate 

strategies for minimizing costs and increasing 

flexibility in a competitive and complex market is 

one of the challenges for supply chain 

optimization. 

On the other hand, many planning problems 

require the synthesis of decisions from several 

interacting individuals or agencies. Often, these 

groups are arranged within a hierarchical 

administrative structure, each with independent 

and perhaps conflicting objectives. Multi-level 

mathematical programming (MLP) is identified as 

mathematical programming that solves 

decentralized planning problems with multiple 

executors in a multi-level or hierarchical 

organization. 

In many real-world supply chain optimization 

problems, we are faced with multiple objectives, 

which are also often in conflict. Traditionally, 

most studies have been focused on revenue 

maximization or cost minimization as a single-

objective optimization problem. However, in a 

real supply chain, managers may be looking to 

optimize multiple conflicting objectives, such as 

reducing costs and increasing customer 

satisfaction simultaneously. 

In addition, uncertainty is the main factor that 

influences the efficiency and coordination of the 

supply chain and tends to spread up and down the 

chain, significantly affecting its performance. 

This uncertainty may occur in various instances, 

such as uncertainties in demand, supply (delivery 

time, etc.), costs, and supply chain structure, and 

so on. 

The supply chain optimization may be considered 

at different levels, depending on the strategic, 

tactical, and operational variables involved in 

decision-making (Mele et al., 2007). The strategic 

level concerns those decisions that would have a 

long-lasting effect on the firm, such as the size and 

location of production, warehouse and 

distribution departments, technology selection 

process, production, etc. 

➢ SUPPLY CHAIN programming 

The standard mathematical programming 

problem deals with finding an optimal solution for 

just one decision maker. Nevertheless, many 

planning problems contain a hierarchical decision 

structure, each with independent and often 

conflicting objectives. These types of problems 

can be modeled using a multi-level mathematical 

programming technique. A bi-level programming 

problem, which is a special case of a multiple-

level programming problem, involves two 

optimization problems where the feasible region 

of the upper-level problem is determined 

implicitly by the solution set of the lower-level 

problem. The decision maker at the upper level 

(the leader) optimizes his/her objective function 

independently and is influenced by the reaction of 

the decision maker at the lower level (the 

follower), who makes his/her decision after the 

leader. Briefly, each decision maker 

independently pursues his/her own interest but is 

influenced by the action of the other decision 

maker. This hierarchical decision process arises in 

many fields, including decentralized resource 

planning, highway pricing, the power market, 

logistics, economics, manufacturing, and road 

network management, which are referred to as 

multilevel decision problems (Zhang et al., 2010). 

It has been proved that solving the bi-level linear 

programming is an NP-hard problem, and even 

finding a local optimal solution of the bi-level 

linear programming is NP-hard (Wang et al., 

2010). A linear bi-level programming problem 

has an important property: at least one global 

optimal solution is attained at an extreme point of 

the constraint region (Gao et al., 2010). Based on 

this property, many algorithms have been 

proposed for solving bi-level linear programming 

problems (Shi et al., 2005-a; Shi et al., 2005-b; 

Gao et al., 2010; Zhang et al., 2010; Zheng et al., 
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2011). These algorithms can be roughly classified 

into three categories: 

1. Vertex enumeration-based 

approaches (Zhang et al., 2010; Ansari 

& Zhiani Rezai, 2011; Calvete & Gale, 

2012), 

2. Kuhn-Tucker approaches (Calvete & 

Gale, 2004; Lu et al., 2006; Shi et al., 

2005-b; Mishra et al., 2007), where a bi-

level programming problem is 

transformed into a single-level problem 

by including the follower’s optimality 

conditions as extra constraints, and 

3. Heuristics (Gao & Liu, 2005; Wang et 

al., 2008; Kuo & Huang, 2009; Lin et al., 

2008; Jiang et al., 2013), which are global 

optimization techniques based on 

convergence analysis. 

The Kuhn-Tucker method is the best-known 

approach for solving bi-level programming 

problems. The main strategy of the Kuhn-Tucker 

approach is to replace the follower’s problem with 

its Kuhn-Tucker conditions and add them as 

constraints to the leader’s problem. 

Reformulating a linear bi-level programming 

problem into a standard mathematical program 

makes it relatively easier to solve, as all 

constraints are linear. With the elimination or 

reduction of these constraints, a standard linear 

programming problem is obtained, which can be 

solved using the simplex algorithm. 

In a multi-level decision-making problem, 

decision makers at one level may consider 

multiple objectives simultaneously, and these 

objectives are often in conflict. Many papers have 

addressed bi-level single-objective programming 

problems, but fewer studies tackle bi-level multi-

objective problems (Zheng et al., 2011). Osman et 

al. (2004) presented an approach using fuzzy set 

theory for solving bi-level and multiple-level 

multi-objective problems. Baky (2010) studied a 

fuzzy goal programming (FGP) algorithm for 

solving decentralized bi-level multi-objective 

programming problems. The fuzzy goals of the 

objectives are determined by identifying 

individual optimal solutions. These fuzzy goals 

are then characterized by associated membership 

functions, which are transformed into fuzzy 

flexible membership goals by introducing over- 

and under-deviational variables and assigning the 

highest membership value (unity) as the 

aspiration level to each of them. To elicit the 

membership functions of the decision vectors 

controlled by the upper-level decision maker 

(DM), the optimal solution of the upper-level 

multi-objective linear programming (MOLP) 

problem is separately determined. 

The original bi-level programming technique 

mainly deals with one leader and one follower 

decision problem. In real-world applications, 

multiple followers (i.e., multiple decision units at 

the lower level) may be involved. Thus, the 

leader’s decision will be affected not only by the 

individual reactions of those followers but also by 

the relationships among them. For each possible 

solution of the leader, these followers may have 

different interactions. These followers may or 

may not share their decision variables. They may 

have individual objectives and constraints but 

work cooperatively with others, or they may have 

common objectives or common constraints (Lu et 

al., 2006). 

Shi et al. (2007) proposed an extended K-th-best 

approach for linear bi-level multi-follower 

programming problems with partially shared 

variables among followers. Wang et al. (2009) 

studied a class of bi-level multi-follower 

programming in which there are partially shared 

variables among followers. A fuzzy interactive 

decision-making approach was proposed to derive 

a satisfactory solution for decision makers, 

considering not only the dominant action of the 

leader but also the ratios of satisfaction between 

the leader and the followers. 
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Zhang and Lu (2010) considered a multi-objective 

multi-follower linear bi-level programming 

problem with fuzzy uncertainty in parameters and 

a cooperative relationship between followers. 

They solved the problem using the K-th-best 

method. Among other studies in this area, Ansari 

and Zhiani Rezai (2011) examined a multi-

follower problem with an uncooperative 

relationship. 

Paper Organization: 

This paper is structured as follows: 

1. Model formulation is presented first. 

2. The solution procedure is described in 

Section 3. 

3. An illustrative example of a supply 

chain with one manufacturer (first level) 

and two distribution centers (second 

level) is provided in Section 4. 

4. Discussion, concluding remarks, and 

future research directions are 

summarized in Section 5. 

Supply chain management model 

Problem description, assumptions, and notations 

The bi-level problem with multi-products, multi-

objective and multi-follower in supply chains are 

examined here. Consider a supply chain with two 

levels with a manufacturer as a leader at high level 

and K distribution centers as K followers in low 

level. Manufacturer has been hegemonic power in 

the chain and distribution centers as followers 

should adopt the best decisions with regard to 

decisions of manufacturer. The manufacturer has 

produce M products and distributed them to 

distribution centers that sale products in a same 

market. Assume that the market demand and costs 

is normally fuzzy/imprecise due to incomplete 

and/or unobtainable information. Fig.1 illustrates 

the supply chain structure. 

 

The fuzzy mathematical programming model 

designed here is based on the following 

assumptions: 

1. Demand and cost functions are fuzzy with 

imprecise as privation levels. 

2. All objective functions and constraints are line 

are equations. 

3. The production costs and distribution cost/time 

at manufacturer level and distribution cost/time 

on a distribution centers are directly proportional 

to the units manufactured and shipped capacity 

per truck, respectively. 

4. The pattern of triangular distribution is adopted 

to represent all of the fuzzy / imprecise numbers 

and the linear membership functions are 

specified for all of the fuzzy numbers involved in 

the proposed model. 

5. Shortages not allowed in any of levels. 

6. Each distribution center has determined minimum 

inventory level. 

7. There is no collaboration between followers. 

1. Fuzzy theory:  

In this section we recall some basic definitions 

and arithmetic operations. 
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Definition: If X is a universe of discourse and x 

be any particular element of X. The fuzzy set B 

defined on X is a collection of ordered pairs, 

P = {(x, μP(x))|x ∈ X} 

Where, μP(x): X → [0,1] is called the 

membership function. i.e. 0 ≤ μP(x) ≤ 1 

Definition: Fuzzy set B is defined on a set R of 

real number whose membership function P: R →

[0,1] is a fuzzy number under certain conditions: 

P: R → [0,1]is normal. (i.e. height (P) = 1) 

P: R → [0,1] is convex 

P: R → [0,1]is piecewise continuous. 

Definition: A triangular fuzzy number P =

(a, b, c) is defined by its membership function is 

given below, 

μP(x) =

{
 
 

 
 
x − a

b − a
 a ≤ x ≤ b

c − x

c − b
 b ≤ x ≤ c

0 otherwise

 

Definition 2.4. A triangular fuzzy numberP =

(a, b, c) ∈ F(R) can also berepresented as a pair 

P = (p, p̅)of functions which satisfies the 

following requirements: 

p(n) is bounded monotonic increasing left 

continuous function. 

p̅(n) is abounded monotonic decreasing left 

continuous function. 

p(n) ≤ p̅(n),   0 ≤ n ≤ 1 

 

Definition 2.5: We denote this triangular fuzzy 

number by P = (a, b, c) ∈ F(R)Weuse F(R)to 

denote the set of all triangular fuzzy numbers Also 

if  m = b represents the modal value ormid point,  

γ = (b − a)represents the left spread and ε =

(c − a) represent the right spread of the triangular 

fuzzy number p (a,b,c) can also be represented 

by p= (γ,m,ε). 

Definition 2.6: 

For an arbitrary triangular fuzzy number p∈ F(R) 

can also be represented as a pair p = (p, p ) of 

functions p(n) and p (n) for 0 ≤ r ≤ 1 which 

satisfies the following requirements 

p(n) is a bounded monotonic increasing left 

continuous function. 

p(n) is a bounded monotonic decreasing left 

continuous function. 

p(n) ≤ p(n) ,0 ≤ n ≤ 1 

Definition 2.7: 

For an arbitrary triangular fuzzy number p = (p, p) 

the number m = (
p(n)+p(n)

2
) is said to a location 

index number of p The two non-decreasing

 left continuous functions γ=(m-

p), ε=(p −m)are called the left fuzziness index 

function and the right fuzziness index function 

respectively. Hence every triangular fuzzy 

number p=(a, b, c) can also be represented by p = 

(m,γ,ε) 

Definition 2.5. Arithmetic operation on triangular 

Fuzzy Numbers Ming Ma et al. [11]have proposed 

a new fuzzy arithmetic based upon both location 

index and fuzziness index functions. The location 

index number is taken in the ordinary arithmetic, 

whereas the Fuzziness index functions are 

considered to follow the lattice rule, which is least 

upper bound in the lattice L. That is for p, q L 

we define p⋁q = max {p, q}and p⋀q =

min {p, q}. 

For arbitrary triangular fuzzy numbers p =

(a, b, c) and q = (l,m, n)and ∗= {+,−,×,÷}, the 

arithmetic operations on the

 triangular fuzzy numbers

 are defined by  

Addition: (a, b, c) + (l,m, n) = (a + l,

max{b,m} , max {c, n}) 

Subtraction:(a, b, c) − (l,m, n) = (a − l,

min{b,m} , min {c, n}) 

Multiplication:(a, b, c) ∗ (l,m, n) = (a ∗ l,

max{b,m} , max {c, n}) 

Division: (a, b, c) ÷ (l,m, n) = (a ÷ l,

min{b,m} , min {c, n}) 
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Methodology:  

In this paper, we assume that the D Mhasal ready 

adopted triangular fuzzy numbers to represent the 

fuzzy market demand and supply chain costs. In 

practice, the DM are familiar with estimating 

optimistic, pessimistic and most likely parameters 

and the pattern of triangular distribution is 

commonly adopted due to ease in defining the 

maximum and minimum limit of deviation of the 

fuzzy number from its central value. The primary 

advantages of the triangular fuzzy number are the 

simplicity and flexibility of the fuzzy arithmetic 

operations (Liang, 2008). 

In the process of defuzzification, there are many 

important measures to compare to fuzzy numbers, 

such as Hausdorff distance (Chaudhuri & 

Rosenfeld, 1999), Hamming distance (Diamond 

& Kloeden, 1994) and Jimenez (Jimenez, 2006). 

In this paper α−cut method will be used to 

approximate a fuzzy number. 

Numerical Illustration:  

To illustrate the solution approach, computational 

experiments are presented in this section. We 

consider a supply chain with wolves. In the higher 

level, we have manufacture eras a leader and in 

the lower level we have two distribution centers 

as two followers. Product 1 and product 2 are 

produced by the manufacturer, and then 

distributed them to two distribution centers. The 

numerical values of model parameters for 

manufacturer are given in Table. 

Table 1: Data for the manufacturer 

Parameters value Parameters value Parameters value 

a1 5̃0=(35,50,60) c2 3 s11 20 

a2 3̃0=(24,30,50) u11 30 s21 10 

b11 1̃5=(12,15,20) u21 30 s12 20 

b21 1̃0=(9,10,20) u12 20 s22 10 

b12 2̃5=(20,25,30) u22 20 R 5000 

b22 2̃0=(16,20,25) r1 2 C 6000 

Demand Value for Product 1 and 2  

D1 is 8˜20=(750,820,890) and D2 is 4˜50=(400,450,550) 

 

Fig. 3: Changes of λ vs. α 
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Conclusion: 

This paper, supply chain optimization in a multi-

objective multi-Multi decision linear bi-level 

problem with uncertain customer demand and 

costs was discussed. For this purpose, a supply 

chain with a manufacturer. Fuzzy objective 

functions and constraints are converted into crisp 

ones using fuzzy method. With using extended 

Kuhn–Tucker approach, bi-level problem is 

transformed into single level problem. Finally, we 

develop a fuzzy goal programming model to solve 

obtained multi- objective linear programming 

problem. A numerical example is presented to 

demonstrate the effectiveness of the model and 

solution method. According to predefined 

solution method, the example was solved and a set 

of Pareto-optimal solutions were obtained for 

choice of decision makers for choices that they 

maid. 

Lastly, there are some possible directions for 

future research. In this paper, it is assumed that 

there isn’t any shortage in any of supply chain 

levels. While we need to examine this issue in 

some real- world problems and inter costs 

associated with shortages and other constraints 

relevant to the problem. Also we have assumed 

that there is an uncooperative relationship 

between followers in the lower level where there 
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is no sharing of decision variables among the 

followers. In such a situation, there are obviously 

neither shared objectives nor shared constraints 

among the followers. While different 

relationships among these followers excepting 

cooperative relationship like cooperative and 

partial cooperative could cause multiple different 

processes for deriving an optimal solution for the 

upper level’s decision-making. So it can be 

considered according to model conditions. 

Future scope:  

To develop efficient algorithms and expand its 

applicability across diverse domains. 
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